TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

Appendix A

Answers

1. 9709_m21_ms_12 Q: 2

Question	Answer	Marks	Guidance
	$u = 2x - 3$ leading to $u^4 - 3u^2 - 4 = 0$	M1	Or $u = (2x-3)^2$ leading to $u^2 - 3u - 4 = 0$
	$(u^2-4)(u^2+1)[=0]$	M1	Or $(u-4)(u+1)[=0]$
	$2x-3=[\pm]2$	A1	
	$x = \frac{1}{2} , \frac{5}{2} $ only	A1	
		4	

2. 9709_s21_ms_11 Q: 6

Question	Answer	Marks	Guidance
	$(2k-3)x^2 - kx - (k-2) = 3x - 4$	*M1	Equating curve and line
	$(2k-3)x^2-(k+3)x-(k-6)[=0]$	DM1	Forming a 3-term quadratic
	$(k+3)^2 + 4(2k-3)(k-6)[=0]$	DM1	Use of discriminant (dependent on both previous M marks)
	$9k^2 - 54k + 81[=0]$ [leading to $k^2 - 6k + 9 = 0$]	M1	Simplifying and solving their 3-term quadratic in k
	k = 3	A1	
	Alternative method for Question 6		
	$(2k-3)x^2 - kx - (k-2) = 3x - 4$	*M1	Equating curve and line
	$2(2k-3)x-k=3 \implies x = \frac{k+3}{4k-6} \text{ or } k = \frac{3+6x}{4x-1}$	DM1	Differentiating and solving for x or k
	Either $(2k-3)\left(\frac{k+3}{4k-6}\right)^2 - k\left(\frac{k+3}{4k-6}\right) - (k-2) = 3\left(\frac{k+3}{4k-6}\right) - 4$ Or $4x\left(\frac{3x^2 + 3x - 6}{2x^2 - x - 1}\right) - 6x - \left(\frac{3x^2 + 3x - 6}{2x^2 - x - 1}\right) = 3$	DM1	Substituting <i>their</i> x into equation or <i>their</i> $k = \frac{3x^2 + 3x - 6}{2x^2 - x - 1} \text{ or } k = \frac{3x + 6}{2x + 1} \text{ into derivative}$ equation (dependent on both previous M marks)
	$9k^2 - 54k + 81[=0]$ [leading to $k^2 - 6k + 9 = 0$]	M1	Simplifying and solving <i>their</i> 3-term quadratic in k (or solving for x)
	k = 3	A1	
			SC If M0, B1 for differentiating, equating to 3 and solving for x or k
		5	

3. 9709_s21_ms_12 Q: 1

Question	Answer	Marks	Guidance
(a)	$(4x-3)^2$ or $(4x+(-3))^2$ or $a=-3$	B1	$k(4x-3)^2$ where $k \neq 1$ scores B0 but mark final answer, allow recovery.
	+ 1 or b = 1	В1	
		2	
(b)	[For one root] $k = 1$ or 'their b '	B1 FT	Either by inspection or solving or from $24^2 - 4 \times 16 \times (10 - k) = 0$ WWW
	[Root or $x =]\frac{3}{4}$ or 0.75	B1	SC B2 for correct final answer WWW.
		2	

4. 9709_s20_ms_11 Q: 5

(a)	$x(mx+c) = 16 \to mx^2 + cx - 16 = 0$	В1
	Use of $b^2 - 4ac = c^2 + 64m$	M1
	Sets to $0 \rightarrow m = \frac{-c^2}{64}$	A1
		3
(b)	x(-4x+c) = 16 Use of $b^2 - 4ac \rightarrow c^2 - 256$	M1
	c > 16 and $c < -16$	A1 A1
		3

5. 9709_s19_ms_13 Q: 1

	Answer	Mark	Partial Marks
(i)	$\left[\left(x-2\right)^2\right]\left[+4\right]$	B1 DB1	2nd B1 dependent on 2 inside bracket
		2	
(ii)	$(x-2)^2 < 5 \rightarrow -\sqrt{5} < x-2 \text{ and/or } x-2 < \sqrt{5}$	M1	Allow e.g. $x-2 < \pm \sqrt{5}$, $x-2 = \pm \sqrt{5}$ and decimal equivalents for $\sqrt{5}$ For M1, ft from <i>their</i> (i). Also allow $\sqrt{13}$ instead of $\sqrt{5}$ for clear slip
	$2 - \sqrt{5} < x < 2 + \sqrt{5}$	A1A1	A1 for each inequality – allow two separate statements but there must be 2 inequalities for x. Non-hence methods, if completely correct, score SC 1/3. Condone ≤
		[3]	

6. 9709_s18_ms_13 Q: 1

Answer	Mark	Partial Marks
$[3]\left[\left(x-2\right)^2\right]\left[-5\right]$	B1B1B1	OR $a = 3$, $b = -2$, $c = -5$. 1st mark is dependent on the form $(x + a)^2$ following 3
	3	

7. 9709_w18_ms_11 Q: 1

Answer	Mark	Partial Marks
$(4x^{1/2} - 3)(x^{1/2} - 2)$ oe soi Alt: $4x + 6 = 11\sqrt{x} \Rightarrow 16x^2 - 73x + 36$	M1	Attempt solution for $x^{\frac{1}{2}}$ or sub $u = x^{\frac{1}{2}}$
$x^{\frac{1}{2}} = 3/4 \text{ or } 2$ (16x-9)(x-4)	A1	Reasonable solutions for $x^{\frac{1}{2}}$ implies M1 ($x = 2, 3/4$, M1A0)
x = 9/16 oe or 4	A1	Little or no working shown scores SCB3, spotting one solution, B0
	3	

8. 9709_m17_ms_12 Q: 1

Answer	Mark	Partial Marks
$(3k)^2 - 4 \times 2 \times k$	M1	Attempt $b^2 - 4ac$
$9k^2 - 8k > 0 \text{soi} \text{Allow } 9k^2 - 8k \geqslant 0$	A1	Must involve correct inequality. Can be implied by correct answers
0, 8/9 soi	A1	
k < 0, k > 8/9 (or 0.889)	A1	Allow (-∞, 0), (8/9, ∞)
Total:	4	

9. 9709_s16_ms_11 Q: 6

	Answer	Mark	(Partial Marks
(a)	$y = 2x^{2} - 4x + 8$ Equates with $y = mx$ and selects a , b , c Uses $b^{2} = 4ac$ $\rightarrow m = 4 \text{ or } -12.$	M1 M1 A1	[3]	Equate + solution or use of dy/dx Use of discriminant for both.
(b) (i)	$f(x) = x^2 + ax + b$ Eqn of form $(x-1)(x-9)$	M1		Any valid method allow $(x+1)(x+9)$ for M1
	$\rightarrow a = -10, b = 9$ (or using 2 sim eqns M1 A1)	A1	[2]	must be stated
(ii)	Calculus or $x = \frac{1}{2} (1+9)$ by symmetry $\rightarrow (5, -16)$	M1 A1		Any valid method
	\rightarrow (3, -10)		[2]	

10. 9709_w16_ms_11 Q: 1

	Answer	Mark		Partial Marks
(i)	$\left(x+3\right)^2-7$	B1B1	[2]	For $a = 3, b = -7$
(ii)	1,-7 seen $x > 1$, $x < -7$ oe	B1 B1	[2]	x > 1 or $x < -7Allow x \le -7, x \ge 1 oe$

11. 9709_s15_ms_13 Q: 1

	Answer	Mark	Partial Marks
$2(x-3)^2-11$			For 2, $(x-3)^2$, -11. Or $a=2$, $b=3$, $c=11$

12. 9709_w15_ms_13 Q: 3

	Answer	Mark	Partial Marks
(i)	$[3][(x-1)^2][-1]$	B1B1B1	
		[3]	
(ii)	$f'(x) = 3x^2 - 6x + 7$ $= 3(x - 1)^2 + 4$	B 1	Ft <i>their</i> (i) + 5
	$=3(x-1)^2+4$	B1√	
	> 0 hence increasing	DB1	Dep B1√ unless other valid reason
		[3]	

13. 9709_m22_ms_12 Q: 5

Question	Answer	Marks	Guidance
(a)	$2[\{(x-2)^2\} \ \{+3\}]$	B1 B1	B1 for $a = 2$, B1 for $b = 3$. $2(x-2)^2 + 6$ gains B1B0
		2	
(b)	{Translation} ${2} \choose {3}$ OR {Stretch} {y direction} {factor 2}	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	{Stretch} { y direction} {factor 2} OR {Translation} ${2}$ ${6}$	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
		4	

14. 9709_m22_ms_12 Q: 9

Question	Answer	Marks	Guidance
(a)	$\left[x^{\frac{1}{2}} = \right] \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$	M1 A1	OE. Answer must come from formula or completing square. If M0A0 scored then SC B1 for $2\pm\sqrt{3}$ only.
	$[x=](2\pm\sqrt{3})^2$	M1	Attempt to square their $2 \pm \sqrt{3}$
	$7+4\sqrt{3}$, $7-4\sqrt{3}$	A1	Accept $7 \pm 4\sqrt{3}$ or $a = 7, b = \pm 4, c = 3$ SC B1 instead of second M1A1 for correct final answer only.
	Alternative method for question 9(a)		
	$-4x^{\frac{1}{2}} + 1 = 0$ leading to $(x+1)^2 = 16x$ leading to $x^2 - 14x + 1 = 0$	*M1 A1	OE
	$x = \frac{14 \pm \sqrt{196 - 4}}{2}$	DM1	Attempt to solve for x
	$7+4\sqrt{3}$, $7-4\sqrt{3}$	A1	SC B1 instead of second M1A1 for correct final answer only.
		4	
(b)	$[gh(x)=] m\left(x^{\frac{1}{2}}-2\right)^2+n$	M1	SOI
	$\left[gh(x) = \right] m \left(x - 4x^{\frac{1}{2}} + 4 \right) + n \equiv x - 4x^{\frac{1}{2}} + 1$	A1	SOI
	m = 1, n = -3	A1 A1	www
		4	

15. 9709_m21_ms_12 Q: 5

Question	Answer	Marks	Guidance
(a)	(Stretch) (factor 3 in y direction or parallel to the y-axis)	B1 B1	
	(Translation) $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	B1 B1	Allow Translation 4 (units) in x direction. N.B. Transformations can be given in either order.
		4	
(b)	[y=] 3f(x – 4)	B1 B1	B1 for 3, B1 for $(x-4)$ with no extra terms.
		2	

16. 9709_m21_ms_12 Q: 7

Question	Answer	Marks	Guidance
(a)	$\left[f(x)=](x+1)^2+2\right.$	B1 B1	Accept $a = 1, b = 2$.
	Range [of f is (y)] $\geqslant 2$	B1FT	OE. Do not allow $x \ge 2$, FT on their b.
		3	
(b)	$y = (x+1)^2 + 2$ leading to $x = [\pm] \sqrt{y-2} - 1$	M1	Or by using the formula. Allow one sign error.
	$f^{-1}(x) = -\sqrt{x-2} - 1$	A1	
		2	

Question	Answer	Marks	Guidance
(c)	$2(x^2 + 2x + 3) + 1 = 13$	B1	Or using a correct completed square form of $f(x)$.
	$2x^2 + 4x - 6[=0]$ leading to $(2)(x-1)(x+3)[=0]$	B1	Or $x = 1, x = -3$ using formula or completing square. Must reach 2 solutions.
	x = -3 only	B1	
		3	

17. 9709_s21_ms_11 Q: 9

Question	Answer	Marks	Guidance
(a)	Range of f is $f(x) \ge -4$	В1	Allow y , f or 'range' or $[-4,\infty)$
		1	
(b)	$y = (x-2)^2 - 4 \Rightarrow (x-2)^2 = y + 4 \Rightarrow x - 2 = +\sqrt{(y+4)} \text{ or } \pm \sqrt{(y+4)}$	M1	May swap variables here
	$\left[\mathbf{f}^{-1}(x)\right] = \sqrt{(x+4)} + 2$	A1	
		2	
(c)	$(x-2)^2 - 4 = -\frac{5}{3}x + 2 \Rightarrow x^2 - 4x + 4 - 4 = -\frac{5}{3}x + 2 \ [\Rightarrow x^2 - \frac{7}{3}x - 2 = 0]$	M1	Equating and simplifying to a 3-term quadratic
	$(3x+2)(x-3)[=0]$ or $\frac{7\pm\sqrt{7^2-4(3)(-6)}}{6}$ OE	M1	Solving quadratic
	x = 3 only	A1	
		3	

Question	Answer	Marks	Guidance
(d)	$f^1(12) = 6$	M1	Substitute 12 into <i>their</i> $f^{-1}(x)$ and evaluate
	$g(\mathbf{f}^{-1}(12)) = 6a + 2$	M1	Substitute <i>their</i> '6' into g(x)
	$g(g(f^{-1}(12))) = a(6a+2) + 2 = 62$	M1	Substitute the result into $g(x)$ and = 62
	$6a^2 + 2a - 60 [= 0]$	M1	Forming and solving a 3-term quadratic
	$a = -\frac{10}{3}$ or 3	A1	
	Alternative method for Question 9(d)		
	$g(f^{-1}(x)) = a(\sqrt{x+4}+2)+2 \text{ or } gg(x) = a(ax+2)+2$	М1	Substitute <i>their</i> $f^1(x)$ or $g(x)$ into $g(x)$
	$g(g(f^{-1}(x))) = a(a(\sqrt{x+4}+2)+2)+2$	M1	Substitute the result into $g(x)$
	$g(g(f^{-1}(12))) = a(6a+2) + 2 = 62$	M1	Substitute 12 and = 62
	$6a^2 + 2a - 60 = 0$	M1	Forming and solving a 3-term quadratic
	$a = -\frac{10}{3}$ or 3	A1	
		5	

18. 9709_s21_ms_12 Q: 2

Question	Answer	Marks	Guidance
(a)	Translation $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	B1	Allow shift and allow by 1 in x-direction or [parallel to/on/in/along/against] the x-axis or horizontally. 'Translation by 1 to the right' only, scores B0
	Stretch	B1	Stretch. SC B2 for amplitude doubled.
	Factor 2 in y-direction	B1	With/by factor 2 in <i>y</i> -direction or [parallel to/on/in/along/against] the <i>y</i> -axis or vertically or with <i>x</i> axis invariant 'With/by factor 2 upwards' only, scores B0. Accept SF as an abbreviation for scale factor.
		3	Note: Transformations can be in either order
(b)	$[-\sin 6x][+15x] \text{ or } [\sin(-6x)][+15x] \text{ OE}$	B1 B1	Accept an unsimplified version. ISW. B1 for each correct component – square brackets indicate each required component.
			If B0, SC B1 for either $\sin(-2x) + 5x$ or $-\sin(2x) + 5x$ or $\sin 6x - 15x$ or $\sin \left(-\frac{2}{3}x\right) + \frac{5}{3}x$
		2	

19. 9709_s21_ms_12 Q: 5

Question	Answer	Marks	Guidance
(a)	$ff(x) = 2(2x^2 + 3)^2 + 3$	M1	Condone = 0.
	$8x^4 + 24x^2 + 21$	A1	ISW if correct answer seen. Condone = 0.
		2	
(b)	$8x^4 + 24x^2 + 21 = 34x^2 + 19 \Rightarrow 8x^4 + 24x^2 - 34x^2 + 21 - 19 [= 0]$	M1	Equating $34x^3 + 19$ to <i>their</i> 3-term $ff(x)$ and collect all terms on one side condone \pm sign errors.
	$8x^4 - 10x^2 + 2[=0]$	A1	
	$[2](x^2-1)(4x^2-1)$	M1	Attempt to solve 3-term quartic or 3-term quadratic by factorisation, formula or completing the square or factor theorem.
	$x^2 = 1 \text{ or } \frac{1}{4} \text{ leading to } x = 1 \text{ or } x = \frac{1}{2}$	A1	If factorising, factors must expand to give $8x^4$ or $4x^4$ 4 or <i>their</i> ax^4 otherwise M0A0 due to calculator use.
			Condone ± 1 , $\pm \frac{1}{2}$ but not $\sqrt{\frac{1}{4}}$ or $\sqrt{1}$.
		4	

20. 9709_s21_ms_13 Q: 6

Question	Answer	Marks	Guidance
(a)	$f(x) = (x-1)^2 + 4$	В1	
	$g(x) = (x+2)^2 + 9$	B1	
	g(x) = f(x+3) + 5	B1 B1	B1 for each correct element. Accept $p = 3, q = 5$
		4	

Question	Answer	Marks	Guidance
(b)	Translation or Shift	В1	
	$\begin{pmatrix} -3\\5 \end{pmatrix}$ or acceptable explanation		If given as 2 single translations both must be described correctly e.g. $\begin{pmatrix} -3 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ FT from their $f(x+p)+q$ or their $f(x) \rightarrow g(x)$ Do not accept $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ 9 \end{pmatrix}$
		2	

21. 9709_s21_ms_13 Q: 8

Question	Answer	Marks	Guidance		
(a)	$[fg(x)] = \frac{1}{(2x+1)^2} - 1$	B1	SOI		
	$1/(2x+1)^{2} - 1 = 3 \text{ leading to } 4(2x+1)^{2} = 1$ or $\frac{1}{(2x+1)} = [\pm]2 \text{ or } 16x^{2} + 16x + 3 = 0$	M1	Setting fg(x) = 3 and reaching a stage before $2x+1=\pm\frac{1}{2}$ or reaching a 3 term quadratic in x		
	$2x+1=\pm\frac{1}{2}$ or $2x+1=-\frac{1}{2}$ or $(4x+1)(4x+3)[=0]$	A1	Or formula or completing square on quadratic		
	$x = -\frac{3}{4}$ only	A1			
	Alternative method for Question 8(a)				
	$x^2 - 1 = 3$	M1			
	g(x) = -2	A1			
	$\frac{1}{(2x+1)} = -2$	M1			
	$x = -\frac{3}{4}$ only	A1			
		4			

Question	Answer	Marks	Guidance
(b)	$y = \frac{1}{(2x+1)^2} - 1$ leading to $(2x+1)^2 = \frac{1}{y+1}$ leading to $2x+1 = [\pm] \frac{1}{\sqrt{y+1}}$	*M1	Obtain $2x+1$ or $2y+1$ as the subject
	$x = [\pm] \frac{1}{2\sqrt{y+1}} - \frac{1}{2}$	DM1	Make $x(\text{or }y)$ the subject
	$-\frac{1}{2\sqrt{x+1}} - \frac{1}{2}$	A1	OE e.g. $-\frac{\sqrt{x+1}}{2x+2} - \frac{1}{2}, -\left(\sqrt{\frac{-x}{4x+4} + \frac{1}{4}} + \frac{1}{2}\right)$
		3	

22. 9709_w21_ms_11 Q: 8

Question	Answer	Marks	Guidance
(a)	$\left\{-3(x-2)^2\right\}$ $\left\{+14\right\}$	B1 B1	B1 for each correct term; condone $a = 2$, $b = 14$.
		2	
(b)	[k=] 2	В1	Allow $[x] \leq 2$.
		1	

Question	Answer	Marks	Guidance
(c)	[Range is] $[v] \leqslant -13$	B1	Allow $[f(x)] \le -13$, $[f] \le -13$ but NOT $x \le -13$.
		1	
(d)	$y = -3(x-2)^2 + 14$ leading to $(x-2)^2 = \frac{14-y}{3}$	M1	Allow $\frac{y-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
	$x = 2\left(\pm\right)\sqrt{\frac{14-y}{3}}$	A1	Allow $\frac{y-14}{-3}$.
	$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x-14}{3}$. Must be x on RHS; must be negative
			square root <u>only.</u>
	Alternative method for question 8(d)		
	$x = -3(y-2)^2 + 14$ leading to $(y-2)^2 = \frac{14-x}{3}$	M1	Allow $\frac{x-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
	$=2(\pm)\sqrt{\frac{14-x}{3}}$	A1	Allow $\frac{x-14}{-3}$.
	$[\mathbf{f}^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root only.
		3	
Question	Answer	Marks	Guidance
(e)	$[g(x) =] {-3(x+3-2)^2} + {14+1}$	B2, 1, 0	OR $\left\{-3(x+3)^2\right\} + \left\{12(x+3)\right\} + \left\{3\right\}$
	$g(x) = -3x^2 - 6x + 12$	B1	
		3	

23. 9709_w21_ms_12 Q: 2

Question	Answer	Marks	Guidance
(a)	Stretch with [scale factor] either ± 2 or $\pm \frac{1}{2}$	B1	
	Scale factor $\frac{1}{2}$ in the <i>x</i> -direction	B1	
	Translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ or translation of 3 units in negative y-direction	B1	
		3	
(b)	(10,9)	B1 B1	B1 for each correct co-ordinate.
		2	

24. 9709_w21_ms_12 Q: 3

Question	Answer	Marks	Guidance
(a)	$f(5) = \begin{bmatrix} 2 \end{bmatrix} \text{ and } f(their 2) = \begin{bmatrix} 5 \end{bmatrix} \text{ OR } ff(5) = \begin{bmatrix} \frac{2+3}{2-1} \end{bmatrix}$ $OR \frac{\frac{x+3}{x-1} + 3}{\frac{x+3}{x-1} - 1} \text{ and an attempt to substitute } x = 5.$	M1	Clear evidence of applying f twice with $x = 5$.
	5	A1	
		2	

Question	Answer	Marks	Guidance
(b)	$\frac{x+3}{x-1} = y \Rightarrow x+3 = xy - y \text{ OR } \frac{y+3}{y-1} = x \Rightarrow y+3 = xy - x$	*M1	Setting $f(x) = y$ or swapping x and y , clearing of fractions and expanding brackets. Allow \pm sign errors.
	$xy - x = y + 3 \Rightarrow x = \frac{y+3}{y-1}$ OE OR $y+3 = xy - x \Rightarrow y = \left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or $y = $. Allow \pm sign errors.
	$[f^{-1}(x) \text{ or } y] = \frac{x+3}{x-1}$	A1	OE e.g. $1 + \frac{4}{x - 1}$ etc. Must be a function of x, cannot be $x = .$
		3	

25. 9709_w21_ms_13 Q: 1

Question	Answer	Marks	Guidance
	{Reflection} {[in the] x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	{} indicate how the B1 marks should be awarded throughout.
	Then {Translation} $\left\{ \begin{pmatrix} 0 \\ 3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the positive y-direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.
	Alternative method for question 1		
	$ \{\text{Translation}\} \left\{ \begin{pmatrix} 0 \\ -3 \end{pmatrix} \right\} $	B1 B1	Or Translation 3 units in the negative y-direction.
	Then {Reflection} {in the x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	N.B. If order reversed a maximum of 3 out of 4 marks awarded.
		4	

26. 9709_w21_ms_13 Q: 6

Question	Answer	Marks	Guidance
(a)	$y = T^{-1}(x)$ $y = T^{-1}(x)$	В1	A reflection of the given curve in $y = x$ (the line $y = x$ can be implied by position of curve).
		1	

Question	Answer	Marks	Guidance
(b)	$y = \frac{-x}{\sqrt{4 - x^2}}$ leading to $x^2 = y^2 \left(4 - x^2\right)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y
	$x^2\left(1+y^2\right) = 4y^2$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.
	$x = (\pm) \frac{2y}{\sqrt{1 + y^2}}$	DM1	$x = (\pm)\sqrt{\left(\frac{4y^2}{(1+y^2)}\right)}$ OE is acceptable for this mark.
			Isolating the new subject. Order of operations correct. Condone sign errors.
	$f^{-1}(x) = \frac{-2x}{\sqrt{1+x^2}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.
		4	
(c)	1 or $a=1$	B1	Do not allow $x=1$ or $-1 < x < 1$
		1	
(d)	$[fg(x) = f(2x) =]\frac{-2x}{\sqrt{4 - 4x^2}}$	B1	Allow $\frac{-2x}{\sqrt{4-(2x)^2}}$ or any correct unsimplified form.
	$fg(x) = \frac{-x}{\sqrt{1-x^2}} \text{ or } \frac{-x}{1-x^2} \sqrt{1-x^2} \text{ or } \frac{x}{x^2-1} \sqrt{1-x^2}$	В1	Result of cancelling 2 in numerator and denominator.
		2	

$27.\ 9709_m20_ms_12\ Q:\ 2$

Answer	Mark	Partial Marks
[Stretch] [factor 2, x direction (or y-axis invariant)]	*B1 DB1	
[Translation or Shift] [1 unit in y direction] or [Translation/Shift] $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	B1B1	Accept transformations in either order. Allow (0, 1) for the vector
	4	

28. 9709_m20_ms_12 Q: 9

	Answer	Mark	Partial Marks
(a)	$\left[2(x+3)^2\right][-7]$	B1B1	Stating $a = 3, b = -7$ gets B1B1
		2	
(b)	$y = 2(x+3)^2 - 7 \rightarrow 2(x+3)^2 = y+7 \rightarrow (x+3)^2 = \frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with <i>x/y</i> interchange
	$x+3=(\pm)\sqrt{\frac{y+7}{2}} \rightarrow x=(\pm)\sqrt{\frac{y+7}{2}}-3 \rightarrow f^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on their a and b . Allow $y =$
	Domain: $x \ge -5$ or ≥ -5 or $[-5, \infty)$	B1	Do not accept $y =, f(x) =, f^{-1}(x) =$
		3	
(c)	$fg(x) = 8x^2 - 7$	B1FT	SOI. FT on their -7 from part (a)
	$8x^2 - 7 = 193 \rightarrow x^2 = 25 \rightarrow x = -5$ only	B1	
	Alternative method for question 9(c)		
	$g(x) = f^{-1}(193) \rightarrow 2x - 3 = -\sqrt{100} - 3$	M1	FT on their $f^{-1}(x)$
	x = -5 only	A1	
		2	
(d)	(Largest k is) $-\frac{1}{2}$	B1	Accept $-\frac{1}{2}$ or $k \leqslant -\frac{1}{2}$
		1	

29. 9709_s20_ms_11 Q: 6

(a)	$3(3x+b)+b=9x+4b \to 10=18+4b$	M1
	b = -2	A1
	Either $f(14) = 2$ or $f^{-1}(x) = 2(x + a)$ etc.	M1
	<i>a</i> = 5	A1
		4
(b)	$gf(x) = 3\left(\frac{1}{2}x - 5\right) - 2$	M1
	$gf(x) = \frac{3}{2}x - 17$	A1
		2

30. 9709_s20_ms_12 Q: 5

(a)	ff(x) = a - 2(a - 2x)	M1
	ff(x) = 4x - a	A1
	$f^{-1}(x) = \frac{a - x}{2}$	M1 A1
		4
(b)	$4x - a = \frac{a - x}{2} \rightarrow 9x = 3a$	M1
	$x = \frac{a}{3}$	A1
		2

31. 9709_s20_ms_13 Q: 3

(a)	(y) = f(-x)	B1
		1
(b)	(y) = 2f(x)	B1
		1
(c)	(y) = f(x+4) - 3	B1 B1
		2

$32.\ 9709_s20_ms_13\ Q:\ 9$

(a)	$\left[\left(x-2\right)^{2}\right]\left[-1\right]$	B1 B1
		2
(b)	Smallest $c = 2$ (FT on <i>their</i> part (a))	B1FT
		1
(c)	$y = (x-2)^2 - 1 \rightarrow (x-2)^2 = y + 1$	*M1
	$x = 2(\pm)\sqrt{y+1}$	DM1
	$(f^{-1}(x)) = 2 + \sqrt{x+1} \text{ for } x > 8$	A1
		3
(d)	$gf(x) = \frac{1}{(x-2)^2 - 1 + 1} = \frac{1}{(x-2)^2} OE$	B1
	Range of gf is $0 < gf(x) < \frac{1}{9}$	B1 B1
		3

33. $9709_{w20_{ms_11}} Q: 11$

	Answer	Mark	Partial Marks
(a)	$fg(x) = \left(2x+1\right)^2 + 3$	В1	OE
		1	
(b)	$y = (2x+1)^2 + 3 \rightarrow 2x + 1 = (\pm)\sqrt{y-3}$	M1	1st two operations. Allow one sign error or <i>x/y</i> interchanged
	$x = (\pm)\frac{1}{2}(\sqrt{y-3} - 1)$	М1	OE 2nd two operations. Allow one sign error or x/y interchanged
	$(fg^{-1}(x)) = \frac{1}{2}(\sqrt{x-3} - 1) \text{ for } (x) > 3$	A1 B1	Allow $(3, \infty)$
		4	
(c)	$gf(x) = 2(x^2 + 3) + 1$	В1	SOI
	$(2x+1)^2 + 3 - 3 = 2(x^2+3) + 1 \rightarrow 2x^2 + 4x - 6 (= 0)$	*M1	Express as 3-term quadratic
	(2)(x+3)(x-1) (=0)	DM1	Or quadratic formula or completing the square
	x = 1	A1	
		4	

 $34.\ 9709_w20_ms_12\ Q{:}\ 5$

	Answer	Mark	Partial Marks
(a)	0	B1	
		1	
(b)	$(f^{-1}(x)) = \frac{x+2}{4}, (g^{-1}(x)) = \frac{4-x}{x} \text{ or } \frac{4}{x} - 1$	B1 B1	OE. Sight of correct inverses.
	$x^2 + 6x - 16 = 0$	B1	Equating inverses and simplifying.
	(x+8) and $(x-2)$	M1	Correct attempt at solution of <i>their</i> 3-term quadratic-factorising, completing the square or use of formula.
	(x =) 2 or -8	A1	Do not accept answers obtained with no method shown.
		5	

35. 9709_w20_ms_13 Q: 1

	Answer	Mark	Partial Marks
(a)	$\left[\left(x+3\right)^2\right] \left[-4\right]$	B1 B1	
		2	
(b)	[Translation or shift] $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$	B1 B1 FT	Accept [translation/shift] $\begin{pmatrix} -their\ a \\ their\ b \end{pmatrix}$
			OR translation -3 units in <i>x</i> -direction and (translation) -4 units in <i>y</i> -direction.
		2	

36. 9709_w20_ms_13 Q: 6

	Answer	Mark	Partial Marks
(a)	$y = \frac{2x}{3x-1} \to 3xy - y = 2x \to 3xy - 2x = y \text{ (or } -y = 2x - 3xy)$	*M1	For 1st two operations. Condone a sign error
	$x(3y-2)=y \rightarrow x=\frac{y}{3y-2} \text{ (or } x=\frac{-y}{2-3y})$	DM1	For 2nd two operations. Condone a sign error
	$\left(\mathbf{f}^{-1}(x)\right) = \frac{x}{3x - 2}$	A1	Allow $\left(\mathbf{f}^{-1}(x)\right) = \frac{-x}{2 - 3x}$
		3	
(b)	$\left[\frac{2(3x-1)+2}{3(3x-1)}\right] = \left[\frac{6x}{3(3x-1)}\right] = \frac{2x}{3x-1}$	B1 B1	AG, WWW First B1 is for a correct single unsimplified fraction. An intermediate step needs to be shown. Equivalent methods accepted.
		2	
(c)	$(f(x)) > \frac{2}{3}$	B1	Allow $(y) > \frac{2}{3}$. Do not allow $x > \frac{2}{3}$
		1	

37. 9709_m19_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	$\left[\left(x-2\right)^{2}\right]+\left[3\right]$	B1 DB1	2nd B1 dependent on ±2 in 1st bracket
		2	
(ii)	Largest k is 2 Accept $k \le 2$	B1	Must be in terms of k
		1	
(iii)	$y = (x-2)^2 + 3 \implies x-2 = (\pm)\sqrt{y-3}$	M1	
	$\Rightarrow f^{-1}(x) = 2 - \sqrt{x - 3} \text{ for } x > 4$	A1B1	
		3	
(iv)	$gf(x) = \frac{2}{x^2 - 4x + 7 - 1} = \frac{2}{(x - 2)^2 + 2}$	B1	Either form
	Since $f(x) > 4 \Rightarrow gf(x) < 2/3$ (or since $x < 1$ etc)	M1A1	2/3 in answer implies M1 www
	range of $gf(x)$ is $0 < gf(x)(< 2/3)$	B1	Accept $0 < y < 2/3$, $(0, 2/3)$ but $0 < x < 2/3$ is SCM1A1B0
		4	

$38.\ 9709_s19_ms_11\ Q{:}\ 5$

	Answer	Mark	Partial Marks
(i)	$-2(x-3)^2+15 \ (a=-3, b=15)$	B1 B1	Or seen as $a = -3$, $b = 15$ B1 for each value
		2	
(ii)	$(f(x) \leqslant) 15$	B1	FT for (\leq) their "b" Don't accept (3,15) alone
		1	
(iii)	$gf(x) = 2(-2x^2 + 12x - 3) + 5 = -4x^2 + 24x - 6 + 5$	B1	
	$gf(x) + 1 = 0 \to -4x^2 + 24x = 0$	M1	
	x = 0 or 6	A1	Forms and attempts to solve a quadratic Both answers given.
		3	

39. 9709_s19_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$(f^{-1}(x)) = \frac{x+2}{3}$ oe	B1	
	$y = \frac{2x+3}{x-1} \to (x-1)y = 2x+3 \to x(y-2) = y+3$	М1	Correct method to obtain $x = $, (or $y = $, if interchanged) but condone $+/-$ sign errors
	$(g^{-1}(x) \text{ or } y) = \frac{x+3}{x-2} \text{ oe } \left(eg \frac{5}{x-2} + 1\right)$	A1	Must be in terms of x
	$x \neq 2$ only	B1	FT for value of x from their denominator = 0
		4	
(ii)	$(fg(x)) = \frac{3(2x+3)}{x-1} - 2(=\frac{7}{3})$	B1	
	18x + 27 = 13x - 13 or 3(4x + 11) = 7(x - 1) $(5x = -40)$	М1	Correct method from their $fg = \frac{7}{3}$ leading to a
			linear equation and collect like terms. Condone omission of $2(x-1)$.
	Alternative method for question 7(ii)		
	$(f^{-1}(\frac{7}{3})) = \frac{13}{9}$	B1	
	$\frac{2x+3}{x-1} = \frac{13}{9} \to 9(2x+3) = 13(x-1) \ (\to 5x = -40)$	М1	Correct method from $g(x)$ = their $\frac{13}{9}$ leading to a
			linear equation and collect like terms.
	x = -8	A1	
		3	

40. 9709_s19_ms_13 Q: 4

	Answer	Mark	Partial Marks
(i)	Max(a) is 8	В1	Allow $a = 8$ or $a \le 8$
	Min(b) is 24	В1	Allow $b = 24$ or $b \ge 24$
		2	SCB1 for 8 and 24 seen
(ii)	$gf(x) = \frac{96}{x - 1} - 4 \text{ or } gf(x) = \frac{100 - 4x}{x - 1}$	В1	$2\left(\frac{48}{x-1}\right) - 4 \text{ is insufficient}$ Apply ISW
		1	
(iii)	$y = \frac{96}{x - 1} - 4 \rightarrow y + 4 = \frac{96}{x - 1} \rightarrow x - 1 = \frac{96}{y + 4}$	М1	FT from their(ii) provided (ii) involves algebraic fraction. Allow sign errors
	$(gf)^{-1}(x) = \frac{96}{x+4} + 1$	A1	OR $\frac{100+x}{x+4}$. Must be a function of x. Apply ISW
		2	

41. 9709_w19_ms_11 Q: 7

	Answer	Mark	Partial Marks
(i)	Range of f is $0 < f(x) < 3$	B1B1	OE. Range cannot be defined using x
	Range of g is $g(x) > 2$	B1	OE
		3	
(ii)	$(fg(x) =) \frac{3}{2(\frac{1}{x} + 2) + 1} = \frac{3x}{2 + 5x}$	B1B1	Second B mark implies first B mark
		2	
(iii)	$y = \frac{3x}{2+5x} \rightarrow 2y + 5xy = 3x \rightarrow 3x - 5xy = 2y$	M1	Correct order of operations
	$x(3-5y) = 2y \to x = \frac{2y}{3-5y}$	M1	Correct order of operations
	$((fg)^{-1}(x)) = \frac{2x}{3-5x}$	A1	
		3	

$42.\ 9709_w19_ms_13\ Q:\ 2$

Answer	Mark	Partial Marks
$(y=)[(x-3)^2][-2]$	*B1 DB1	DB1 dependent on 3 in 1st bracket
$x-3=(\pm)\sqrt{y+2}$ or $y-3=(\pm)\sqrt{x+2}$	M1	Correct order of operations
$(g^{-1}(x)) = 3 + \sqrt{x+2}$	A1	Must be in terms of x
Domain (of g^{-1}) is $(x) > -1$	B1	Allow $(-1, \infty)$. Do not allow $y \ge -1$ or $g(x) \ge -1$ or $g^{-1}(x) \ge -1$
	5	

43. 9709_s18_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$25-2(x+3)^2$	B1 B1	Mark expression if present: B1 for 25 and B1 for $-2(x+3)^2$. If no expression award $a = 25$ B1 and $b = 3$ B1.
		2	
(ii)	(-3, 25)	B1FT	FT from answers to (i) or by calculus
		1	
(iii)	$(k) = -3$ also allow x or $k \geqslant -3$	B1FT	FT from answer to (i) or (ii) NOT $x = -3$
		1	

	Answer	Mark	Partial Marks
(iv)	EITHER		
	$y = 25 - 2(x+3)^2 \rightarrow 2(x+3)^2 = 25 - y$	*M1	Makes their squared term containing x the subject or equivalent with x/y interchanged first. Condone errors with $+/-$ signs.
	$x+3=(\pm)\sqrt{\frac{1}{2}(25-y)}$	DM1	Divide by ± 2 and then square root allow \pm .
	OR		
	$y = 7 - 2x^2 - 12x \rightarrow 2x^2 + 12x + y - 7 (= 0)$	*M1	Rearranging equation of the curve.
	$x = \frac{-12 \pm \sqrt{12^2 - 8(y - 7)}}{4}$	DM1	Correct use of their ' a , b and c ' in quadratic formula. Allow just + in place of \pm .
	$g^{-1}(x) = \sqrt{\left(\frac{25 - x}{2}\right)} - 3 \text{ oe}$ isw if substituting $x = -3$	A1	\pm gets A0. Must now be a function of x. Allow $y =$
	isw it substituting A = - 5		
		3	

44. 9709_s18_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	Smallest value of c is 2. Accept 2, $c = 2$, $c \ge 2$. Not in terms of x	B1	Ignore superfluous working, e.g. $\frac{d^2y}{dx^2} = 2$
		1	
(ii)	$y = (x-2)^2 + 2 \rightarrow x - 2 = (\pm)\sqrt{y-2} \rightarrow x = (\pm)\sqrt{y-2} + 2$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = \sqrt{x-2} + 2$	A1	$Accept y = \sqrt{x-2} + 2$
	Domain of f^{-1} is $x \ge 6$. Allow ≥ 6 .	B1	Not $f^{-1}(x) \ge 6$. Not $f(x) \ge 6$. Not $y \ge 6$
		3	
(iii)	$[(x-2)^2 + 2 - 2]^2 + 2 = 51 \text{ SOI Allow 1 term missing for M mark}$ Or $(x^2 - 4x + 6)^2 - 4(x^2 - 4x + 6) + 6 = 51$	M1A1	ALT. $f(x) = f^{-1}(51) (M1) = \sqrt{51-2} + 2 (A1)$
	$(x-2)^4 = 49$ or $(x^2 - 4x + 4)^2 = 49$ OR $x^4 - 8x^3 + 24x^2 - 32x - 33 = 0$ often implied by next line	A1	$(x-2)^2 + 2 = \sqrt{49} + 2 \text{ OR } f(x) = 9$
	$(x-2)^2 = (\pm)7$ OR $x^2 - 4x - 3 = 0$. Ignore $x^2 - 4x + 11 = 0$	A1	$(x-2)^2 = 7 \text{ OR } x = f^{-1}(9)$
	$x = 2 + \sqrt{7}$ only CAO $x = 2 + \sqrt[4]{49}$ scores 3/5	A1	$x = 2 + \sqrt{7}$
		5	

45. 9709_w18_ms_11 Q: 11

	Answer	Mark	Partial Marks
(a)(i)	[Greatest value of a is] 3	B1	Must be in terms of a. Allow $a < 3$. Allow $a \le 3$
		1	
(a)(ii)	Range is $y > -1$	B1	Ft on their a. Accept any equivalent notation
	$y = (x-3)^2 - 1 \rightarrow (x-3)^2 = 1 + y \rightarrow x = 3(\pm)\sqrt{1+y}$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{1+x}$ cao	A1	
		3	
(b)(i)	$gg(2x) = [(2x-3)^2 - 3]^2$	B1	
	$(2x-3)^4-6(2x-3)^2+9$	B1	
		2	
(b)(ii)	$\left[16x^4 - 96x^3 + 216x^2 - 216x + 81\right] + \left[\left(-24x^2 + 72x - 54\right) + 9\right]$	B4,3,2,1,0	
	$16x^4 - 96x^3 + 192x^2 - 144x + 36$		
		4	

46. 9709_w18_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i)	$2x^2 - 12x + 7 = 2(x-3)^2 - 11$	B1 B1	Mark full expression if present: B1 for $2(x-3)^2$ and B1 for -11 . If no clear expression award $a=-3$ and $b=-11$.
		2	
(ii)	Range (of f or y) ≥ 'their – 11'	B1FT	FT for their 'b' or start again. Condone >. Do NOT accept $x > \text{or} \geqslant$
		1	
(iii)	$(k =)$ –"their a" also allow x or $k \leq 3$	B1FT	FT for their "a" or start again using $\frac{dy}{dx} = 0$. Do NOT accept $x = 3$.
			Do NOT accept x = 3.
		1	
(iv)	$y = 2(x-3)^2 - 11 \rightarrow y + 11 = 2(x-3)^2$	*M1	Isolating their $(x-3)^2$, condone – 11.
	$\frac{y+11}{2} = (x-3)^2$		
	$x = 3 + \sqrt{\left(\frac{y+11}{2}\right)} \text{ or } 3 - \sqrt{\left(\frac{y+11}{2}\right)}$	DM1	Other operations in correct order, allow \pm at this stage. Condone -3 .
	$(g^{-1}(x) \text{ or } y) = 3 - \sqrt{\left(\frac{x+11}{2}\right)}$	A1	needs '-'. x and y could be interchanged at the start.
		3	

47. 9709_w18_ms_13 Q: 11

	Answer	Mark	Partial Marks
(i)	$[2][(x-3)^2][-7]$	B1B1B1	
		3	
(ii)	Largest value of k is 3. Allow $(k =)$ 3.	B1	Allow $k \leq 3$ but not $x \leq 3$ as final answer.
		1	

	Answer	Mark	Partial Marks
(iii)	$y = 2(x-3)^2 - 7 \rightarrow (x-3)^2 = \frac{1}{2}(y+7)$ or with $\frac{x}{y}$ transposed	M1	Ft their a, b, c. Order of operations correct. Allow sign errors
	$x = 3 \pm \sqrt{\frac{1}{2}(y+7)}$ Allow $3 + \sqrt{\text{or } 3} - \sqrt{\text{or with } x/y \text{ transposed}}$	DM1	Ft their a, b, c. Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{\frac{1}{2}(x+7)}$	A1	
	(Domain is x) $\geqslant their - 7$	B1FT	Allow other forms for interval but if variable appears must be x
		4	
(iv)	$x + 3 \le 1$. Allow $x + 3 = 1$	M1	Allow $x + 3 \le k$
	largest p is -2 . Allow $(p =) -2$	A1	Allow $p \le -2$ but not $x \le -2$ as final answer.
	$fg(x) = f(x+3) = 2x^2 - 7$ cao	B1	
		3	

48. 9709_m17_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	$gf(x) = 3(2x^2 + 3) + 2 = 6x^2 + 11$	B1	AG
	$fg(x) = 2(3x+2)^2 + 3$ Allow $18x^2 + 24x + 11$	B1	ISW if simplified incorrectly. Not retrospectively from (ii)
	Total:	2	
(ii)	$y = 2(3x+2)^2 + 3 \implies 3x+2 = (\pm)\sqrt{(y-3)/2}$ oe	M1	Subtract 3; divide by 2; square root. Or x/y interchanged. Allow $\frac{\sqrt{y-3}}{2}$ for 1st M
	$\Rightarrow x = (\pm)\frac{1}{3}\sqrt{(y-3)/2} - \frac{2}{3} \text{ oe}$	M1	Subtract 2; divide by 3; Indep. of 1st M1. Or x/y interchanged.
	\Rightarrow (fg) ⁻¹ (x)= $\frac{1}{3}\sqrt{(x-3)/2}-\frac{2}{3}$ oe	A1	Must be a function of x. Allow alt. method $g^{-1}f^{-1}(x)$ OR $18\left(x+\frac{2}{3}\right)^2+3 \Rightarrow (fg)^{-1}(x)=\sqrt{\frac{x-3}{18}}-\frac{2}{3}$
	Solve $their(fg)^{-1}(x) \ge 0$ or attempt range of fg	M1	Allow <u>range</u> $\geqslant 3$ for M only. Can be implied by correct answer or $x > 11$
	Domain is $x \ge 11$	A1	
	Total:	5	

	Answer	Mark	Partial Marks
(iii)	$6(2x)^2 + 11 = 2(3x+2)^2 + 3$	M1	Replace x with 2x in gf and equate to their $fg(x)$ from (i). Allow $f(x) = \frac{12}{3} x^2 + 11 = \frac{1}{3} x^2 + 1$
	$6x^2 - 24x = 0$ oe	A1	Collect terms to obtain correct quadratic expression.
	x=0 , 4	A1	Both required
	Total:	3	

49. 9709_s17_ms_11 Q: 9

	Answer	Mark	Partial Marks
	$f: x \mapsto \frac{2}{3-2x} g: x \mapsto 4x + a,$		
(i)	$y = \frac{2}{3-2x} \to y(3-2x) = 2 \to 3-2x = \frac{2}{y}$	M1	Correct first 2 steps
		M1 A1	Correct order of operations, any correct form with $f(x)or y =$
	Total:	3	
(ii)	$gf(-1) = 3 \ f(-1) = \frac{2}{5}$	M1	Correct first step
	$\frac{8}{5} + a = 3 \rightarrow a = \frac{7}{5}$	M1 A1	Forms an equation in a and finds a , OE
			(or $\frac{8}{3-2x}$ + $a = 3$, M1 Sub and solves M1, A1)
	Total:	3	
(iii)	$g^{-1}(x) = \frac{x-a}{4} = f^{-1}(x)$	M1	Finding $g^{-1}(x)$ and equating to their $f^{-1}(x)$ even if $a = 7/5$
	$\rightarrow x^2 - x(a+6) + 4(=0)$	M1	Use of $b^2 - 4ac$ on a quadratic with a in a coefficient
	Solving $(a+6)^2 = 16 \text{ or } a^2 + 12a + 20 (=0)$	М1	Solution of a 3 term quadratic
	$\rightarrow a = -2 \text{ or } -10$	A1	
	Total:	4	

50. 9709_s17_ms_13 Q: 9

	Answer	Mark	Partial Marks
(i)	$\left(3x-1\right)^2+5$	B1B1B1	First 2 marks dependent on correct $(ax + b)^2$ form. OR $a = 3$, $b = -1$, $c = 5$ e.g. from equating coefs
	Total:	3	
(ii)	Smallest value of p is 1/3 seen. (Independent of (i))	B1	Allow $p \ge 1/3$ or $p = 1/3$ or $1/3$ seen. But not in terms of x .
	Total:	1	
(iii)	$y = (3x-1)^2 + 5 \Rightarrow 3x-1 = (\pm)\sqrt{y-5}$	B1 FT	OR $y = 9\left(x - \frac{1}{3}\right)^2 + 5 \Rightarrow \left(y - 5\right) / 9 = \left(x - \frac{1}{3}\right)^2$ (Fresh start)
	$x = (\pm) \frac{1}{2} \sqrt{y-5} + \frac{1}{2} 6$ OE	B1 FT	Both starts require 2 operations for each mark. FT for <i>their</i> values from part (i)
	$f^{-1}(x) = \frac{1}{6}\sqrt{x-5} + \frac{1}{6}$ OE domain is $x \ge their5$	B1B1 FT	Must be a function of x and \pm removed. Domain must be in terms of x . Note: $\sqrt{y-5}$ expressed as $\sqrt{y}-\sqrt{5}$ scores Max B0B0B0B1 [See below for general instructions for different starts]
	Total:	4	
(iv)	q<5 CAO	B1	
	Total:	1	
Alt (iii)	For start $(ax - b)^2 + c$ or $a(x - b)^2 + c$ $(a \ne 0)$ ft for their For start $(x - b)^2 + c$ ft but award only B1 for 3 correct ope For start $a(bx - c)^2 + d$ ft but award B1 for first2 operation:	rations	B1 for the next 3 operations correct

51. 9709_w17_ms_11 Q: 9

	Answer	Mark	Partial Marks
(i)	gg(x) = g(2x - 3) = 2(2x - 3) - 3 = 4x - 9	M1A1	
		2	
(ii)	$y = \frac{1}{x^2 - 9} \to x^2 = \frac{1}{y} + 9 \text{ OE}$	M1	Invert; add 9 to both sides or with x/y interchanged
	$f^{-1}(x) = \sqrt{\frac{1}{x} + 9}$	A1	
	Attempt soln of $\sqrt{\frac{1}{x} + 9} > 3$ or attempt to find range of f. $(y > 0)$	М1	
	Domain is $x > 0$ CAO	A1	May simply be stated for B2
		4	

	Answer	Mark	Partial Marks
(iii)	EITHER:	(M1	
	$\frac{1}{(2x-3)^2-9} = \frac{1}{7}$		
	$(2x-3)^2 = 16$ or $4x^2 - 12x - 7 = 0$	A1	
	x = 7/2 or -1/2	A1	
	x = 7/2 only	A1)	
	OR:	(M1	
	$\mathbf{g}(\mathbf{x}) = \mathbf{f}^{-1} \left(\frac{1}{7} \right)$		
	g(x) = 4	A1	
	2x - 3 = 4	A1	
	x = 7/2	A1)	
		4	

52. 9709_w17_ms_12 Q: 2

	Answer	Mark	Partial Marks
(i)	$\frac{4-x}{5}$	B1	OE
	Equate a valid attempt at f ¹ with f, or with x, or f with x $\rightarrow \left(\frac{2}{3}, \frac{2}{3}\right)$ or (0.667, 0.667)	M1, A1	Equating and an attempt to solve as far $x =$. Both coordinates.
		3	
(ii)	1	B1	Line $y = 4 - 5x$ – must be straight, through approximately (0,4) and intersecting the positive x axis near (1,0) as shown.
		B1	Line $y = \frac{4-x}{5}$ – must be straight and through approximately (0, 0.8). No need to see intersection with x axis.
		В1	A line through $(0,0)$ and the point of intersection of a pair of $\frac{\text{straight}}{\text{lines}}$ lines with negative gradients. This line must be at 45° unless scales are different in which case the line must be labelled $y=x$.
		3	

53. 9709_w17_ms_13 Q: 6

	Answer	Mark	Partial Marks
(i)	$y = \frac{2}{x^2 - 1} \implies x^2 = \frac{2}{y} + 1 \text{OE}$	М1	
	$x = (\pm)\sqrt{\frac{2}{y} + 1}$ OE	A1	With or without x/y interchanged.
	$f^{-1}(x) = -\sqrt{\frac{2}{x} + 1}$ OE	A1	Minus sign obligatory. Must be a function of x.
		3	

	Answer	Mark	Partial Marks
(ii)	$\left(\frac{2}{x^2-1}\right)^2+1=5$	B1	
	$\frac{2}{x^2 - 1} = (\pm)2 \text{OE} \text{OR} x^4 - 2x^2 = 0 \text{OE}$ $x^2 - 1 = (\pm)1 \implies x^2 = 2 \text{ (or 0)}$ $x = -\sqrt{2} \text{or} -1.41 \text{ only}$	В1	Condone $x^2 = 0$ as an additional solution
		4	

54. 9709_m16_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	2a + 4b = 8	M1	Substitute in –2 and –3
	$2a^2 + 3a + 4b = 14$	A1	
	$2a^2 + 3a + (8 - 2a) = 14 \rightarrow (a + 2)(2a - 3) = 0$	M1	Sub linear into quadratic & attempt solution
	a = -2 or $3/2$	A1	If A0A0 scored allow SCA1 for either
	b = 3 or $5/4$	A1	(-2,3) or $(3/2,5/4)$
		[5]	
(ii)	$y = \left(x - \frac{1}{2}\right)^2 - \frac{13}{4}$ Attempt completing of square	M1A1	Allow with x/y transposed
	$x - \frac{1}{2} = (\pm)\sqrt{y + \frac{13}{4}}$ oe	DM1	Allow with <i>x/y</i> transposed
	$f^{-1}(x) = \frac{1}{2} - \sqrt{x + \frac{13}{4}}$ oe	A1	Allow $y =$ Must be a function of x
	Domain of f^{-1} is $(x) \ge -13/4$	B1√ [5]	Allow >, $-13/4 \le x \le \infty$, $\left[-\frac{13}{4}, \infty \right]$ etc

55. 9709_s16_ms_12 Q: 1

 Answer	Mark	Partial Marks
$f: x \mapsto 10 - 3x, g: x \mapsto \frac{10}{3 - 2x},$		
ff(x) = 10 - 3(10 - 3x)	B1	Correct unsimplified expression
$gf(2) = \frac{10}{3 - 2(10 - 3(2))} (= -2)$	B1	Correct unsimplified expression with 2 in for <i>x</i>
x = 2	B1 [3]	

 $56.\ 9709_s16_ms_12\ Q:\ 11$

(i) $f: x \mapsto 6x - x^2 - 5$ $6x - x^2 - 5 \leqslant 3$ $\rightarrow x^2 - 6x + 8 \geqslant 0$ $\rightarrow x = 2, x = 4$ $x \leqslant 2, x \geqslant 4$ $\text{condone < and/or >}$ (ii) $\text{Equate } mx + c \text{ and } 6x - x^2 - 5$ $\text{Use of "} b^2 - 4ac$ " $\text{M1} \qquad \text{$\pm(6x - x^2 - 8) =, \leqslant, \geqslant 0$ and attempts to solve}$ $\text{Needs both values whether = 2}$ $\Rightarrow 2$ $\text{Accept all recognisable notation}$ [3] $\text{M1} \qquad \text{Equates, sets to 0.}$ $\text{Use of discriminant with value } a.b.c \text{ independent of } x.$	
$\Rightarrow x^2 - 6x + 8 \geqslant 0$ $\Rightarrow x = 2, x = 4$ $x \leqslant 2, x \geqslant 4$ $\text{condone < and/or >}$ $\text{Equate } mx + c \text{ and } 6x - x^2 - 5$ $\text{Use of "} b^2 - 4ac"$ M1 $\pm \left(6x - x^2 - 8\right) =, \leqslant, \geqslant 0 \text{ and}$ attempts to solve $\text{Needs both values whether = 2}$ $\Rightarrow 2$ $\text{Accept all recognisable notation}$ [3] M1 $\text{Equates, sets to 0.}$ $\text{Use of discriminant with value}$	
$x = 2, x = 4$ $x \le 2, x \ge 4$ $\text{condone < and/or >}$ $\text{Equate } mx + c \text{ and } 6x - x^2 - 5$ $\text{Use of "} b^2 - 4ac"$ A1 $\text{Needs both values whether = 2}$ A2 A1 $\text{Accept all recognisable notation}$ M1 $\text{Equates, sets to 0.}$ $\text{Use of discriminant with value}$	
condone < and/or > [3] Equate $mx + c$ and $6x - x^2 - 5$ Use of " $b^2 - 4ac$ " M1 Equates, sets to 0. Use of discriminant with value	<2,
(ii) Equate $mx + c$ and $6x - x^2 - 5$	n.
Use of " $b^2 - 4ac$ " DM1 Use of discriminant with value	
	s of
$4c = m^2 - 12m + 16. \text{ AG}$ $A1 = (0) \text{ must appear before last l}$	ne.
OR	
$\frac{dy}{dx} = 6 - 2x = m \to x = \left(\frac{6 - m}{2}\right)$ M1 Equates $\frac{dy}{dx}$ to m and rearrang	•
$m\left(\frac{6-m}{2}\right)+c=6\left(\frac{6-m}{2}\right)-\left(\frac{6-m}{2}\right)^2-5$ M1 Equates $mx+c$ and $6x-x^2-a$ and substitutes for x	;
$4c = m^2 - 12m + 16. \text{ AG}$ [3]	
(iii) $6x - x^2 - 5 = 4 - (x - 3)^2$ B1 B1 [2] $4 B1 - (x - 3)^2 B1$	
(iv) $k=3$. $\mathbf{B1}^{\wedge}$ for "b".	
(v) $g^{-1}(x) = \sqrt{4-x} + 3$ M1 A1 Correct order of operations. $\pm \sqrt{4-x} + 3$ M1A0	
$\sqrt{x-4} + 3 \text{ M1A0}$	
$\sqrt{4-y} + 3 \text{ M1A0}$	

57. 9709_s16_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	$2(ax^{2} + b) + 3 = 6x^{2} - 21$ $a = 3, b = -12$	M1	
		[3]	
(ii)	$3x^2 - 12 \ge 0$ or $6x^2 - 21 \ge 3$	M1	Allow = or \leq or $>$ or $<$. Ft from <i>their a, b</i>
	$x \leqslant -2$ i.e. (max) $q = -2$	A1 [2]	Must be in terms of q (eg $q \leqslant -2$)
(iii)	$y \geqslant 6(-3)^2 - 21 \Rightarrow \text{ range is } (y) \geqslant 33$	B1 [1]	Do not allow $y > 33$. Accept all other notations e.g. $[33, \infty)$ or $[33, \infty]$
(iv)	$y = 6x^{2} - 21 \Rightarrow x = (\pm)\sqrt{\frac{y+21}{6}}$ $(fg)^{-1}(x) = -\sqrt{\frac{x+21}{6}}$	M1	
	$\left(\text{fg} \right)^{-1} \left(x \right) = -\sqrt{\frac{x+21}{6}}$	A1	Allow $y =$ Must be a function of x
	Domain is $x \geqslant 33$	B1 [↑] [3]	ft from <i>their</i> part (iii) but <i>x</i> essential

58. 9709_w16_ms_11 Q: 8

	Answer	Mark	Partial Marks
(i)	fg(x) = 5x	M1A1	only
	Range of fg is $y \ge 0$ oe	B1	Accept $y > 0$
(ii)	$y = 4/(5x+2) \Rightarrow x = (4-2y)/5y$ oe $g^{-1}(x) = (4-2x)/5x$ oe	M1	Must be a function of x
	$g^{-1}(x) = (4-2x)/5x$ oe	A1	
	0, 2 with no incorrect inequality	B1,B1	
	$0 < x \le 2$ oe, c.a.o.	B1	[5]
			[5]

59. 9709_w16_ms_13 Q: 8

	Answer	Mark		Partial Marks
(i)	$(2x+3)^2+1$ Cannot score retrospectively in (iii)	B1B1B1	[3]	For $a = 2$, $b = 3$, $c = 1$
(ii)	g(x) = 2x + 3 cao	B1	[1]	In (ii),(iii) Allow if from $4\left(x+\frac{3}{2}\right)^2+1$
(iii)	$y = (2x+3)^2 + 1 \Rightarrow 2x+3 = (\pm)\sqrt{y-1}$ or ft from (i)	M1		Or with x/y transposed.
	$x = (\pm)\frac{1}{2}\sqrt{y-1} - \frac{3}{2}$ or ft from (i)	M1		Or with <i>x/y</i> transposed Allow sign errors.
	$(fg)^{-1}(x) = \frac{1}{2}\sqrt{x-1} - \frac{3}{2}$ can Note alt. method $g^{-1}f^{-1}$	A1		Must be a function of x. Allow $y = \dots$
	Domain is $(x) > 10$	B1	[4]	Allow $(10, \infty)$, $10 < x < \infty$ etc. but not with y or f or g involved. Not ≥ 10
	ALT. method for first 3 marks:			
	Trying to obtain $g^{-1}[f^{-1}(x)]$	*M1		
	$g^{-1} = \frac{1}{2}(x-3), f^{-1} = \sqrt{x-1}$	DM1		Both required
	A1 for $\frac{1}{2}\sqrt{x-1} - \frac{3}{2}$	A1		

60. 9709_s15_ms_12 Q: 11

	Answer	Mark	Partial Marks
	$f: x \mapsto 2x^2 - 6x + 5$		
(i)	$2x^2 - 6x + 5 - p = 0$ has no real roots	M1	Sets to 0 with p on LHS.
	Uses $b^2 - 4ac \to 36 - 8(5 - p)$	DM1	Uses discriminant.
	Sets to $0 \rightarrow p < \frac{1}{2}$	A1 [3]	co – must be "<", not "≤".
(ii)	$2x^{2} - 6x + 5 = 2\left(x - \frac{3}{2}\right)^{2} + \frac{1}{2}$	3 × B1 [3]	co
(iii)	Range of g $\frac{1}{2} \le g(x) \le 13$	B1 [∱] B1 [2]	$ ^{\checkmark} $ on (ii) co from sub of $x = 4$
	$h: x \mapsto 2x^2 - 6x + 5 \text{ for } k \le x \le 4$		
(iv)	Smallest $k = \frac{3}{2}$	B1 √ [1]	√ on (ii)
(v)	$h(x) = 2\left(x - \frac{3}{2}\right)^2 + \frac{1}{2}$	M1	Using comp square form to try and get x as subject or y if transposed.
	Order of operations $\pm \frac{1}{2}$, ± 2 , $\sqrt{1}$, $\pm \frac{3}{2}$	DM1	Order must be correct
	$\rightarrow \text{Inverse} = \frac{3}{2} + \sqrt{\left(\frac{x}{2} - \frac{1}{4}\right)}$	A1 [3]	co (without ±)

61. 9709_s15_ms_13 Q: 6

	Answer	Mark	Partial Marks
(i)	Attempt to find $(f^{-1})^{-1}$	M1	
	$2xy = 1 - 5x$ or $\frac{1}{2x} = y + \frac{5}{2}$ Allow 1 sign error	A1	Or with x/y transposed.
	$x = \frac{1}{2y+5}$ oe Allow 1 sign error (total)	A1	Or with x/y transposed. Allow $x = \frac{\frac{1}{2}}{y + \frac{5}{2}}$.
	$(f(x)) = \frac{1}{2x+5} \text{for } x \ge -\frac{9}{4}$ $(Allow - \frac{9}{4} \le x \le \infty)$	A1 B1	Allow $\frac{\frac{1}{2}}{x+\frac{5}{2}}$. Condone $x > \frac{-9}{4}$, $(\frac{-9}{4}, \infty)$ (etc.)
	4		
(ii)	$\mathbf{f}^{-1}\left(\frac{1}{x}\right) = \frac{1 - \frac{5}{x}}{\frac{2}{x}}$ $\frac{x - 5}{2} \text{or} \frac{1}{2}x - \frac{5}{2}$	M1	Reasonable attempt to find $\mathbf{f}^{-I}\left(\frac{1}{x}\right)$.
	$\frac{x-5}{2} \text{or} \frac{1}{2}x - \frac{5}{2}$	A1 [2]	

62. 9709_w15_ms_11 Q: 9

	Answer	Mark	Partial Marks
(i)	$-(1)(x-3)^2+4$	B1B1B1 [3]	
(ii)	Smallest (m) is 3	B1 [↑] [1]	Accept $m \ge 3$, $m = 3$. Not $x \ge 3$. Ft their b
(iii)	$(x-3)^2 = 4 - y$	M1	Or x/y transposed. Ft <i>their a</i> , <i>b</i> , <i>c</i>
	Correct order of operations	M1	
	$f^{-1}(x) = 3 + \sqrt{4 - x}$ cao	A1	Accept $y = if clear$
	Domain is $x \le 0$	B1	
		[4]	

63. 9709_w15_ms_12 Q: 1

 Answer	Mark	Partial Marks
$f: x \mapsto 3x + 2, g: x \mapsto 4x - 12$	B1	
$f^{-1}(x) = \frac{x-2}{3}$	B1	
gf(x) = 4(3x+2) - 12	M1	Equates, collects terms, +soln
Equate $\rightarrow x = \frac{2}{7}$	A1	
/	[4]	

 $64.\ 9709_w15_ms_12\ Q:\ 8$

	Answer	Mark	Partial Marks
	$f: x \to x^2 + ax + b ,$		
(i)			B1 for $(x + 3)^2$. B1 for -17
	$x^2 + 6x - 8 = (x+3)^2 - 17$	B1 B1	or B1 for $x = -3$, B1 $y = -17$
	or $2x + 6 = 0 \rightarrow x = -3 \rightarrow y = -17$ \rightarrow Range $f(x) \ge -17$	B1 [↑] [3]	Following through visible method.
(ii)	(x-k)(x+2k) = 0	M1	Realises the link between roots and
	$\equiv x^2 + 5x + b = 0$		the equation
	$\rightarrow k = 5$	A1	comparing coefficients of x
	$\rightarrow b = -2k^2 = -50$	A1	
		[3]	
(iii)	$(x+a)^2 + a(x+a) + b = a$	M1	Replaces " x " by " $x + a$ " in 2 terms
	Uses $b^2 - 4ac \rightarrow 9a^2 - 4(2a^2 + b - a)$	DM1	Any use of discriminant
	$\rightarrow a^2 < 4(b-a)$	A1	
		[3]	

 $65.\ 9709_w15_ms_13\ Q:\ 8$

	Answer	Mark	Partial Marks
(i)	$3x + 1 \le -1$ (Accept $3x + 1 = -1, 3a + 1 = -1$) $x \le -2/3 \Rightarrow$ largest value of a is $-2/3$ (in terms of a)	M1 A1 [2]	Do not allow gf in (i) to score in (iii) Accept $a \le -2/3$ and $a = -2/3$
(ii)	fg(x) = 3(-1 - x^2) + 1 fg(x) + 14 = 0 \Rightarrow 3 x^2 = 12 oe (2 terms) x = -2 only	B1 B1 B1	No marks in this part for gf used
(iii)	$gf(x) = -1 - (3x + 1)^{2} \text{ oe}$ $gf(x) \le -50 \Rightarrow (3x + 1)^{2} \ge 49 \text{ (Allow } \le or = 3x + 1 \ge 7 \text{ or } 3x + 1 \le -7 \text{ (one sufficient)} \text{www}$ $x \le -8/3 \text{only} \qquad \text{www}$	[3] B1 M1 A1 A1 [4]	No marks in this part for fg used OR attempt soln of $9x^2 + 6x - 48 + 7$ $\le > 0$ OR $x - 2 \ge or 3x + 8 \le 0$ (one suffic)

 $66.\ 9709_m22_ms_12\ Q:\ 2$

Question	Answer	Marks	Guidance
	$x^2 + 2cx + 4 = 4x + c$ leading to $x^2 + 2cx - 4x + 4 - c$ [= 0]	*M1	Equate ys and move terms to one side of equation.
	$b^2 - 4ac = (2c - 4)^2 - 4(4 - c)$	DM1	Use of discriminant with their correct coefficients.
	$\left[4c^2 - 16c + 16 - 16 + 4c = \right] 4c^2 - 12c$	A1	
	$b^2 - 4ac > 0$ leading to $(4)c(c-3) > 0$	M1	Correctly apply '> 0' considering both regions.
	c < 0, c > 3	A1	Must be in terms of c . SC B1 instead of M1A1 for $c \le 0$, $c \ge 3$
		5	

67. 9709_m22_ms_12 Q: 6

Question	Answer	Marks	Guidance
(a)	$(x+1)^2 + (3x-22)^2 = 85$	M1	OE. Substitute equation of line into equation of circle.
	$10x^2 - 130x + 400 \ [= 0]$	A1	Correct 3-term quadratic
	[10](x-8)(x-5) leading to $x=8 or 5$	A1	Dependent on factors or formula or completing of square seen.
	(8, 4), (5, -5)	A1	If M1A1A0A0 scored, then SC B1 for correct final answer only.
		4	
(b)	Mid-point of $AB = \left(6\frac{1}{2}, -\frac{1}{2}\right)$	M1	Any valid method
	Use of $C = (-1, 2)$	В1	SOI
	$r^2 = \left(-1 - 6\frac{1}{2}\right)^2 + \left(2 + \frac{1}{2}\right)^2$	M1	Attempt to find r^2 . Expect $r^2 = 62\frac{1}{2}$.
	Equation of circle is $(x+1)^2 + (y-2)^2 = 62\frac{1}{2}$	A1	OE.
		4	

$68.\ 9709_m21_ms_12\ Q:\ 4$

Question	Answer	Marks	Guidance
	$x^{2} + kx + 6 = 3x + k$ leading to $x^{2} + x(k-3) + (6-k) = 0$	M1	Eliminate y and form 3-term quadratic.
	$(k-3)^2-4(6-k)[>0]$	M1	OE. Apply $b^2 - 4ac$.
	$k^2 - 2k - 15[> 0]$	A1	Form 3-term quadratic.
	(k+3)(k-5)[>0]	A1	Or $k = -3$, 5 from use of formula or completing square.
	k < -3, k > 5	A1 FT	Or any correct alternative notation, do not allow $\leq , \geqslant .$ FT for <i>their</i> outside regions.
		5	

69. 9709_m21_ms_12 Q: 8

Question	Answer	Marks	Guidance
(a)	Centre of circle is (4, 5)	B1 B1	
	$r^2 = (7-4)^2 + (1-5)^2$	M1	OE. Either using <i>their</i> centre and A or C or using A and C and dividing by 2.
	r = 5	A1 FT	FT on their (4, 5) if used.
	Equation is $(x-4)^2 + (y-5)^2 = 25$	A1	OE. Allow 5 ² for 25.
		5	
(b)	Gradient of radius = $\frac{9-5}{7-4} = \frac{4}{3}$	B1 FT	FT for use of their centre.
	Equation of tangent is $y-9=-\frac{3}{4}(x-7)$	B1	or $y = \frac{-3x}{4} + \frac{57}{4}$
		2	

70. 9709_s21_ms_11 Q: 10

Question	Answer	Marks	Guidance
(a)	When $y = 0$ $x^2 - 4x - 77 = 0$ [$\Rightarrow (x+7)(x-11) = 0$ or $(x-2)^2 = 81$]	M1	Substituting $y = 0$
	So x-coordinates are -7 and 11	A1	
		2	

Question	Answer	Marks	Guidance
(b)	Centre of circle C is (2, -3)	B1	
	Gradient of AC is $-\frac{1}{3}$ or Gradient of BC is $\frac{1}{3}$	M1	For either gradient (M1 sign error, M0 if x-coordinate(s) in numerator)
	Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either perpendicular gradient
	Equations of tangents are $y = 3x + 21$, $y = -3x + 33$	A1	For either equation
	Meet when $3x + 21 = -3x + 33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
	Coordinates of point of intersection (2, 27)	A1	
	Alternative method for Question 10(b)		
	Implicit differentiation: $2y \frac{dy}{dx}$ seen	B1	
	$2x - 4 + 2y\frac{\mathrm{d}y}{\mathrm{d}x} + 6\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	Fully differentiated = 0 with at least one term involving y differentiated correctly
	Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either gradient
	Equations of tangents are $y = 3x + 21$, $y = -3x + 33$	A1	For either equation
	Meet when $3x + 21 = -3x + 33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
	Coordinates of point of intersection (2, 27)	A1	
		6	

71. 9709_s21_ms_12 Q: 6

Question	Answer	Marks	Guidance
	Gradient AB = $\frac{1}{2}$	B1	SOI
	Lines meet when $-2x + 4 = \frac{1}{2}(x - 8) + 3$ Solving as far as $x = $	*M1	Equating given perpendicular bisector with the line through $(8, 3)$ using <i>their</i> gradient of <i>AB</i> (but not -2) and solving. Expect $x = 2$, $y = 0$.
	Using mid-point to get as far as $p = \text{or } q =$	DM1	Expect $\frac{8+p}{2} = 2$ or $\frac{3+q}{2} = 0$
	p = -4, q = -3	A1	Allow coordinates of B are $(-4, -3)$.
	Alternative method for Question 6		
	Gradient AB = $\frac{1}{2}$	B1	SOI
	$\frac{q-3}{p-8} = \frac{1}{2} \text{[leading to } 2q = p-2\text{]},$	*M1	Equating gradient of AB with their gradient of AB (but not -2) and using mid-point in equation of perpendicular bisector.
	$\frac{q+3}{2} = -2\left(\frac{8+p}{2}\right) + 4 \text{[leading to } q = -11 - 2p\text{]}$		
	Solving simultaneously their 2 linear equations	DM1	Equating and solving 2 correct equations as far as $p = \text{or } q = .$
	p = -4, q = -3	A1	Allow coordinates of B are $(-4, -3)$.

Question	Answer	Marks	Guidance				
	Alternative method for Question 6						
	Gradient AB = $\frac{1}{2}$	B1					
	$\frac{q-3}{p-8} = \frac{1}{2} \text{[leading to } p = 2q+2\text{]},$	*M1	Equating gradient of AB with their gradient of AB (but not -2) and using mid-point in equation of perpendicular bisector.				
	$y - \frac{q+3}{2} = -2(x - (q+5)) \left[\text{leading to } y = -2x + \frac{5q+23}{2} \right]$						
	their $\frac{5q+23}{2} = 4 \Rightarrow q =$	DM1	Equating and solving as far as q or $p =$				
	p = -4, q = -3	A1	Allow coordinates of B are $(-4, -3)$.				
		4					

72. 9709_s21_ms_12 Q: 7

Question	Answer	Marks	Guidance			
(a)	$(5-1)^2 + (11-5)^2 = 52$ or $\frac{11-5}{5-1}$	M1	For substituting (1,5) into circle equation or showing gradient = $\frac{3}{2}$.			
	For both circle equation and gradient, and proving line is perpendicular and stating that A lies on the circle	A1	Clear reasoning.			
	Alternative method for Question 7(a)					
	$(x-5)^2 + (y-11)^2 = 52$ and $y-5 = -\frac{2}{3}(x-1)$	M1	Both equations seen and attempt to solve. May see $y = -\frac{2}{3}x + \frac{17}{3}$			
	Solving simultaneously to obtain $(y-5)^2 = 0$ or $(x-1)^2 = 0 \Rightarrow 1$ root or tangent or discriminant $= 0 \Rightarrow 1$ root or tangent	A1	Clear reasoning.			
	Alternative method for Question 7(a)					
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10 - 2x}{2y - 22} = \frac{10 - 2}{10 - 22}$	M1	Attempting implicit differentiation of circle equation and substitute $x = 1$ and $y = 5$.			
	Showing gradient of circle at A is $-\frac{2}{3}$	A1	Clear reasoning.			
		2				
(b)	Centre is (-3, -1)	B1 B1	B1 for each correct co-ordinate.			
	Equation is $(x + 3)^2 + (y + 1)^2 = 52$	B1 FT	FT their centre, but not if either $(1, 5)$ or $(5, 11)$. Do not accept $\sqrt{52^2}$.			
		3				

$73.\ 9709_s21_ms_13\ Q:\ 3$

Question	Answer	Marks	Guidance
	$x^2 - 4x + 3 = mx - 6$ leading to $x^2 - x(4+m) + 9$	*M1	Equating and gathering terms. May be implied on the next line.
	$b^2 - 4ac$ leading to $(4+m)^2 - 4 \times 9$	DM1	SOI. Use of the discriminant with <i>their</i> a , b and c
	$4+m=\pm 6 \text{ or } (m-2)(m+10)=0 \text{ leading to } m=2 \text{ or } -10$	A1	Must come from $b^2 - 4ac = 0$ SOI
	Substitute both <i>their m</i> values into <i>their</i> equation in line 1	DM1	
	m = 2 leading to $x = 3$; $m = -10$ leading to $x = -3$	A1	
	(3, 0), (-3, 24)	A1	Accept 'when $x = 3$, $y = 0$; when $x = -3$, $y = 24$ ' If final A0A0 scored, SC B1 for one point correct WWW
	Alternative method for Question 3		
	$\frac{dy}{dx} = 2x - 4 \to 2x - 4 = m$	*M1	
	$x^2 - 4x + 3 = (2x - 4)x - 6$	DM1	
	$x^2 - 4x + 3 = 2x^2 - 4x - 6 \rightarrow 9 = x^2 \rightarrow x = \pm 3$	A1	
	y = 0, 24 or (3, 0), (-3, 24)	A1	
	Substitute both their x values into their equation in line 1	DM1	Or substitute both their (x, y) into $y = mx - 6$
	When $x = 3$, $m = 2$; when $x = -3$, $m = -10$	A1	If A0, DM1, A0 scored, SC B1 for one point correct WWW
		6	

74. 9709_s21_ms_13 Q: 10

Question	Answer	Marks	Guidance
(a)	Gradient of $AB = -\frac{3}{5}$, gradient of $BC = \frac{5}{3}$ or lengths of all 3 sides or vectors	M1	Attempting to find required gradients, sides or vectors
	$m_{ab}m_{bc} = -1$ or Pythagoras or $\overline{AB.BC} = 0$ or $\cos ABC = 0$ from cosine rule	A1	www
		2	
(b)	Centre = mid-point of $AC = (2,4)$	B1	
		1	

Question	Answer	Marks	Guidance
(c)	$(x - their x_c)^2 + (y - their y_c)^2 = r^2 or (their x_c - x)^2 + (their y_c - y)^2 = [r^2]$	М1	Use of circle equation with their centre
	$(x-2)^2 + (y-4)^2 = 17$	A1	Accept $x^2 - 4x + y^2 - 8y + 3 = 0$ OE
		2	
(d)	$\left(\frac{x+3}{2}, \frac{y+0}{2}\right) = (2,4) \text{ or } \mathbf{BE} = 2\mathbf{BD} = 2 \begin{pmatrix} -1\\4 \end{pmatrix}$	M1	Use of mid-point formula, vectors, steps on a diagram
	Or Equation of <i>BE</i> is $y = -4(x-3)$ or $y-4=-4(x-2)$ leading to $y=-4x+12$ Substitute equation of <i>BE</i> into circle and form a 3-term quadratic.		May be seen to find x coordinate at E
	$(x,y) = (1,8) \text{ or } \mathbf{OE} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$	A1	E = (1, 8) Accept without working for both marks SC B2
	Gradient of <i>BD</i> , m , = -4 or gradient $AC = \frac{1}{4}$ = gradient of tangent	B1	Or gradient of $BE = -4$
	Equation of tangent is $y-8=\frac{1}{2}(x-1)$ OE	M1 A1	For M1, equation through their E or (1, 8) (not,
			A, B or C) and with gradient $\frac{-1}{their-4}$
		5	

75. 9709_w21_ms_11 Q: 2

Question	Answer	Marks	Guidance
	$kx^2 + 2x - k = kx - 2$ leading to $kx^2 + (-k+2)x - k + 2 = 0$	*M1	Eliminate y and form 3-term quadratic. Allow 1 error.
	$(-k+2)^2 - 4k(-k+2)$	DM1	Apply $b^2 - 4ac$; allow 1 error but a , b and c must be correct for <i>their</i> quadratic.
	$5k^2 - 12k + 4$ or $(-k+2)(-k+2-4k)$	A1	May be shown in quadratic formula.
	(-k+2)(-5k+2)	DM1	Solving a 3-term quadratic in k (all terms on one side) by factorising, use of formula or completing the square. Factors must expand to give <i>their</i> coefficient of k^2 .
	$\frac{2}{5} < k < 2$	A1	WWW, accept two separate correct inequalities. If M0 for solving quadratic, SC B1 can be awarded for correct final answer.
		5	

76. 9709_w21_ms_11 Q: 7

Question	Answer	Marks	Guidance
(a)	$r^{2} \Big[= (5-2)^{2} + (7-5)^{2} \Big] = 13$	B1	$r^2 = 13$ or $r = \sqrt{13}$
	Equation of circle is $(x-5)^2 + (y-2)^2 = 13$	B1 FT	OE. FT on <i>their</i> 13 but LHS must be correct.
		2	
(b)	$(x-5)^2 + (5x-10-2)^2 = 13$	M1	Substitute $y = 5x - 10$ into <i>their</i> equation.
	$26x^2 - 130x + 156 \ [= 0]$	A1 FT	OE 3-term quadratic with all terms on one side. FT on <i>their</i> circle equation.
	[26](x-2)(x-3) = 0	M1	Solve 3-term quadratic in x by factorising, using formula or completing the square. Factors must expand to give <i>their</i> coefficient of x^2 .
	(2, 0), (3, 5)	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.
	$(AB)^2 = (3-2)^2 + (5-0)^2$	M1	SOI. Using their points to find length of AB.
	$AB = \sqrt{26}$	A1	ISW. Dependent on final M1 only.

Question	Answer	Marks	Guidance		
(b)	Alternative method for question 7(b)				
	$\left[\left(\frac{y+10}{5} - 5 \right)^2 + (y-2)^2 = 13 \right]$	M1	Substitute $x = \frac{y+10}{5}$ into <i>their</i> equation.		
	$\frac{26y^2}{25} - \frac{26y}{5} = 0$	A1 FT	OE 2-term quadratic with all terms on one side. FT on <i>their</i> circle equation.		
	[26]y(y-5) [=0]	М1	Solve 2-term quadratic in y by factorising, using formula or completing the square. Factors must expand to give <i>their</i> coefficient of y^2 .		
	(2, 0), (3, 5)	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.		
	$(AB)^2 = (3-2)^2 + (5-0)^2$	M1	SOI. Using their points to find length of AB.		
	$AB = \sqrt{26}$	A1	ISW. Dependent on final M1 only.		
		7			

77. $9709_{w21}_{ms_13}$ Q: 9

Question	Answer	Marks	Guidance
(a)	$x^{2} + (2x+5)^{2} = 20$ leading to $x^{2} + 4x^{2} + 20x + 25 = 20$	M1	Substitute $y = 2x + 5$ and expand bracket.
	$(5)(x^2+4x+1)[=0]$	A1	3-term quadratic.
	$x = \frac{-4 \pm \sqrt{16 - 4}}{2}$	M1	OE. Apply formula or complete the square.
	$A = \left(-2 + \sqrt{3}, 1 + 2\sqrt{3}\right)$	A1	Or 2 correct x values.
	$B = \left(-2 - \sqrt{3}, 1 - 2\sqrt{3}\right)$	A1	Or all values correct. SC B1 all 4 values correct in surd form without working. SC B1 all 4 values correct in decimal form from correct formula or completion of the square
	$AB^{2} = their(x_{2} - x_{1})^{2} + their(y_{2} - y_{1})^{2}$	M1	Using <i>their</i> coordinates in a correct distance formula. Condone one sign error in $x_2 - x_1$ or $y_2 - y_1$
	$\left[AB^2 = 48 + 12 \text{ leading to }\right]AB = \sqrt{60}$	A1	OE. CAO. Do not accept decimal answer. Answer must come from use of surd form in distance formula.
		7	

Question	Answer	Marks	Guidance
(b)	$x^2 + m^2 (x - 10)^2 = 20$	*M1	Finding equation of tangent and substituting into circle equation.
	$x^{2}(m^{2}+1)-20m^{2}x+20(5m^{2}-1) [=0]$	DM1	OE. Brackets expanded and all terms collected on one side of the equation.
	$[b^2 - 4ac =]400m^4 - 80(m^2 + 1)(5m^2 - 1)$	M1	Using correct coefficients from their quadratic equation.
	$400m^4 - 80(5m^4 + 4m^2 - 1) = 0 \rightarrow (-80)(4m^2 - 1) = 0$	A1	OE. Must have '=0' for A1.
	$m = \pm \frac{1}{2}$	A1	
	Alternative method for question 9(b)		
	Length, l of tangent, is given by $l^2 = 10^2 - 20$	M1	
	$l = \sqrt{80}$	A1	
	$\tan \alpha = \frac{\sqrt{20}}{\sqrt{80}} = \frac{1}{2}$	M1 A1	Where α is the angle between the tangent and the <i>x</i> -axis.
	$m = \pm \frac{1}{2}$	A1	
		5	

78. 9709_m20_ms_12 Q: 12

	Answer	Mark	Partial Marks
(a)	Centre = (2, -1)	B1	
	$r^2 = [2 - (-3)]^2 + [-1 - (-5)]^2$ or $[2 - 7]^2 + [-1 - 3]^2$ OE	M1	OR $\frac{1}{2} \left[(-3-7)^2 + (-5-3)^2 \right]$ OE
	$(x-2)^2 + (y+1)^2 = 41$	A1	Must not involve surd form SCB3 $(x+3)(x-7)+(y+5)(y-3)=0$
		3	
(b)	Centre = their $(2, -1) + {8 \choose 4} = (10, 3)$	B1FT	SOI FT on their (2, -1)
	$(x-10)^2 + (y-3)^2 = their 41$	B1FT	FT on <i>their</i> 41 even if in surd form SCB2 $(x-5)(x-15)+(y+1)(y-7)=0$
		2	
(c)	Gradient m of line joining centres = $\frac{4}{8}$ OE	B1	
	Attempt to find mid-point of line.	M1	Expect (6, 1)
	Equation of RS is $y-1=-2(x-6)$	M1	Through <i>their</i> (6, 1) with gradient $\frac{-1}{m}$
	y = -2x + 13	A1	AG
	Alternative method for question 12(c)		
	$(x-2)^2 + (y+1)^2 - 41 = (x-10)^2 + (y-3)^2 - 41$ OE	M1	
	$x^{2} - 4x + 4 + y^{2} + 2y + 1 = x^{2} - 20x + 100 + y^{2} - 6y + 9$ OE	A1	Condone 1 error or errors caused by 1 error in the first line
	16x + 8y = 104	A1	
	y = -2x + 13	A1	AG
		4	
(d)	$(x-10)^2 + (-2x+13-3)^2 = 41$	M1	Or eliminate y between C ₁ and C ₂
	$x^2 - 20x + 100 + 4x^2 - 40x + 100 = 41 \rightarrow 5x^2 - 60x + 159 = 0$	A1	AG
		2	

79. 9709_s20_ms_11 Q: 10

(a)	Centre is (3, 1)	B1
	Radius = 5 (Pythagoras)	B1
	Equation of C is $(x-3)^2 + (y-1)^2 = 25$ (FT on their centre)	M1 A1FT
		4
(b)	Gradient from $(3, 1)$ to $(7, 4) = \frac{3}{4}$ (this is the normal)	В1
	Gradient of tangent = $-\frac{4}{3}$	M1
	Equation is $y-4 = -\frac{4}{3}(x-7)$ or $3y+4x = 40$	M1A1
		4
(c)	B is centre of line joining centres \rightarrow (11, 7)	B1
	Radius = 5 New equation is $(x-11)^2 + (y-7)^2 = 25$ (FT on coordinates of B)	M1 A1FT
		3

80. $9709_s20_ms_12$ Q: 6

(a)	$2x^{2} + kx + k - 1 = 2x + 3 \rightarrow 2x^{2} + (k - 2)x + k - 4 = 0$	M1
	Use of $b^2 - 4ac = 0 \rightarrow (k-2)^2 = 8(k-4)$	М1
	k=6	A1
		3
(b)	$2x^{2} + 2x + 1 = 2\left(x + \frac{1}{2}\right)^{2} + 1 - \frac{1}{2}$	
	$a=\frac{1}{2}, b=\frac{1}{2}$	B1 B1
	vertex $\left(-\frac{1}{2}, \frac{1}{2}\right)$	B1FT
	(FT on a and b values)	
		3

81. 9709_s20_ms_12 Q: 11

(a)	Express as $(x-4)^2 + (y+2)^2 = 16+4+5$	M1
	Centre C(4, -2)	A1
	Radius = $\sqrt{25} = 5$	A1
		3
(b)	$P(1,2)$ to $C(4, -2)$ has gradient $-\frac{4}{3}$	B1FT
	(FT on coordinates of C)	
	Tangent at P has gradient = $\frac{3}{4}$	M1
	Equation is $y-2 = \frac{3}{4}(x-1)$ or $4y = 3x + 5$	A1
		3
(c)	Q has the same coordinate as $Py = 2$	B1
	Q is as far to the right of C as $Px = 3 + 3 + 1 = 7Q(7, 2)$	B1
		2
(d)	Gradient of tangent at $Q = -\frac{3}{4}$ by symmetry	B1FT
	(FT from part (b))	
	Eqn of tangent at Q is $y-2 = -\frac{3}{4}(x-7)$ or $4y + 3x = 29$	M1
	$T(4, \frac{17}{4})$	A1
		3

82. 9709_s20_ms_13 Q: 1

$3x^2$	$x^{2} + 2x + 4 = mx + 1 \rightarrow 3x^{2} + x(2 - m) + 3 = 0$	B1
(2-	$-m)^2 - 36$ SOI	M1
(m -	+4)(m-8) (>/= 0) or $2-m$ >/= 6 and $2-m$ = -6 OE</td <td>A1</td>	A1
<i>m</i> <	<-4, m > 8 WWW	A1
Alto	ternative method for question 1	
$\frac{\mathrm{d}y}{\mathrm{d}x}$	$x^2 = 6x + 2 \rightarrow m = 6x + 2 \rightarrow 3x^2 + 2x + 4 = (6x + 2)x + 1$	М1
x =	=±1	A1
m =	$=\pm 6+2 \rightarrow m=8 \text{ or } -4$	A1
<i>m</i> <	<-4, m > 8 WWW	A1
		4

83. 9709_w20_ms_11 Q: 1

Answer	Mark	Partial Marks
$2x^2 + 5 = mx - 3 \rightarrow 2x^2 - mx + 8 (= 0)$	B1	Form 3-term quadratic
$m^2 - 64$	M1	Find $b^2 - 4ac$.
-8 < m < 8	A1	Accept (-8, 8) and equality included
	3	

84. 9709_w20_ms_11 Q: 9

	Answer	Mark	Partial Marks
(a)	$m_{AB} = \frac{4-2}{-1-3} = -\frac{1}{2}$	B1	
	Equation of tangent is $y-2=2(x-3)$	B1 FT	(3, 2) with <i>their</i> gradient $-\frac{1}{m_{AB}}$
		2	
(b)	$AB^2 = 4^2 + 2^2 = 20$ or $r^2 = 20$ or $r = \sqrt{20}$ or $AB = \sqrt{20}$	В1	
	Equation of circle centre B is $(x-3)^2 + (y-2)^2 = 20$	M1 A1	FT their 20 for M1
		3	
(c)	$(x-3)^2 + (2x-6)^2 = their \ 20$	М1	Substitute <i>their</i> $y-2=2x-6$ into <i>their</i> circle, centre <i>B</i>
	$5x^2 - 30x + 25 = 0$ or $5(x-3)^2 = 20$	A1	
	$[(5)(x-5)(x-1) \text{ or } x-3=\pm 2]$ $x=5, 1$	A1	
		3	

85. $9709_{w20}_{ms_12}$ Q: 3

Answer	Mark	Partial Marks
$2x^2 + m(2x+1) - 6x - 4(=0)$	*M1	y eliminated and all terms on one side with correct algebraic steps. Condone ± errors
Using $b^2 - 4ac$ on $2x^2 + x(2m-6) + m - 4 (= 0)$	DM1	Any use of discriminant with their a , b and c identified correctly.
$4m^2 - 32m + 68$ or $2m^2 - 16m + 34$ or $m^2 - 8m + 17$	A1	
$(2m-8)^2 + k$ or $(m-4)^2 + k$ or minimum point $(4,k)$ or finds $b^2 - 4ac$ $(=-4,-16,-64)$	DM1	OE. Any valid method attempted on their 3-term quadratic
$(m-4)^2+1$ oe + always > 0 \rightarrow 2 solutions for all values of m or Minimum point (4,1) + (fn) always > 0 \rightarrow 2 solutions for all values of m or $b^2-4ac < 0$ + no solutions \rightarrow 2 solutions for the original equation for all values of m	A1	Clear and correct reasoning and conclusion without wrong working.
	5	

86. 9709_w20_ms_12 Q: 9

	Answer	Mark	Partial Marks		
(a)	$r = \sqrt{(6^2 + 3^2)}$ or $r^2 = 45$	В1	Sight of $r = 6.7$ implies B1		
	$(x-5)^2 + (y-1)^2 = r^2$ or $x^2 - 10x + y^2 - 2y = r^2 - 26$	M1	Using centre given and their radius or r in correct formula		
	$(x-5)^2 + (y-1)^2 = 45$ or $x^2 - 10x + y^2 - 2y = 19$	A1	Do not allow $\left(\sqrt{45}\right)^2$ for r^2		
		3			
(b)	C has coordinates (11, 4)	В1			
	0.5	В1	OE, Gradient of AB, BC or AC.		
	Grad of CD =-2	M1	Calculation of gradient needs to be shown for this M1.		
	$(\frac{1}{2} \times -2 = -1)$ then states + perpendicular \rightarrow hence shown or tangent	A1	Clear reasoning needed.		
	Alternative method for question 9(b)				
	C has coordinates (11, 4)	В1			
	0.5	B1	OE, Gradient of AB, BC or AC.		
	Gradient of the perpendicular is -2 \rightarrow Equation of the perpendicular is $y-4=-2(x-11)$	M1	Use of $m_1m_2 = -1$ with <i>their</i> gradient of <i>AB</i> , <i>BC</i> or <i>AC</i> and correct method for the equation of the perpendicular. Could use $D(5, 16)$ instead of $C(11,4)$.		
	Checks $D(5, 16)$ or checks gradient of CD and then states D lies on the line or CD has gradient $-2 \rightarrow$ hence shown or tangent	A1	Clear check and reasoning needed. Checks that the other point lies on the line or checks gradient.		
(b)	Alternative method for question 9(b)				
	C has coordinates (11, 4) or Gradient of AB, BC or $AC = 0.5$	B1	Only one of AB, BC or AC needed.		
	Equation of the perpendicular is $y-4=-2(x-11)$	В1	Finding equation of CD.		
	$(x-5)^2 + (-2x+26-1)^2 = 45 \rightarrow (x^2 - 22x + 121 = 0)$	M1	Solving simultaneously with the equation of the circle.		
	$(x-11)^2 = 0$ or $b^2 - 4ac = 0 \rightarrow$ repeated root \rightarrow hence shown or tangent	A1	Must state repeated root.		
	Alternative method for question 9(b)				
	C has coordinates (11, 4)	В1			
	Finding $CD = \sqrt{180}$ and $BD = \sqrt{225}$	B1	OE. Calculated from the co-ordinates of B , C & D without using r .		
	Checking (their BD) 2 – (their CD) 2 is the same as (their r) 2	M1			
	${}_{{}^{{}^{{}}}}$ Pythagoras valid ${}_{{}^{{}^{{}}}}$ perpendicular ${}_{{}^{{}}}$ hence shown or tangent	A1	Triangle ACD could be used instead.		
	Alternative method for question 9(b)				
	C has coordinates (11, 4)	B1			
	Finding vectors \overrightarrow{AC} and \overrightarrow{CD} or \overrightarrow{BC} and \overrightarrow{CD} $ (= \binom{6}{3} and \binom{-6}{12}) \text{ or } \binom{12}{6} and \binom{-6}{12}) $	В1	Must be correct pairing.		
	Applying the scalar product to one of these pairs of vectors	M1	Accept their \overrightarrow{AC} and \overrightarrow{CD} or their \overrightarrow{BC} and \overrightarrow{CD}		
	Scalar product = 0 then states \therefore perpendicular \rightarrow hence shown or tangent	A1			
		4			
(c)	E (-1, 4)	B1 B1	WWW B1 for each coordinate Note: Equation of DE which is $y = 2x + 6$ may be used to find E		
		2			

87. 9709_w20_ms_13 Q: 4

Answer	Mark	Partial Marks
$3x^2 - 4x + 4 = mx + m - 1 \rightarrow 3x^2 - (4 + m)x + (5 - m) (= 0)$	M1	3-term quadratic
$b^2 - 4ac = (4+m)^2 - 4 \times 3 \times (5-m)$	M1	Find $b^2 - 4ac$ for their quadratic
$m^2 + 20m - 44$	A1	
(m+22)(m-2)	A1	Or use of formula or completing square. This step must be seen
m > 2 , m < -22	A1	Allow $x > 2$, $x < -22$
	5	

88. 9709_m19_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	$4x^{1/2} = x + 3 \rightarrow (x^{1/2})^2 - 4x^{1/2} + 3 (= 0) \text{ OR } 16x = x^2 + 6x + 9$	M1	Eliminate y from the 2 equations and then: Either treat as quad in $x^{1/2}$ OR square both sides and RHS is 3-term
	$x^{1/2} = 1 \text{ or } 3 \ x^2 - 10x + 9 \ (= 0)$	A1	If in 1st method $x^{1/2}$ becomes x , allow only M1 unless subsequently squared
	x = 1 or 9	A1	
	y = 4 or 12	A1ft	Ft from <i>their x</i> values If the 2 solutions are found by trial substitution B1 for the first coordinate and B3 for the second coordinate
	$AB^2 = (9-1)^2 + (12-4)^2$	M1	
	$AB = \sqrt{128} \text{ or } 8\sqrt{2} \text{ oe or } 11.3$	A1	
		6	
(ii)	$dy/dx = 2 x^{-1/2}$	B1	
	$2x^{-1/2} = 1$	M1	Set <i>their</i> derivative = <i>their</i> gradient of <i>AB</i> and attempt to solve
	(4, 8)	A1	Alternative method without calculus: $M_{AB} = 1$, tangent is $y = mx + c$ where $m = 1$ and meets $y = 4x^{1/2}$ when $4x^{1/2} = x + c$. This is a quadratic with $b^2 = 4ac$, so $16 - 4 \times 1 \times c = 0$ so $c = 4$ B1 Solving $4x^{1/2} = x + 4$ gives $x = 4$ and $y = 8$ M1A1
		3	
(iii)	Equation of normal is $y-8=-1(x-4)$	M1	Equation through <i>their T</i> and with gradient $-1/their$ gradient of AB. Expect $y = -x + 12$,
	Eliminate y (or x) $\rightarrow -x + 12 = x + 3$ or $y - 3 = 12 - y$	M1	May use their equation of AB
	(4½, 7½)	A1	
		3	

89. 9709_s19_ms_11 Q: 2

	Answer	Mark	Partial Marks
(i)	Eliminates x or $y \rightarrow y^2 - 4y + c - 3 = 0$ or $x^2 + (2c - 16)x + c^2 - 48 = 0$	M1	Eliminates x or y completely to a quadratic
	Uses $b^2 = 4ac \rightarrow 4c - 28 = 0$	M1	Uses discriminant = 0. (c the only variable)
			Any valid method (may be seen in part (i))
	c = 7	A1	
	Alternative method for question 2(i)		
	$\frac{dy}{dx} = \frac{1}{2\sqrt{(x+3)}} = \frac{1}{4}$	M1	
	Solving	M1	
	c = 7	A1	
		3	
(ii)	Uses $c = 7$, $y^2 - 4y + 4 = 0$	M1	Ignore (1,-2), c=-9
	(1, 2)	A1	
		2	

90. 9709_s19_ms_11 Q: 4

	Answer	Mark	Partial Marks
(i)	Gradient of $AB = -\frac{1}{2} \rightarrow \text{Gradient of } BC = 2$	M1	Use of $m_1.m_2 = -1$ for correct lines
	Forms equation in $h \frac{3h-2}{h} = 2$	M1	Uses normal line equation or gradients for h.
	h = 2	A1	
	Alternative method for question 4(i)		
	Vectors AB.BC=0	M1	Use of vectors AB and BC
	Solving	M1	
	h=2	A1	
	Alternative method for question 4(i)		
	Use of Pythagoras to find 3 lengths	M1	
	Solving	M1	
	h=2	A1	
		3	
(ii)	y coordinate of D is 6, (3 × 'their' h) $\frac{6-0}{x-4} = 2 \rightarrow x = 7 \rightarrow D (7, 6)$	B1	FT
	Vectors: AD.AB=0	M1 A1	Must use $y = 6$ Realises the y values of C and D are equal. Uses gradient or line equation to find x.
		3	

91. 9709_s19_ms_12 Q: 2

Answer	Mark	Partial Marks
Midpoint of AB is (5, 1)	B1	Can be seen in working, accept $\left(\frac{10}{2}, \frac{2}{2}\right)$.
$m_{AB} = -1/2$ oe	B1	
C to (5, 1) has gradient 2	*M1	Use of $m_1 \times m_2 = -1$.
Forming equation of line $(y = 2x - 9)$	DM1	Using their perpendicular gradient and their midpoint to form the equation.
C(0,-9) or $y=-9$	A1	
	5	

92. 9709_s19_ms_13 Q: 7

	Answer	Mark	Partial Marks
(i)	D=(5, 1)	B1	
		1	
(ii)	$(x-5)^2 + (y-1)^2 = 20$ oe	B1	FT on their D. Apply ISW, oe but not to contain square roots
		1	
(iii)	$(x-1)^2 + (y-3)^2 = (9-x)^2 + (y+1)^2$ soi	M1	Allow 1 sign slip For M1 allow with $\sqrt{\text{signs round both sides but sides must be equated}}$
	$x^{2} - 2x + 1 + y^{2} - 6y + 9 = x^{2} - 18x + 81 + y^{2} + 2y + 1$	A1	
	y = 2x - 9 www AG	A1	
	Alternative method for question 7(iii)		
	grad. of $AB = -\frac{1}{2} \rightarrow \text{grad of perp bisector} = \frac{-1}{-\frac{1}{2}}$	M1	
	Equation of perp. bisector is $y-1=2(x-5)$	A1	
	y = 2x - 9 www AG	A1	
		3	
(iv)	Eliminate y (or x) using equations in (ii) and (iii)	*M1	To give an (unsimplified) quadratic equation
	$5x^2 - 50x + 105 (= 0)$ or $5(x-5)^2 = 20$ or $5y^2 - 10y - 75 (= 0)$ or $5(y-1)^2 = 80$	DM1	Simplify to one of the forms shown on the right (allow arithmetic slips)
	x = 3 and 7, or y = -3 and 5	A1	
	(3, -3), (7, 5)	A1	Both pairs of x & y correct implies A1A1. SC B2 for no working
		4	

93. 9709_w19_ms_11 Q: 3

Answer	Mark	Partial Marks
$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 3$	B1	
At $x = 2$, $\frac{dy}{dx} = 24 - 20 - 3 = 1 \rightarrow a = 1$	M1 A1	
$6 = 2 + b \rightarrow b = 4$	B1FT	Substitute $x = 2$, $y = 6$ in $y = (their a)x + b$
$6 = 16 - 20 - 6 + c \rightarrow c = 16$	B1	Substitute $x = 2$, $y = 6$ into equation of curve
	5	

94. 9709_w19_ms_11 Q: 6

Answer	Mark	Partial Marks
Equation of line is $y = mx - 2$	B1	OR
$x^2 - 2x + 7 = mx - 2 \rightarrow x^2 - x(2 + m) + 9 = 0$	M1	
Apply $b^2 - 4ac(=0) \rightarrow (2+m)^2 - 4 \times 9 (=0)$	*M1	
m=4 or -8	A1	
$m = 4 \rightarrow x^{2} - 6x + 9 = 0 \rightarrow x = 3$ $m = -8 \rightarrow x^{2} + 6x + 9 = 0 \rightarrow x = -3$	DM1	
(3, 10), (-3, 22)	A1A1	
Alternative method for question 6		
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B1	
2x-2=m	M1	
$x^2 - 2x + 7 = (2x - 2)x - 2 = 2x^2 - 2x - 2$	M1	
$x^2 - 9 = 0 \rightarrow x = \pm 3$	A1	
(3, 10), (-3, 22)	A1A1	
When $x = 3$, $m = 4$; when $x = -3$, $m = -8$	A1	
	7	

95. 9709_w19_ms_12 Q: 2

Answer	Mark	Partial Marks
Attempt to find the midpoint M	M1	
(1, 4)	A1	
Use a gradient of $\pm \frac{2}{3}$ and <i>their M</i> to find the equation of the line.	M1	
Equation is $y - 4 = -\frac{2}{3}(x - 1)$	A1	AEF
Alternative method for question 2		
Attempt to find the midpoint M	M1	
(1, 4)	A1	
Replace 1 in the given equation by c and substitute their M	M1	
Equation is $y - 4 = -\frac{2}{3}(x - 1)$	A1	AEF
	4	

96. 9709_w19_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i)	$f(x) = g(x) \rightarrow 2x^2 + 6x + 1 + k \ (= 0)$	*M1	Forms a quadratic with all terms on same side.
	Use of $b^2 = 4ac$	DM1	Uses the discriminant = 0.
	(k =) 3½	A1	OE, WWW
	Alternative method for question 9(i)		
	$4x + 8 = 2 \ (\rightarrow x = -1\frac{1}{2})$	*M1	Differentiating, equating gradients and solving to give $x =$
	Substitutes <i>their x</i> value into either $2x^2 + 6x + 1 + k = 0$ OR into the curve to find $y = \frac{-13}{2}$ then both values into the line.	DM1	Substituting appropriately for <i>their x</i> and proceeding to find a value of k .
	(k =) 3½	A1	OE, WWW
		3	
(ii)	$2x^2 + 6x - 8 $ (< 0)	M1	Forms a quadratic with all terms on same side
	- 4 and 1	A1	
	-4< <i>x</i> <1	A1	CAO
		3	
(iii)	$(\mathbf{g}^{-1}(x)) = \frac{x-1}{2}$	B1	Needs to be in terms of x.
	$(g^{-1}f(x)) = \frac{2x^2 + 8x + 1 - 1}{2} = 0 \to (2x^2 + 8x = 0) \to x =$	M1	Substitutes f into g^{-1} and attempts to solve it = 0 as far as $x =$
	0, -4	A1	CAO
		3	
(iv)	$2(x+2)^2-7$	B1 B1	or $a = +2, b = -7$
	(Least value of $f(x)$ or $y = -7$ or > -7	B1FT	FT for their b from a correct form of the expression.
		3	

97. 9709_w19_ms_13 Q: 6

	Answer	Mark	Partial Marks
(i)	$3kx - 2k = x^2 - kx + 2 \rightarrow x^2 - 4kx + 2k + 2 (= 0)$	B1	kx terms combined correctly-implied by correct $b^2 - 4ac$
	Attempt to find $b^2 - 4ac$	M1	Form a quadratic equation in k
	1 and $-\frac{1}{2}$	A1	SOI
	$k > 1, \ k < -\frac{1}{2}$	A1	Allow $x > 1$, $x < -1/2$
		4	
(ii)	$y = 3x - 2$, $y = -\frac{3}{2}x + 1$	M1	Use of <i>their k</i> values (twice) in $y = 3kx - 2k$
	$3x-2=-\frac{3}{2}x+1$ OR $y+2=2-2y$	M1	Equate <i>their</i> tangent equations OR substitute $y = 0$ into both lines
	$x = \frac{2}{3}$, $\rightarrow y = 0$ in one or both lines	A1	Substitute $x = \frac{2}{3}$ in one or both lines
		3	

98. 9709_m18_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$\frac{1}{\sqrt{3}} = \frac{2}{x} \text{ or } y - 2 = \frac{-1}{\sqrt{3}}x$	M1	OE, Allow $y-2=\frac{+1}{\sqrt{3}}x$. Attempt to express $\tan\frac{\pi}{6}or \tan\frac{\pi}{3}$ exactly is required or the use of $1/\sqrt{3}or\sqrt{3}$
	$(x=)2\sqrt{3}$	A1	OE
		2	
(ii)	Mid-point $(a, b) = (\frac{1}{2} their (i), 1)$	B1FT	Expect (√3, 1)
	Gradient of AB leading to gradient of bisector, m	M1	Expect $-1/\sqrt{3}$ leading to $m = \sqrt{3}$
	Equation is $y - their b = m(x - their a)$ OE	DM1	Expect $y-1=\sqrt{3}(x-\sqrt{3})$
	$y = \sqrt{3} x - 2 \text{ OE}$	A1	
		4	

99. 9709_m18_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i)	$1 + cx = cx^2 - 3x \to cx^2 - x(c+3) - 1 (= 0)$	M1	Multiply throughout by x and rearrange terms on one side of equality
	Use $b^2 - 4ac \Big[= (c+3)^2 + 4c = c^2 + 10c + 9 \text{ or } (c+5)^2 - 16 \Big]$	M1	Select their correct coefficients which must contain 'c' twice Ignore = $0, < 0, > 0$ etc. at this stage
	(Critical values) –1, –9	A1	SOI
	$c \leqslant -9, c \geqslant -1$	A1	
		4	

	Answer	Mark	Partial Marks
(ii)	Sub their c to obtain a quadratic $\left[c = -1 \rightarrow -x^2 - 2x - 1(=0)\right]$	M1	
	x = -1	A1	
	Sub their c to obtain a quadratic $[c = (-9 \rightarrow -9x^2 + 6x - 1(=0))]$	M1	
	x = 1/3	A1	[Alt 1: $dy/dx = -1/x^{\circ} = c$, when $c = -1, x = \pm 1, c = -9, x = \pm \frac{\pi}{3}$ Give M1 for equating the gradients, A1 for all four answers and M1A1 for checking and eliminating]
			[Alt 2: $dy/dx = -1/x^2 = c$ leading to $1/x-1/x^2 = (-1/x^2)(x)-3$ Give M1 A1 at this stage and M1A1 for solving]
		4	

100. 9709_s18_ms_11 Q: 5

	Answer	Mark	Partial Marks
(i)	Eqn of AC $y = -\frac{1}{2}x + 4$ (gradient must be $\Delta y / \Delta x$)	M1A1	Uses gradient and a given point for equa. CAO
	Gradient of $OB = 2 \rightarrow y = 2x$ (If y missing only penalise once)	M1 A1	Use of $m_1m_2 = -1$, answers only ok.
		4	

	Answer	Mark	Partial Marks
(ii)	Simultaneous equations \rightarrow ((1.6, 3.2))	M1	Equate and solve for M1 and reach ≥1 solution
	This is mid-point of $OB. \rightarrow B \ (3.2, 6.4)$	M1 A1	Uses mid-point. CAO
	or		
	Let coordinates of B (h, k) $OA = AB \rightarrow h^2 = 8k - k^2$ $OC = BC \rightarrow k^2 = 16h - h^2 \rightarrow (3.2, 6.4)$		M1 for both equations, M1 for solving with $y = 2x$
	or		
	gradients $\left(\frac{k-4}{h} \times \frac{k}{h-8} = -1\right)$		M1 for gradient product as -1 , M1 solving with $y = 2x$
	or		
	Pythagoras: $h^2 + (k-4)^2 + (h-8)^2 + k^2 = 4^2 + 8^2$		M1 for complete equation, M1 solving with $y = 2x$
		3	

101. 9709_s18_ms_11 Q: 9

	Answer	Mark	Partial Marks
	$f: x \mapsto \frac{x}{2} - 2, g: x \mapsto 4 + x - \frac{x^2}{2}$		
(i)	$4 + x - \frac{x^2}{2} = \frac{x}{2} - 2 \rightarrow x^2 - x - 12 = 0$	M1	Equates and forms 3 term quadratic
	→ (4, 0) and (-3, -3.5) Trial and improvement, B3 all correct or B0	A1 A1	A1 For both x values or a correct pair. A1 all.
		3	
(ii)	f(x) > g(x) for $x > 4$, $x < -3$	B1, B1	B1 for each part. Loses a mark for \leq or \geq .
		2	
(iii)	$fg(x) = 2 + \frac{x}{2} - \frac{x^2}{4} - 2 \left(= \frac{x}{2} - \frac{x^2}{4} \right)$	B1	CAO, any correct form
	i.e. $-\frac{1}{4}((x-1)^2 - 1)$ or $\frac{dy}{dx} = \frac{1}{2} - \frac{2x}{4} = 0 \rightarrow x = 1$	M1 A1	Completes the square or uses calculus. First A1 is for $x = 1$ or completed square form
		A1	CAO, OE e.g. $y \leqslant \frac{1}{4}$, $[-\infty, \frac{1}{4})$ etc.
		4	
(iv)	Calculus or completing square on 'h' $\rightarrow x = 1$	M1	May use a sketch or $-\frac{b}{2a}$
	$k=1 \text{ (accept } k \geqslant 1\text{)}$	A1	Complete method. CAO
		2	

102. 9709_s18_ms_12 Q: 2

	Answer	Mark	Partial Marks
(i)			A complete method as far as finding a set of values for k by:
	Either $(x-3)^2 + k - 9 > 0, k-9 > 0$		Either completing the square and using 'their $k - 9$ ' > or ≥ 0 OR
	or $2x - 6 = 0 \rightarrow (3, k - 9), k - 9 > 0$	M1	Differentiating and setting to 0, using 'their $x=3$ ' to find y and using 'their $k-9$ ' > or \geqslant 0 OR
	or $b^2 < 4ac$ oe $\rightarrow 36 < 4k$		Use of discriminant < or ≤ 0. Beware use of > and incorrect algebra.
	$\rightarrow k > 9$ Note: not \geqslant	A1	T&I leading to (or no working) correct answer 2/2 otherwise 0/2.
		2	

	Answer	Mark	Partial Marks
(ii)	EITHER		
	$x^{2} - 6x + k = 7 - 2x \longrightarrow x^{2} - 4x + k - 7 \ (= 0)$	*M1	Equates and collects terms.
	Use of $b^2 - 4ac = 0$ (16 – 4(k – 7) = 0)	DM1	Correct use of discriminant = 0, involving k from a 3 term quadratic.
	OR		
	$2x - 6 = -2 \rightarrow x = 2 \ (y = 3)$	*M1	Equates their $\frac{dy}{dx}$ to ± 2 , finds a value for x .
	$(their\ 3) \text{ or } 7-2(their\ 2) = (their\ 2)^2 - 6(their\ 2) + k$	DM1	Substitutes their value(s) into the appropriate equation.
	$\rightarrow k = 11$	A1	
		3	

103. 9709_s18_ms_12 Q: 8

Answer	Mark	Partial Marks
EITHER		
Gradient of bisector $=-\frac{3}{2}$	B1	
$gradient AB = \frac{5h - h}{4h + 6 - h}$	*M1	Attempt at $\frac{y-step}{x-step}$
Either $\frac{5h-h}{4h+6-h} = \frac{2}{3}$ or $-\frac{4h+6-h}{5h-h} = -\frac{3}{2}$	*M1	Using $m_1m_2 = -1$ appropriately to form an equation.
OR		
Gradient of bisector = $-\frac{3}{2}$	B1	
Using gradient of AB and A, B or midpoint $\rightarrow \frac{2}{3}x + \frac{h}{3} = y$ oe	*M1	Obtain equation of AB using gradient from $m_1m_2 = -1$ and a point.
Substitute co-ordinates of one of the other points	*M1	Arrive at an equation in h.
h = 2	A1	
Midpoint is $\left(\frac{5h+6}{2},3h\right)$ or $(8,6)$	B1FT	Algebraic expression or FT for numerical answer from 'their h'
Uses midpoint and 'their h' with $3x + 2y = k$	DM1	Substitutes 'their midpoint' into $3x + 2y = k$. If $y = -\frac{3}{2}x + c$ is used (expect $c = 18$) the method mark should be withheld until they $\times 2$.
$\rightarrow k = 36 \text{ soi}$	A1	
	7	
	EITHER Gradient of bisector $= -\frac{3}{2}$ gradient $AB = \frac{5h - h}{4h + 6 - h}$ Either $\frac{5h - h}{4h + 6 - h} = \frac{2}{3}$ or $-\frac{4h + 6 - h}{5h - h} = -\frac{3}{2}$ OR Gradient of bisector $= -\frac{3}{2}$ Using gradient of AB and A , B or midpoint $\rightarrow \frac{2}{3}x + \frac{h}{3} = y$ oe Substitute co-ordinates of one of the other points $h = 2$ Midpoint is $\left(\frac{5h + 6}{2}, 3h\right)$ or $(8, 6)$ Uses midpoint and 'their h ' with $3x + 2y = k$	FITHER Gradient of bisector $= -\frac{3}{2}$ gradient $AB = \frac{5h - h}{4h + 6 - h}$ Fither $\frac{5h - h}{4h + 6 - h} = \frac{2}{3}$ or $-\frac{4h + 6 - h}{5h - h} = -\frac{3}{2}$ OR Gradient of bisector $= -\frac{3}{2}$ Using gradient of AB and A , B or midpoint $\rightarrow \frac{2}{3}x + \frac{h}{3} = y$ oe Substitute co-ordinates of one of the other points 'M1 h = 2 A1 Midpoint is $\left(\frac{5h + 6}{2}, 3h\right)$ or $(8, 6)$ Uses midpoint and 'their h' with $3x + 2y = k$ DM1 $\rightarrow k = 36$ soi A1

104. 9709_s18_ms_13 Q: 6

	Answer	Mark	Partial Marks
(i)	Gradient, m, of $AB = \frac{3k+5-(k+3)}{k+3-(-3k-1)}$ OE $\left(=\frac{2k+2}{4k+4}\right) = \frac{1}{2}$	M1A1	Condone omission of brackets for M mark
		2	
(ii)	Mid-pt = $\left[\frac{1}{2}(-3k-1+k+3), \frac{1}{2}(3k+5+k+3)\right] =$	B1B1	B1 for $\frac{-2k+2}{2}$, B1 for $\frac{4k+8}{2}$ (ISW) or better, i.e. $(-k+1, 2k+4)$
	$\left(\frac{-2k+2}{2},\frac{4k+8}{2}\right)$ SOI		
	Gradient of perpendicular bisector is $\frac{-1}{their \ m}$ SOI Expect -2	M1	Could appear in subsequent equation and/or could be in terms of k
	Equation: $y - (2k+4) = -2[x - (-k+1)]$ OE	DM1	Through <i>their</i> mid-point and with <i>their</i> $\frac{-1}{m}$ (now numerical)
	y + 2x = 6	A1	Use of numerical k in (ii) throughout scores SC2/5 for correct answer
		5	

$105.\ 9709_w18_ms_11\ Q:\ 2$

Answer	Mark	Partial Marks
$x^{2} + bx + 5 = x + 1 \rightarrow x^{2} + x(b - 1) + 4 (= 0)$	M1	Eliminate x or y with all terms on side of an equation
$(b^2 - 4ac =) (b-1)^2 - 16$	M1	
b associated with -3 & $+5$ or $b-1$ associated with ± 4	A1	$(x-2)^2 = 0 \text{ or } (x+2)^2 = 0, x = \pm 2, b-1 = \pm 4 \text{ (M1A1)}$ Association can be an equality or an inequality
$b \geqslant 5, b \leqslant -3$	A1	
	4	

$106.\ 9709_w18_ms_11\ Q:\ 3$

	Answer	Mark	Partial Marks
(i)	Gradient of $AB = -3/4$	B1	Accept -3a/4a
	$y = -\frac{3}{4}x \text{ oe}$	B1FT	Answer must not include a. Ft on their <u>numerical</u> gradient
		2	
(ii)	$(4a)^2 + (3a)^2 = (10/3)^2$ soi	M1	May be unsimplified
	$25a^2 = 100/9$ oe	A1	
	a = 2/3	A1	
		3	

107. 9709_w18_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	$2x + \frac{12}{x} = k - x$ or $y = 2(k - y) + \frac{12}{k - y} \rightarrow 3$ term quadratic.	*M1	Attempt to eliminate y (or x) to form a 3 term quadratic. Expect $3x^2 - kx + 12$ or $3y^2 - 5ky + (2k^2 + 12)$ (= 0)
	Use of $b^2 - 4ac \rightarrow k^2 - 144 < 0$	DM1	Using the discriminant, allow ≤ , = 0; expect 12 and −12
	-12 < k < 12	A1	Do NOT accept ≤ . Separate statements OK.
		3	
(ii)	Using $k = 15$ in their 3 term quadratic	M1	From (i) or restart. Expect $3x^2 - 15x + 12$ or $3y^2 - 75y + 462$ (= 0)
	x = 1,4 or y = 11, 14	A1	Either pair of x or y values correct
	(1, 14) and (4, 11)	A1	Both pairs of coordinates
		3	
(iii)	Gradient of $AB = -1 \rightarrow Perpendicular gradient = +1$	B1FT	Use of $m_1m_2=-1$ to give +1 or ft from their A and B.
	Finding their midpoint using their (1, 14) and (4, 11)	M1	Expect (2½, 12½)
	Equation: $y - 12\frac{1}{2} = (x - 2\frac{1}{2})[y = x + 10]$	A1	Accept correct unsimplified and isw
		3	

108. 9709_w18_ms_13 Q: 4

	Answer	Mark	Partial Marks
(i)	Gradient, m , of $AB = 3/4$	B1	
	Equation of BC is $y-4=\frac{-4}{3}(x-3)$	M1A1	Line through (3, 4) with gradient $\frac{-1}{m}$ (M1). (Expect $y = \frac{-4}{3}x + 8$)
	x = 6	A1	Ignore any y coordinate given.
		4	

	Answer	Mark	Partial Marks
(ii)	$(AC)^2 = 7^2 + 1^2 \rightarrow AC = 7.071$	M1A1	M mark for $\sqrt{\left(their6+/-1\right)^2+1}$.
		2	

109. 9709_w18_ms_13 Q: 9

	Answer	Mark	Partial Marks
(i)	For <i>their</i> 3-term quad a recognisable application of $b^2 - 4ac$	M1	Expect $2x^2 - x(3+k) + 1 - k^2$ (=0) oe for the 3-term quad.
	$(b^2 - 4ac =) (3+k)^2 - 4(2)(1-k^2)$ oe	A1	Must be correct. Ignore any RHS
	$9k^2 + 6k + 1$	A1	Ignore any RHS
	$(3k+1)^2 \ge 0$ Do not allow > 0. Hence curve and line meet. AG	A1	Allow $(9)\left(k+\frac{1}{3}\right)^2 \ge 0$. Conclusion required.
	ALT Attempt solution of 3-term quadratic	M1	
	Solutions $x = k + 1$, $\frac{1}{2}(1 - k)$	A1A1	
	Which exist for all values of k . Hence curve and line meet. AG	A1	
		4	

	Answer	Mark	Partial Marks
(ii)	k = -1/3	B1	ALT dy / dx = $4x - 3 \Rightarrow 4x - 3 = k$
	Sub (one of) their $k = -\frac{1}{3}$ into either line $1 \rightarrow 2x^2 - \frac{8}{3}x + \frac{8}{9} (=0)$	M1	Sub $k = 4x - 3$ into line $1 \rightarrow 2x^2 - x(4x) + 1 - (4x - 3)^2 (= 0)$
	Or into the derivative of line $1 \rightarrow 4x - (3+k)(=0)$		
	$x = 2/3$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	$x = 2/3, y = -1/9$ (both required) [from $-18x^2 + 24x - 8$ (=0) oe]
	$y = -1/9$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	k = -1/3
		4	

$110.\ 9709_s17_ms_12\ Q:\ 2$

	Answer	Mark	Partial Marks
(i)	Gradient = 1.5 Gradient of perpendicular = $-\frac{2}{3}$	B1	
	Equation of AB is $y-6=-\frac{2}{3}(x+2)$ Or $3y+2x=14$ oe	M1 A1	Correct use of straight line equation with a changed gradient and $(-2, 6)$, the $(-(-2))$ must be resolved for the A1 ISW.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	3	
(ii)	Simultaneous equations \rightarrow Midpoint (1, 4)	M1	Attempt at solution of simultaneous equations as far as $x =$, or $y =$.
	Use of midpoint or vectors $\rightarrow B$ (4, 2)	M1A1	Any valid method leading to x , or to y .
	Total:	3	

111. 9709_s17_ms_13 Q: 3

Answer	Mark	Partial Marks
EITHER Elim y to form 3-term quad eqn in $x^{1/3}$ (or u or y or even x)	(M1	Expect $x^{2/3} - x^{1/3} - 2(=0)$ or $u^2 - u - 2 (=0)$ etc.
$x^{1/3}$ (or u or y or x) = 2, -1	*A1	Both required. But $\underline{x} = 2,-1$ and not then cubed or cube rooted scores A0
Cube solution(s)	DM1	Expect $x = 8, -1$. Both required
(8, 3), (-1,0)	A1)	
OR Elim x to form quadratic equation in y	(M1	Expect $y+1=(y-1)^2$
$y^2 - 3y = 0$	*A1	
Attempt solution	DM1	Expect $y = 3, 0$
(8, 3), (-1,0)	A1)	
Total:	4	

112. 9709_s17_ms_13 Q: 8

	Answer	Mark	Partial Marks
(i)	(b-1)/(a+1)=2	M1	OR Equation of AP is $y-1=2(x+1) \rightarrow y=2x+3$
	b = 2a + 3 CAO	A1	Sub $x = a$, $y = b \rightarrow b = 2a + 3$
	Total:	2	
(ii)	$AB^2 = 11^2 + 2^2 = 125$ oe	B1	Accept $AB = \sqrt{125}$
	$(a+1)^2 + (b-1)^2 = 125$	B1 FT	FT on their 125.
	$(a+1)^2 + (2a+2)^2 = 125$	M1	Sub from part (i) \rightarrow quadratic eqn in a (or possibly in $b \rightarrow b^2 - 2b - 99 = 0$)
	$(5)(a^2+2a-24)=0 \rightarrow eg(a-4)(a+6)=0$	M1	Simplify and attempt to solve
	a = 4 or -6	A1	
	b = 11 or -9	A1	OR (4, 11), (-6, -9) If A0A0 , SR1 for either (4, 11) or (-6, -9)
	Total:	6	

113. 9709_w17_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	Mid-point of $AB = (3, 5)$	B1	Answers may be derived from simultaneous equations
	Gradient of $AB = 2$	B1	
	Eqn of perp. bisector is $y-5=-\frac{1}{2}(x-3) \rightarrow 2y=13-x$	M1A1	AG For M1 FT from mid-point and gradient of AB
		4	
(ii)	$-3x + 39 = 5x^{2} - 18x + 19 \rightarrow (5)(x^{2} - 3x - 4)(=0)$	M1	Equate equations and form 3-term quadratic
	x = 4 or -1	A1	
	$y = 4\frac{1}{2}$ or 7	A1	
	$CD^2 = 5^2 + 2\frac{125}{4}$	M1A1	Or equivalent integer fractions ISW
		5	

114. 9709_w17_ms_13 Q: 2

Answer	Mark	Partial Marks
$ax + 3a = -\frac{2}{x} \rightarrow ax^2 + 3ax + 2 \ (=0)$	*M1	Rearrange into a 3-term quadratic.
Apply $b^2 - 4ac > 0$ SOI	DM1	Allow \geqslant . If no inequalities seen, M1 is implied by 2 correct final answers in a or x .
$a < 0, a > \frac{8}{9}$ (or 0.889) OE	A1 A1	For final answers accept $0 > a > \frac{8}{9}$ but not \leq , \geqslant .
	4	

$115.\ 9709_m16_ms_12\ Q:\ 5$

	Answer	Mark	Partial Marks
(i)	Mid-point of $AB = (7, 3)$ soi Grad. of $AB = -2 \rightarrow \text{grad}$ of perp. bisector = 1/2 soi	B1 M1	Use of $m_1 m_2 = -1$
	Eqn of perp. bisector is $y-3=\frac{1}{2}(x-7)$	A1 [3]	
(ii)	Eqn of <i>CX</i> is $y - 2 = -2(x - 1)$	M1	Using their original gradient and (1,2)
	$\frac{1}{2}x - \frac{1}{2} = -2x + 4$	DM1	Solve simultaneously dependent on both
	x = 9/5, y = 2/5	A1	previous M's
	$BX^2 = 7.2^2 + 1.4^2$ soi	M1 A1	
	BX = 7.33	[5]	

116. 9709_s16_ms_12 Q: 8

	Answer	Mark	Partial Marks
	A(0,7), B(8,3) and C(3k,k)		
(i)	m of AB is $-\frac{1}{2}$ oe. Eqn of AB is $y = -\frac{1}{2}x + 7$ Let $x = 3k$, $y = k$ k = 2.8 oe	B1 M1 M1 A1	Using A,B or C to get an equation Using C or A,B in the equation
	OR		
	$\frac{7-k}{0-3k} = \frac{3-k}{8-3k}$	M1A1	Using A,B & C to equate gradients
	$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1	Simplifies to a linear or 3 term quadratic = 0.
	OR		
	$\frac{7-k}{0-3k} = \frac{7-3}{0-8}$	M1A1	Using A,B and C to equate gradients
	$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1 [4]	Simplifies to a linear or 3 term quadratic = 0.
(ii)	M(4, 5) Perpendicular gradient = 2. Perp bisector has eqn $y-5=2(x-4)$	B1 M1 M1	anywhere in (ii) Use of $m_1m_2=-1$ soi Forming eqn using their M and their "perpendicular m"
	Let $x = 3k$, $y = k$ $k = \frac{3}{5}$ oe OR	A1	
	$(0-3k)^2 + (7-k)^2 = (8-3k)^2 + (3-k)^2$	M1A1	Use of Pythagoras.
	$-14k + 49 = 73 - 54k \rightarrow 40k = 24 \rightarrow k = 0.6$	DM1A1 [4]	Simplifies to a linear or 3 term quadratic = 0.

117. 9709_s16_ms_13 Q: 11

	Answer	Mark	Partial Marks
(i)	$AB^2 = 6^2 + 7^2 = 85, BC^2 = 2^2 + 9^2 = 85$ (\rightarrow isosceles)	B1B1	Or $AB = BC = \sqrt{85}$ etc
	$AC^2 = 8^2 + 2^2 = 68$	B1	
	$M = (2, -2) \text{ or } BM^2 = (\sqrt{85})^2 - (\frac{1}{2}\sqrt{68})^2$	B1	Where M is mid-point of AC
	$BM = \sqrt{2^2 + 8^2} = \sqrt{68}$ or $\sqrt{85 - 17} = \sqrt{68}$	B1	
	Area $\triangle ABC = \frac{1}{2}\sqrt{68}\sqrt{68} = 34$	B1 [6]	
(ii)	Gradient of $AB = 7/6$	B1	
	Equation of AB is $y+1=\frac{7}{6}(x+2)$	M1	Or $y-6=\frac{7}{6}(x-4)$
	Gradient of $CD = -6/7$	M1	O O
	Equation of <i>CD</i> is $y+3=\frac{-6}{7}(x-6)$	M1	
	Sim Eqns $2 = \frac{-6}{7}x + \frac{36}{7} - \frac{7}{6}x - \frac{14}{6}$	M1	
	$x = \frac{34}{85} = \frac{2}{5}$ oe	A1 [6]	

118. 9709_w16_ms_11 Q: 4

	Answer	Mark		Partial Marks
(i)	C = (4, -2) $m_{AB} = -1/2 \rightarrow m_{CD} = 2$	B1		
	$m_{AB} = -1/2 \rightarrow m_{CD} = 2$	M1		Use of $m_1 m_2 = -1$ on their m_{AB}
	Equation of CD is $y+2=2(x-4)$ oe	M1		Use of their C and m_{CD} in a line
				equation
	y = 2x - 10	A1		
			[4]	
(ii)	$AD^{2} = (14-0)^{2} + (-7-(-10))^{2}$ $AD = 14.3 \text{ or } \sqrt{205}$	M1		Use their D in a correct method
	$4D = 14.2 \text{ or } \sqrt{205}$	A1		
	AD - 14.5 01 V205	AI	[2]	

119. 9709_w16_ms_12 Q: 3

	Answer	Mark		Partial Marks
(i)	$2x^{2} - 6x + 5 > 13$ $2x^{2} - 6x - 8(> 0)$ $(x =) -1 \text{ and } 4.$ $x > 4, x < -1$	M1 A1 A1		Sets to 0 + attempts to solve Both values required Allow all recognisable notation.
			[3]	
(ii)	$2x^{2}-6x+5=2x+k$ $\rightarrow 2x^{2}-8x+5-k(=0)$ Use of $b^{2}-4ac$ $\rightarrow -3$	M1* DM1 A1		Equates and sets to 0. Use of discriminant
	$ \begin{array}{c} \mathbf{OR} \\ \frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 6 \end{array} $	AI	[3]	
	dx $4x - 6 = 2$ $x = 2$ $x = 2 \rightarrow y = 1$	M1*		Sets (their $\frac{dy}{dx}$) = 2
	Using their (2,1) in $y = 2x + k$	DM1		Uses their $x = 2$ and their $y = 1$
	or $y = 2x^2 - 6x + 5$ $\rightarrow k = -3$	A1	[3]	

120. 9709_w16_ms_12 Q: 5

 Answer	Mark		Partial Marks
$A(a, 0) \text{ and } B(0, b)$ $a^{2} + b^{2} = 100$ $M \text{ has coordinates } \left(\frac{a}{2}, \frac{b}{2}\right)$ $M \text{ lies on } 2x + y = 10$	B1 M1* B1√		soi Uses Pythagoras with their $A \& B$. \checkmark on their A and B .
$\Rightarrow a + \frac{b}{2} = 10$ Sub \to a^2 + (20 - 2a)^2 = 100 or $\left(10 - \frac{b}{2}\right)^2 + b^2 = 100$ $\Rightarrow a = 6, b = 8.$	M1* DM1		Subs into given line, using their M, to link a and b. Forms quadratic in a or in b.
, o, o	AI	[6]	cao

121. 9709_w16_ms_13 Q: 1

 Answer	Mark		Partial Marks
$kx^{2} - 3x = x - k \implies kx^{2} - 4x + k = 0$	M1		Eliminate y and rearrange into 3-term quad
$(-4)^2 - 4(k)(k)$ soi	M1		$b^2 - 4ac$.
$k > 2$, $k < -2$ cao Allow $(2, \infty)$ etc. Allow $2 < k < -k$	A1		
		[3]	

122. 9709_w16_ms_13 Q: 6

	Answer	Mark		Partial Marks
(i)	$\frac{2+x}{2} = n \implies x = 2n-2$	B1		No MR for $(\frac{1}{2}(2+n), \frac{1}{2}(m-6))$
	$\frac{m+y}{2} = -6 \implies y = -12 - m$	B1	[2]	Expect $(2n-2, -12-m)$
(ii)	Sub their x, y into $y = x + 1 \rightarrow -12 - m = 2n - 2 + 1$	M1*		Expect $m + 2n = -11$
	$\frac{m+6}{2-n} = -1$ oe Not nested in an equation	B1		Expect $m-n=-8$
	Eliminate a variable $m = -9$, $n = -1$	DM1 A1A1	[5]	Note: other methods possible

123. 9709_s15_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	y-2t = -2(x-3t)(y+2x=8t)	M1	Unsimplified or equivalent forms
	Set x to $0 \rightarrow B(0, 8t)$ Set y to $0 \rightarrow A(4t, 0)$ $\rightarrow \text{Area} = 16t^2$	M1 A1 [3]	Attempt at both A and B, then using cao
(ii)	$m = \frac{1}{2}$ $\rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$ Set y to $0 \rightarrow C(-t, 0)$ Midpoint of CP is (t, t) This lies on the line $y = x$.	B1 M1 A1 A1 [4]	cao Unsimplified or equivalent forms co correctly shown.

124. 9709_s15_ms_12 Q: 6

	Answer	Mark	Partial Marks
	$h = 60(1 - \cos kt)$		
(i)	$\text{Max } h \text{ when } \cos = -1 \rightarrow 120$	B1 [1]	Со
(ii)	h = 0 and $t = 30$, or $h = 120$ and $t = 15\to \cos 30k = 1 or \cos 15k = -1\to 30k = 2\pi or 15k = \pi$	M1	Substituting a correct pair of values into the equation.
	$\rightarrow k = \frac{2\pi}{30} = \frac{\pi}{15}$	A1 [2]	co ag
(iii)	$90 = 60(1 - \cos kt)$ $\rightarrow \cos kt = \frac{-30}{60} = -0.5$ $\rightarrow kt = \frac{2\pi}{3} \text{ or } \rightarrow kt = \frac{4\pi}{3}$	B1	co – but there must be evidence of correct subtraction.
	→ Either t = 10 or 20 or both $ → t = 10 minutes$	B1 B1 [3]	

125. 9709_s15_ms_13 Q: 7

	Answer	Mark	Partial Marks
(i)	$(9-p)^2 + (3p)^2 = 169$	M1	Or $\sqrt{}=13$
	$(9-p)^2 + (3p)^2 = 169$ $10p^2 - 18p - 88 (= 0)$ oe p = 4 or $-11/5$ oe	A1	3-term quad
	$p = 4 \ or -11/5$ oe	A1	
		[3]	
(ii)	Gradient of given line $=-\frac{2}{3}$	B1	
	Hence gradient of $AB = \frac{3}{2}$	M1	Attempt using $m_1 m_2 = -1$
	$\frac{3}{2} = \frac{3p}{9-p} \text{oe} \text{eg}\left(\frac{-2}{3}\right) \left(\frac{3p}{9-p}\right) = 1$	M1	Or vectors $\begin{pmatrix} 9-p \\ 3p \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \end{pmatrix}$
	(includes previous M1)		
	p = 3	A1 [4]	
		[+]	

126. 9709_w15_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	$x^{2} - x + 3 = 3x + a \rightarrow x^{2} - 4x + (3 - a) = 0$	B1 [1]	AG
(ii)	$5 + (3 - a) = 0 \rightarrow a = 8$ $x^2 - 4x - 5 = 0 \rightarrow x = 5$	B1 B1 [2]	Sub $x = -1$ into (i) OR B2 for $x = 5$ www
(iii)	$16-4(3-a) = 0$ (applying $b^2 - 4ac = 0$) a = -1 $(x-2)^2 = 0 \rightarrow x = 2$ y = 5	M1 A1 A1 A1 [4]	OR $dy/dx = 2x - 1 \rightarrow 2x - 1 = 3$ x = 2 $y = 2^2 - 2 + 3 \rightarrow y = 5$ $5 = 6 + a \rightarrow a = -1$

127. 9709_w15_ms_12 Q: 6

	Answer	Mark	Partial Marks
	A(-3, 7), B(5, 1) and $C(-1, k)$		
(i)	AB = 10	B1	
	$6^2 + (k-1)^2 = 10^2$	M1	Use of Pythagoras
	k = -7 and 9	A1 [3]	
(ii)	$m \text{ of } AB = -\frac{3}{4} m \text{ perp} = \frac{4}{3}$	B1 M1	B1 M1 Use of $m_1 m_2 = -1$
	M = (1, 4)		
	Eqn $y-4 = \frac{4}{3}(x-1)$	В1	
	Set y to 0, $\rightarrow x = -2$	M1 A1	Complete method leading to <i>D</i> .
		[5]	

128. 9709_w15_ms_13 Q: 1

Answer	Mark	Partial Marks	
$x^{2} - 4x + c = 2x - 7 \rightarrow x^{2} - 6x + c + 7 (= 0)$ $36 - 4(c + 7) < 0$		All terms on one side Apply $b^2 - 4ac < 0$. Allow \leq .	
c > 2	A1		
	[3]		

 $129.\ 9709_m22_ms_12\ Q:\ 8$

Question	Answer	Marks	Guidance
(a)	$(-2)^2 + y^2 = 8$ leading to $y = 2$ leading to $A = (0,2)$	B1	
	Substitute $y = their 2$ into circle leading to $(x-2)^2 + 4 = 8$	M1	Expect $x = 4$.
	B = (4, 2)	A1	
		3	
(b)	Attempt to find $[\pi] \int (8-(x-2)^2) dx$	*M1	
	$[\pi] \left[8x - \frac{(x-2)^3}{3} \right] \text{ or } [\pi] \left[8x - \left(\frac{x^3}{3} - 2x^2 + 4x \right) \right]$	A1	
	$[\pi] \left(32 - \frac{16}{3}\right) \text{ or } [\pi] \left[32 - \left(\frac{64}{3} - 32 + 16\right)\right]$	DM1	Apply limits $0 \rightarrow their 4$.
	Volume of cylinder = $\pi \times 2^2 \times 4 = 16\pi$	B1 FT	OR from $\pi \int 2^2 dx$ with <i>their</i> limits from (a). FT on <i>their A</i> and <i>B</i>
	[Volume of revolution = $26\frac{2}{3}\pi - 16\pi =$] $10\frac{2}{3}\pi$	A1	Accept 33.5
		5	

130. 9709_m22_ms_12 Q: 10

Question	Answer	Marks	Guidance
(a)	$\tan A = \frac{12}{5}$ or $\cos A = \frac{5}{13}$ or $\sin A = \frac{12}{13}$	M1	OR $\tan B = \frac{5}{12}$ or $\cos B = \frac{12}{13}$ or $\sin B = \frac{5}{13}$
	A = 1.176 B = 0.3948	A1	Allow 1.18 or 67.4°, Allow 0.395 or 22.6°. May be implied by $\frac{\pi}{2}$ – 1.176
	DE = 4	B1	If trigonometry used accept AWRT 4.00
	$Arcs = 5 \times their 1.176 and 8 \times their 0.3948$	M1	Or corresponding calculations in degrees.
	[Perimeter = 5.880 + 3.158 + 4 =] 13.0	A1	Accept 13. If <i>DE</i> is outside the given range this mark cannot be awarded.
		5	
(b)	Area of triangle = $\frac{1}{2} \times 5 \times their$ 12 [= 30]	B1 FT	
	Area of sectors = $\frac{1}{2} \times 5^2 \times their \ 1.176 + \frac{1}{2} \times 8^2 \times their \ 0.3948$	М1	Or corresponding calculations in degrees
	[Area = 30 - 14.70 -12.63 =] 2.67	A1	Allow 2.66 to 2.67
		3	

131. 9709_m21_ms_12 Q: 10

Question	Answer	Marks	Guidance
(a)	$\Delta ADE = \frac{1}{2} (ka)^2 \sin \frac{\pi}{6}$	M1	Attempt to find the area of ΔADE .
	$\frac{1}{4}k^2a^2$	A1	OE.
	Sector $ABC = \frac{1}{2}a^2 \frac{\pi}{6}$	B1	
	$2 \times \frac{1}{4} k^2 a^2 = \frac{1}{2} a^2 \frac{\pi}{6}$	M1	OE. For $2 \times \Delta ADE = \text{sector} ABC$ with at least one correct area.
	$k = \left(\sqrt{\frac{\pi}{6}}\right) = 0.7236$	A1	
		5	
(b)	$2 \times \frac{1}{2} (ka)^2 \sin \theta = \frac{1}{2} a^2 \theta$	M1	Condone omission of '2' or '1/2' on LHS for M1 only.
	$k^2 = \frac{\theta}{2\sin\theta}$	A1	
	$k^2 > \frac{1}{2}$ leading to $\frac{1}{\sqrt{2}} < k < 1$	A1	OE. Accept $k > \frac{1}{\sqrt{2}}$ or $k > 0.707$ (AWRT) or
			$0.707(AWRT) < k < 1 \text{ or } k > \sqrt{\frac{1}{2}} \text{ OE}$
		3	

132. 9709_s21_ms_11 Q: 8

Question	Answer	Marks	Guidance
(a)	Either Let midpoint of PQ be H: $\sin HCP = \frac{2}{4} \Rightarrow \text{Angle } HCP = \frac{\pi}{6}$	М1	
	$\mathbf{Or} \sin PSQ = \frac{4}{8} \implies \text{Angle } PSQ = \frac{\pi}{6}$		
	Or using cosine rule: angle $PCQ = \frac{\pi}{3}$		
	Or by inspection: triangle <i>PCQ</i> or <i>PCT</i> is equilateral so angle $PCQ = \frac{\pi}{3}$		
	Angle $PCS = \pi - \frac{\pi}{6} - \frac{\pi}{6} = \frac{2}{3}\pi$	A1	AG
		2	
(b)	Perimeter = $2 \times 4 \times \frac{2\pi}{3}$ or $8\pi - \frac{8\pi}{3}$	M1	Length of two arcs PS and QR
	+2π×2	M1	Adding circumference of two semicircles
	$\frac{28\pi}{3}$	A1	Must be a single term
		3	

Question	Answer	Marks	Guidance
(c)	Area sector $CPQ = \frac{1}{2} \times 4^2 \times \frac{\pi}{3} = \frac{8\pi}{3}$	M1	Uses correct formula for sector
	Area of segment of large circle beyond <i>CPQ</i> $= \frac{8\pi}{3} - \frac{1}{2} \times 4^2 \times \sin\left(\frac{\pi}{3}\right) = \frac{8\pi}{3} - 4\sqrt{3}$	M1	Attempts to find area of segment
	Area of small semicircle = $\pi \times 2$ or area of small circle = $\pi \times 2^2$	M1	
	Area of plate = Large circle $-[2 \times]$ small semicircle $-[2 \times]$ segment area	M1	
	$\pi \times 4^2 - \pi \times 2^2 - 2 \times \left(\frac{8\pi}{3} - 4\sqrt{3}\right) = \frac{20\pi}{3} + 8\sqrt{3}$	A1	AG
	Alternative method for Question 8(c)		
	Area of sector $PCS = \frac{1}{2} \times 4^2 \times \frac{2\pi}{3} = \frac{16\pi}{3}$	M1	Uses correct formula for sector
	Area of triangle $PCQ = \frac{1}{2} \times 4^2 \times \sin \frac{\pi}{3} = 4\sqrt{3}$	M1	Uses correct formula for triangle
	Area of small semicircle = $\pi \times 2$ or area of circle = $\pi \times 2^2$	M1	
	Area of plate = $[2 \times]$ large sector + $[2 \times]$ triangle – $[2 \times]$ small semicircle	M1	
	$2\left(\frac{16\pi}{3}\right) + 2\left(4\sqrt{3}\right) - \pi \times 2^2 = \frac{20\pi}{3} + 8\sqrt{3}$	A1	AG
		5	

133. 9709_s21_ms_12 Q: 12

Question	Answer	Marks	Guidance
(a)	[By symmetry] $[6 \times P\hat{A}Q = 2\pi]$, $[P\hat{A}Q = 2\pi]$ $[P\hat{A}Q = 2\pi]$	M1	
	Explaining that there are six sectors around the diagram that make up a complete circle.	A1	AG
	Alternative method for Question 12(a)		
	Using area or circumference of circle centre $A \div 6$	M1	$\frac{400\pi}{6} \text{ or } \frac{40\pi}{6}$
	Justification for dividing by 6 followed by comparison with the sector area or arc length.	A1	AG
	Alternative method for Question 12(a)		
	Explain why ΔPAQ is an equilateral triangle	M1	Assumption of this scores M0
	Using ΔPAQ is an equilateral triangle :: $P\hat{A}Q = \frac{\pi}{3}$	A1	AG
	Alternative method for Question 12(a)		
	Using the internal angle of a regular hexagon = $\frac{2\pi}{3}$	M1	
	Or $\hat{FAO} + \hat{OAB} = \frac{2\pi}{3}$, equilateral triangles		
	$P\hat{A}Q = 2\pi - \left(\frac{\pi}{2} + \frac{2\pi}{3} + \frac{\pi}{2}\right) = \frac{\pi}{3}$	A1	AG

Question	Answer	Marks	Guidance
(a)	Alternative method for Question 12(a)		
	$Sin\theta = \frac{20}{40}$, with θ clearly identified	M1	
	$\theta = \frac{\pi}{6}, 2\theta = \frac{\pi}{3} = F\hat{A}O$ and by similar triangles = $P\hat{A}Q$	A1	AG
		2	
(b)	Each straight section of rope has length 40 cm	B1	SOI
	Each curved section round each pipe has length $r\theta = 20 \times \frac{\pi}{3}$	*M1	Use of $r\theta$ with $r = 20$ and θ in radians
	Total length = $6 \times ((their 40) + k\pi)$	DM1	$6\times$ (their straight section + their curved section). Their curved section must be from acceptable use of $r\theta$ – this could now be numeric.
	$240 + 40\pi$ or 366 (AWRT) (cm)	A1	Or directly: (6× diameter) + circumference
		4	
Question	Answer	Marks	Guidance
(c)	[Triangle area =] $\frac{1}{2} \times 40 \times 40 \times \sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{2} \times 40 \times 20\sqrt{3}$ or	B1	
	$400\sqrt{3}$ or $693(AWRT)$		
	[Total area of hexagon = $6 \times 400\sqrt{3}$ =] $2400\sqrt{3}$	B1	Condone $4800 \frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	[Trapezium area =] $\frac{1}{2}$ × $(40+80)$ × $40\sin(\frac{\pi}{3})$ or $1200\sqrt{3}$ or 2080 (AWRT)	B1	
	[Total area of hexagon = $2 \times 1200 \sqrt{3}$ =] $2400 \sqrt{3}$	B1	Condone $4800 \frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	Area of triangle $ABC = 400\sqrt{3}$ or 693 (AWRT) or $4 \times$ Area of half of triangle $ABC = 4 \times 200\sqrt{3}$ or 1390 (AWRT) or Area of rectangle $ABDE = 1600\sqrt{3}$ or 2770 (AWRT)	B1	
	[Total area of hexagon = $2 \times 400\sqrt{3} + 1600\sqrt{3} =]2400\sqrt{3}$ Or [= $4 \times 200\sqrt{3} + 1600 =]2400\sqrt{3}$	B1	Condone $4800 \frac{\sqrt{3}}{2}$
			If B0B0, SC B1 can be scored for sight of 4160 (AWRT) as final answer.
		2	
Question	Answer	Marks	Guidance
(d)	Each rectangle area = 40×20 (= 800)	B1	SOI, e.g. by sight of 4800
	Each sector area = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 20^2 \times \frac{\pi}{3} \left[= \frac{200\pi}{3} \right]$	B1	SOI.
	Total area = $2400\sqrt{3} + 4800 + 400\pi$ or 10200 (cm ²) (AWRT)	B1	Or directly: part (c) + 6800 + area circle radius 20.
		3	

134. 9709_s21_ms_13 Q: 5

Question	Answer	Marks	Guidance
(a)	$\frac{1}{2} \times 4^2 \times \text{angle BAD} = 10$	М1	Use of sector area formula
	Angle BAD =1.25	A1	OE. Accept 0.398π, 71.6° for SC B1 only
		2	
(b)	$Arc BD = 4 \times their 1.25$	M1	Use of arc length formula. Expect 5.
	$BC = 4\tan(their 1.25)$	М1	Expect 12.0(4). May use <i>ACB</i> =0.321 or 18.4°
	$CD = \frac{4}{\cos(their 1.25)} - 4 \text{ or } \sqrt{4^2 + (their BC)^2} - 4$	M1	Expect $12.69 - 4 = 8.69$. May use <i>ACB</i> .
	Perimeter = 5 + 12.0(4) + 8.69 = 25.7 (cm)	A1	AWRT
		4	

135. $9709_w21_ms_11 Q: 6$

Question	Answer	Marks	Guidance
(a)	Recognise that at least one of angles A, B, C is $\frac{\pi}{3}$	B1	SOI; allow 60°.
	One arc $6 \times their \frac{\pi}{3}$ leading to two arcs $2 \times 6 \times their \frac{\pi}{3}$	M1	SOI e.g. may see 2π or 4π . Use of correct formula for length of arc and multiply by 2.
	Perimeter = $6 + 4\pi$	A1	Must be exact value.
	Alternative method for question 6(a)		
	Calculate circumference of whole circle = 12π	B1	
	One arc $\frac{1}{6} \times 12\pi$ leading to two arcs $2 \times \frac{1}{6} \times 12\pi$	M1	SOI e.g. may see 2π or 4π .
	Perimeter = $6 + 4\pi$	A1	Must be exact value.
		3	

Question	Answer	Marks	Guidance
(b)	Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .
	$\frac{1}{2} \times \left(6^{2}\right) \times their\left(\frac{\pi}{3}\right) - \frac{1}{2} \times \left(6^{2}\right) \times sin\left(their\left(\frac{\pi}{3}\right)\right) + 6\pi \left[= 6\pi - 9\sqrt{3} + 6\pi \right]$	M1 A1	M1 for attempt at strategy with values substituted: area of segment + area of sector A1 if correct (unsimplified).
	$Area = 12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.
	Alternative method for question 6(b)		
	Sector = $\frac{1}{2} \times 6^2 \times their \left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .
	$2 \times \left(\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)\right) - \frac{1}{2} \times \left(6^2\right) \times sin\left(their\left(\frac{\pi}{3}\right)\right)$	M1 A1	M1 for attempt at strategy with values substituted: 2 × sector – triangle A1 if correct (unsimplified).
	$Area = 12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.
	Alternative method for question 6(b)		
	Sector = $\frac{1}{2} \times 6^2 \times their \left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .
	$2 \times \left(\frac{1}{2} \times (6^2) \times their\left(\frac{\pi}{3}\right) - \frac{1}{2} \times (6^2) \times sin\left(their\left(\frac{\pi}{3}\right)\right)\right) + \frac{1}{2} \times (6^2) \times sin\left(their\left(\frac{\pi}{3}\right)\right) \left[=12\pi - 18\sqrt{3} + 9\sqrt{3}\right]$	M1 A1	M1 for attempt at strategy with values substituted: 2 × segment + triangle A1 if correct (unsimplified).
	Area $\left[= 6\pi - 9\sqrt{3} + 6\pi \right] = 12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.
		4	

136. 9709_w21_ms_12 Q: 7

Question	Answer	Marks	Guidance
(a)	EITHER By using trigonometry: $\hat{BAC} = 0.6435$ and $\hat{ABC} = \frac{\pi - 0.6435}{2}$ OR By Pythagoras: $AP = 12 \Rightarrow BP = 3$ so $\tan \hat{ABC} = \frac{9}{3}$ OR Using ΔPBC and either the sine or cosine rule $\sin \hat{ABC} = \frac{3}{\sqrt{10}}$ or $\cos \hat{ABC} = \frac{\sqrt{10}}{10}$	MI	$\frac{3}{\sqrt{10}} = 0.9486 \frac{\sqrt{10}}{10} = 0.3162$
	$A\hat{B}C = \frac{\pi - 0.6435}{2} \text{ or } \tan^{-1} \frac{9}{3} \text{ or } \sin^{-1} \frac{3}{\sqrt{10}} \text{ or } \cos^{-1} \frac{\sqrt{10}}{10} \text{ or}$ 1.249(04) or71.56° = 1.25 radians (3 sf)	A1	AG. Final answer must be 1.25, more accurate value 1.24904 with no rounding to 3sf seen as the final answer gets M1A0. If decimals are used all values must be given to at least 4sf for A1.
		2	
(b)	$BC = \sqrt{(their 3)^2 + 9^2}$ or $\frac{9}{\sin 1.25} [= \sqrt{90}, 3\sqrt{10} \text{ or } 9.48697]$	M1	Using correct method(s) to find BC.
	Area of sector = $\frac{1}{2} \times (their BC)^2 \times tan^{-1} 3 = 56.207 \text{ or } 56.25$	M1	Using tam ⁻¹ 3 or 1.25 and <i>their BC</i> , but not 9 or 15, in correct area of sector formula.
	Area of triangle <i>PBC</i> = 13.4 to 13.6 or $\frac{1}{2} \times 9 \times 3$	B1	
	[Area = (56.207 or 56.25) – their 13.5 =] 42.7 or 42.8	A1	AWRT
		4	

137. 9709_w21_ms_12 Q: 12

Question	Answer	Marks	Guidance
(a)	Centre is (3, – 2)	B1	
	Gradient of radius = $\frac{(their - 2) - 4}{(their 3) - 5} [= 3]$	*M1	Finding gradient using <i>their</i> centre (not (0, 0)) and P (5,4).
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using <i>P</i> and the negative reciprocal of <i>their</i> gradient to find the equation of <i>AB</i> .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	Area = $\frac{1}{2} \times \frac{17}{3} \times 17 = \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.
	Alternative method for question 12(a)		
	$2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 6 + 4\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	B1	
	At P: $10 + 8\frac{dy}{dx} - 6 + 4\frac{dy}{dx} = 0 \left[\Rightarrow \frac{dy}{dx} = -\frac{1}{3} \right]$	*M1	Find the gradient using $P(5,4)$ in <i>their</i> implicit differential (with at least one correctly differentiated y term).
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using <i>P</i> and <i>their</i> value for the gradient to find the equation of <i>AB</i> .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	Area = $\frac{1}{2} \times \frac{17}{3} \times 17 = \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.

Question	Answer	Marks	Guidance
(a) cont'd	Alternative method for question 12(a)		
cont d		B1	OE. Correct differentiation of rearranged equation.
	$\frac{dy}{dx} = (3-5)\left(31+6(5)-(5)^2\right)^{-\frac{1}{2}} \left[\Rightarrow \frac{dy}{dx} = -\frac{1}{3} \right]$	*M1	Find the gradient using $x = 5$ in <i>their</i> differential (with clear use of chain rule).
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using <i>P</i> and <i>their</i> value for the gradient to find the equation of <i>AB</i> .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	Area = $\frac{1}{2} \times \frac{17}{3} \times 17 = \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.
		5	

Question	Answer	Marks	Guidance
(b)	Radius of circle = $\sqrt{40}$,	B1	Or $2\sqrt{10}$ or 6.32 AWRT or $r^2 = 40$.
	Area of $\triangle CRQ = \frac{1}{2} \times (their r)^2 \sin 120 \left[= \frac{1}{2} \times 40 \times \frac{\sqrt{3}}{2} \right]$	М1	Using $\frac{1}{2}r^2\sin\theta$ with their r and 120 or 60 [×3]
	OR Area of $\triangle CQX = \frac{1}{2} \times \sqrt{40}\cos 30 \times \sqrt{40}\cos 60$ OE $\left[= \frac{1}{2} \times \sqrt{30} \times \sqrt{10} \right]$ OR		Using $\frac{1}{2}$ ×base×height in a correct right-angled triangle [×6].
	Area of circle – 3× Area of segment = $40\pi - 3 \times (40\frac{\pi}{3} - 10\sqrt{3})$ OR		
	$QR = \sqrt{120} \text{ or } 2\sqrt{30} \text{ and area} = \frac{1}{2}QR^2 \sin 60$		Use of cosine rule and area of large triangle
	$30\sqrt{3}$	A1	AWRT 52[.0] implies B1M1A0.
		3	See diagram for points stated in 'Answer' column.
			B P A X

 $138.\ 9709_w21_ms_13\ Q{:}\ 5$

Question	Answer	Marks	Guidance
(a)	$Angle XYC = \sin^{-1}\left(\frac{9}{11}\right) = 0.9582$	B1	AG. OE using cosine rule.
	or $\sin XYC = \frac{9}{11}$ leading to $XYC = 0.9582$		
		1	
(b)	$XY = \sqrt{11^2 - 9^2} = \sqrt{40}$ or using 0.9582 and trigonometry	*M1 A1	
	AB = 9 + 11 - theirXY	B1 FT	OE e.g. $20 - 2\sqrt{10}$, $2 + 9 - 2\sqrt{10} + 11 - 2\sqrt{10}$
	Arc $AC = 11 \times 0.9582$	M1	
	$Arc BC = 9 \times \frac{\pi}{2}$	M1	
	Perimeter = [13.6(8) + 10.5(4) +14.1(4) =] 38.4	A1	AWRT. Answer must be evaluated as a single decimal.
		6	

139. 9709_m20_ms_12 Q: 7

Answer	Mark	Partial Marks
$OC = 6\cos 0.8 = 4.18(0)$	M1A1	SOI
Area sector $OCD = \frac{1}{2} (their 4.18)^2 \times 0.8$	*M1	OE
$\Delta OCA = \frac{1}{2} \times 6 \times their 4.18 \times \sin 0.8$	M1	OE
Required area = $their \triangle OCA - their$ sector OCD	DM1	SOI. If not seen their areas of sector and triangle must be seen
2.01	A1	CWO. Allow or better e.g. 2.0064
	6	

140. 9709_s20_ms_11 Q: 8

	Angle $AOB = 15 \div 6 = 2.5$ radians	B1
	Angle $BOC = \pi - 2.5$ (FT on angle AOB)	B1FT
	$BC = 6(\pi - 2.5)$ ($BC = 3.850$)	М1
	$\sin(\pi - 2.5) = BX \div 6$ (BX = 3.59)	М1
	Either $OX = 6\cos(\pi - 2.5)$ or Pythagoras $(OX = 4.807)$	M1
	$XC = 6 - OX (XC = 1.193) \rightarrow P = 8.63$	A1
		6

141. 9709_s20_ms_13 Q: 5

$\cos POA = \frac{5}{13} \to POA = 1.17(6)$ Allow 67.4° or $\sin = \frac{12}{13}$ or $\tan = \frac{12}{5}$	M1 A1
Reflex $AOB = 2\pi - 2 \times their 1.17(6)$ OE in degrees or minor arc AB = $5 \times 2 \times their 1.17(6)$	M1
Major arc = $5 \times their 3.93(1)$ or $2\pi \times 5 - their 11.7(6)$	М1
$AP \text{ (or } BP) = \sqrt{13^2 - 5^2} = 12$	B1
Cord length = 43.7	A1
	6

142. 9709_s20_ms_13 Q: 10

(a)	Mid-point is (-1, 7)	B1
	Gradient, m, of AB is 8/12 OE	B1
	$y - 7 = -\frac{12}{8}(x+1)$	M1
	3x + 2y = 11 AG	A1
		4
(b)	Solve simultaneously $12x - 5y = 70$ and their $3x + 2y = 11$	M1
	x = 5, y = -2	A1
	Attempt to find distance between <i>their</i> (5, -2) and either (-7,3) or (5, 11)	М1
	$(r) = \sqrt{12^2 + 5^2}$ or $\sqrt{13^2 + 0} = 13$	A1
	Equation of circle is $(x-5)^2 + (y+2)^2 = 169$	A1
		5

143. 9709_w20_ms_11 Q: 10

	Answer	Mark	Partial Marks
(a)	$\left(\sin\theta = \frac{r}{OC} \to\right) OC = \frac{r}{\sin\theta}$	M1 A1	
	$CD = r + \frac{r}{\sin \theta}$	A1	
		3	
(b)	Radius of arc $AB = 4 + \frac{4}{\sin \frac{\pi}{6}} = 4 + 8 = 12$	B1	SOI
	(Arc $AB =$) their $12 \times \frac{2\pi}{6}$ or $\left(\frac{1}{2}AB =\right) \left(\text{their } 12 \times \frac{\pi}{6}\right)$	M1	Expect 4π , must use <i>their</i> CD, not 4
	Perimeter = $24 + 4\pi$	A1	
		3	
(c)	Area $FOC = \frac{1}{2} \times 4 \times their \ OC \times \sin \frac{\pi}{3}$	M1	
	$8\sqrt{3}$	A1	
	Area sector $FOE = \frac{1}{2} \times \frac{2\pi}{3} \times 4^2 = \frac{16\pi}{3}$	B1	
	Shaded area = $16\sqrt{3} - \frac{16\pi}{3}$	A1	
	Alternative method for question 10(c)		
	$FC = \sqrt{\left(their\ OC\right)^2 - 4^2}$	M1	$\sqrt{48}$ or $4\sqrt{3}$
	$Area FOC = \frac{1}{2} \times 4 \times 4\sqrt{3} = 8\sqrt{3}$	A1	
	Area of half sector $FOE = \frac{1}{2} \times \frac{\pi}{3} \times 4^2 = \frac{8\pi}{3}$	B1	
	Shaded area = $16\sqrt{3} - \frac{16\pi}{3}$	A1	
		4	

144. 9709_w20_ms_12 Q: 8

	Answer	Mark	Partial Marks
(a)	Use of correct formula for the area of triangle ABC	M1	Use of $180-2\theta$ scores M0. Condone $2\pi-2\theta$
	$\frac{1}{2}r^2\sin(\pi-2\theta) \text{ or } \frac{1}{2}r^2\sin 2\theta \text{ or } 2\times \frac{1}{2}r\times r\cos\theta \times \sin\theta \text{ or } 2\times \frac{1}{2}r\cos\theta \times r\sin\theta$	A1	OE
	[Shaded area = triangle – sector] = their triangle area – $\frac{1}{2}r^2\theta$	B1 FT	FT for <i>their</i> triangle area $-\frac{1}{2}r^2\theta$ (Condone use of 180 degrees for triangle area for B1)
		3	
(b)	$Arc BD = r\theta = 6 cm$	B1	SOI
	$AC = 2r\cos\theta = (2 \times 10\cos 0.6 = 20\cos 0.6 = 16.506)$ or $\sqrt{(2r^2 - 2r^2\cos(\pi - 2\theta))}$ or $\frac{r \times \sin(\pi - 2\theta)}{\sin \theta}$	*M1	Finding AC or $\frac{1}{2}AC$ (= 8.25)
	$DC = 2r\cos\theta - r \text{ or } \sqrt{(2r^2 - 2r^2\cos(\pi - 2\theta))} - r (= 6.506)$	DM1	Subtracting r from their AC or r - r cos θ from their half AC (8.25-1.75)
	(Perimeter = 10 + 6 + 6.506 =) 22.5	A1	AWRT
		4	

145. 9709_w20_ms_13 Q: 9

	Answer	Mark	Partial Marks
(a)	$\cos BAO = \frac{6}{8} \text{ or } \frac{8^2 + 12^2 - 8^2}{2 \times 8 \times 12}$	M1	Or other correct method
	BAO = 0.723	A1	
		2	
(b)	Sector $ABC = \frac{1}{2} \times 12^2 \times their 0.7227$	*M1	Accept 52.1
	Triangle $AOB = \frac{1}{2} \times 8 \times 12 \sin(their 0.7227)$ or $\frac{1}{2} \times 12 \times \sqrt{28}$	*M1	or $\frac{1}{2} \times 8 \times 8 \sin(\pi - 2 \times their 0.7227)$. Expect 31.7 or 31.8
	Shaded area = their $52.0 - their 31.7 = 20.3$	DM1 A1	M1 dependent on both previous M marks
		4	
(c)	$Arc BC = 12 \times their 0.7227$	*M1	Expect 8.67
	Perimeter = 8 + 4 + their 8.67 = 20.7	DM1 A1	
		3	

146. 9709_w20_ms_13 Q: 11

	Answer	Mark	Partial Marks
(a)	$(-6-8)^2+(6-4)^2$	M1	OE
	= 200	A1	
	$\sqrt{200} > 10$, hence outside circle	A1	AG ('Shown' not sufficient). Accept equivalents of $\sqrt{200} > 10$
	Alternative method for question 11(a)		
	Radius = 10 and $C = (8, 4)$	B1	
	Min(x) on circle = $8 - 10 = -2$	M1	
	Hence outside circle	A1	AG
		3	
(b)	$angle = \sin^{-1}\left(\frac{their10}{their10\sqrt{2}}\right)$	M1	Allow decimals for $10\sqrt{2}$ at this stage. If cosine used, angle ACT or BCT must be identified, or implied by use of 90° – 45° .
	angle = $\sin^{-1}(\frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or } \frac{10}{10\sqrt{2}} \text{ or } \frac{10}{\sqrt{200}}) = 45^{\circ}$	A1	AG Do not allow decimals
	Alternative method for question 11(b)		
	$(10\sqrt{2})^2 = 10^2 + TA^2$	M1	
	$TA = 10 \rightarrow 45^{\circ}$	A1	AG
		2	
(c)	Gradient, m , of $CT = -\frac{1}{7}$	B1	OE
	Attempt to find mid-point (M) of CT	*M1	Expect (1, 5)
	Equation of AB is $y-5=7(x-1)$	DM1	Through <i>their</i> $(1, 5)$ with gradient $-\frac{1}{m}$
	y = 7x - 2	A1	
		4	
(d)	$(x-8)^2 + (7x-2-4)^2 = 100$ or equivalent in terms of y	M1	Substitute their equation of AB into equation of circle.
	$50x^2 - 100x (= 0)$	A1	
	x = 0 and 2	A1	www
	Alternative method for question 11(d)		
	$\mathbf{MC} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$	M1	
		A1	
	x = 0 and 2	A1	
		3	

147. 9709_m19_ms_12 Q: 3

Answer	Mark	Partial Marks
Angle $CBA = \sin^{-1}\left(\frac{7}{8}\right) = 1.0654 \text{ or } CBD = \cos^{-1}\left(\frac{-17}{32}\right) = 2.13$	B1	Accept 61.0°, 66° or 122°
Sector $BCYD = \frac{1}{2} \times 8^2 \times 2 \times their 1.0654 \text{ (rad)}$ soi or sector CBY = $\frac{1}{2} \times 8^2 \times their 1.0654 \text{ (rad)}$	M1	Expect 68.1(9). Angle must be in radians (or <i>their</i> $61/360 \times 2 \times 8^2$) Or sector DBY
$\Delta BCD = 7 \times \sqrt{8^2 - 7^2}$ or $\frac{1}{2} \times 8^2 \times \sin(2 \times their 1.0654)$ soi	M1	Expect 27.1(1). Award M1 for ABC or ABD
Semi-circle $CXD = \frac{1}{2}\pi \times 7^2 = 76.9(7)$	M1	M1M1 for segment area formula used correctly
Total area = their68.19 - their27.11 + their76.97 = 118.0-118.1	M1A1	Cannot gain M1 without attempt to find angle CBA or CBD
	6	

148. 9709_s19_ms_11 Q: 3

Answer	Mark	Partial Marks
Uses $A = \frac{1}{2}r^2\theta$	M1	Uses area formula.
$\theta = \frac{2A}{r^2}$	A1	
$P = r + r + r\theta$	B1	
$P = 2r + \frac{2A}{r}$	A1	Correct simplified expression for P.
	4	

 $149.\ 9709_s19_ms_12\ Q{:}\ 5$

Answer	Mark	Partial Marks
Perimeter of $AOC = 2r + r\theta$	B1	
Angle $COB = \pi - \theta$	B1	Could be on the diagram. Condone $180 - \theta$.
Perimeter of $BOC = 2r + r(\pi - \theta)$	B1	FT on angle <i>COB</i> if of form $(k\pi - \theta)$, $k > 0$.
$(2r+)\pi r - r\theta = 2((2r) + r\theta)$ $(2+\pi - \theta = 4 + 2\theta \rightarrow \theta = \frac{\pi - 2}{3})$	M1	Sets up equation using $r(k\pi - \theta)$ and ×2 on correct side. Condone any omissions of OA, OB and/or OC.
$\theta = 0.38$	A1	Equivalent answer in degrees scores A0.
	5	

150. 9709_s19_ms_13 Q: 3

	Answer	Mark	Partial Marks
(i)	Angle EAD = Angle $ACD = \frac{3\pi}{10}$ or 54° or 0.942 soi or Angle $DAC = \frac{\pi}{5}$ or 36° or 0.628 soi	B1	
	$AD = 8\sin(\frac{3\pi}{10}) \text{ or } 8\cos(\frac{\pi}{5})$	M1	Angles used must be correct
	(AD =) 6.47	A1	
	Alternative method for question 3(i)		
	$AB = \frac{8}{\tan\left(\frac{\pi}{5}\right)} \text{ or } AB = \frac{8\sin\left(\frac{3\pi}{10}\right)}{\sin\left(\frac{\pi}{5}\right)} \text{ or } 11.(01)$	B1	Angles used must be correct
	$AD = 11.0(1)\sin\frac{\pi}{5}$ oe	M1	
	(AD =) 6.47	A1	
		3	
(ii)	Area sector = $\frac{1}{2} (theirAD)^2 \times their \left(\frac{\pi}{2} - \frac{\pi}{5} \right)$	M1	19.7(4)
	Area $\triangle ADC = \frac{1}{2} \times 8 \times theirAD \times \sin\frac{\pi}{5} \text{ or } \frac{1}{2} \times 8\cos\left(\frac{3\pi}{10}\right) \times 8\sin\left(\frac{3\pi}{10}\right)$	M1	Or e.g. $\frac{1}{2}$ their $AD \times \sqrt{8^2 - their AD^2}$. 15.2(2)
	(Shaded area =) 35.0 or 34.9	A1	
		3	

151. 9709_w19_ms_11 Q: 8

	Answer	Mark	Partial Marks
(i)	$OA \times \frac{3}{8}\pi = 6$	M1	
	$OA = \frac{16}{\pi} = 5.093(0)$	A1	
(ii)	$AB = their 5.0930 \times \tan \frac{3}{16} \pi$	M1	
	Perimeter = $2 \times 3.4030 + 6 = 12.8$	A1	
(iii)	Area $OABC = (2 \times \frac{1}{2}) \times their 5.0930 \times their 3.4030$	M1	
	Area sector = $\frac{1}{2} \times (their 5.0930)^2 \times \frac{3}{8} \pi$	M1	
	Shaded area = their17.331-their15.279 = 2.05	M1A1	

152. 9709_w19_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	Arc length $AB = 2r\theta$	B1	
	Tan $\theta = \frac{AT}{r}$ or $\frac{BT}{r} \to AT$ or $BT = r \tan \theta$	В1	Accept or $\sqrt{\left(\left(\frac{r}{\cos\theta}\right)^2 - r^2\right)}$ or $\frac{r\sin\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$ NOT (90 – θ)
	$P = 2r\theta + 2r\tan\theta$	B1FT	OE, FT for <i>their</i> arc length $+ 2 \times their AT$
		3	
(ii)	Area $\triangle AOT = \frac{1}{2} \times 5 \times 5 \tan 1.2$ or Area $AOBT = 2 \times \frac{1}{2} \times 5 \times 5 \tan 1.2$	B1	
	Sector area = $\frac{1}{2} \times 25 \times 2.4$ (or 1.2)	*M1	Use of $\frac{1}{2}r^2\theta$ with $\theta = 1.2$ or 2.4.
	Shaded area = 2 triangles – sector	DM1	Subtraction of sector, using 2.4 where appropriate, from 2 triangles
	Area = $34.3 \text{ (cm}^2\text{)}$	A1	AWRT
	Alternative method for question 4(ii)		
	Area of $\triangle ABT = \frac{1}{2} \times (5 \times \tan 1.2)^2 \times \sin(\pi - 2.4) (= 55.86)$	B1	
	Segment area = $\frac{1}{2} \times 25 \times (2.4 - \sin 2.4) (= 21.56)$	*M1	Use of $\frac{1}{2}r^2(\theta - \sin \theta)$ with $\theta = 1.2$ or 2.4
	Shaded area = triangle - segment	DM1	Subtraction of segment from \triangle <i>ABT</i> , using 2.4 where appropriate.
	Area = $34.3 \text{ (cm}^2\text{)}$	A1	AWRT
		4	

153. 9709_w19_ms_13 Q: 4

	Answer	Mark	Partial Marks
(i)	Angle $CAO = \frac{\pi}{3}$	B1	
		1	
(ii)	$(Sector AOC) = \frac{1}{2}r^2 \times their \frac{\pi}{3}$	M1	SOI
	$(\Delta ABC) = \frac{1}{2}(r)(2r)\sin\left(their\frac{\pi}{3}\right) \text{ or } \frac{1}{2}(2r)(r)\frac{\sqrt{3}}{2} \text{ or } \frac{1}{2}(r)(r)\sqrt{3}$	M1	For M1M1, their $\frac{\pi}{3}$ must be of the form $k\pi$ where $0 < k < \frac{1}{2}$
	$(\Delta ABC) = \frac{1}{2}(r)(2r)\sin(\frac{\pi}{3}) \text{ or } \frac{1}{2}(2r)(r)\frac{\sqrt{3}}{2} \text{ or } \frac{1}{2}(r)(r)\sqrt{3}$	A1	All correct
	$r^2\left(\frac{\sqrt{3}}{2}\right) - \frac{1}{2}r^2\left(\frac{\pi}{3}\right)$	A1	
		4	

154. 9709_m18_ms_12 Q: 6

	Answer	Mark	Partial Marks
(i)	$\frac{PQ}{2} = 10 \times \sin 1.1$	M1	Correct use of sin/cos rule
	(PQ=) 17.8 (17.82implies M1 , A1) AG	A1	OR $PQ = \frac{10\sin 2.2}{\sin(\frac{\pi}{2} - 1.1)} or \frac{10\sin 2.2}{\sin 0.4708} or \sqrt{200 - 200\cos 2.2} = 17.8$
		2	
(ii)	Angle $OPQ = (\pi/2 - 1.1)$ [accept 27°]	B1	OE Expect 0.4708 or 0.471. Can be scored in part (i)
	Arc $QR = 17.8 \times their (\pi/2 - 1.1)$	M1	Expect 8.39. (or 8.38).
	Perimeter = $17.8 - 10 + 10 + their \operatorname{arc} QR$	M1	
	26.2	A1	For both parts allow correct methods in degrees
		4	

155. 9709_s18_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	$(\tan\theta = \frac{AT}{r}) \rightarrow AT = r \tan\theta \text{ or } OT = \frac{r}{\cos\theta} \text{ SOI}$	B1	CAO
	$\rightarrow A = \frac{1}{2} r^2 \tan \theta \qquad -\frac{1}{2} r^2 \theta$		B1 for $\frac{1}{2}r^2\tan\theta$. B1 for " $-\frac{1}{2}r^2\theta$ " If Pythagoras used may see area of triangle as $\frac{1}{2}r\sqrt{r^2+r^2\tan^2\theta} \text{ or } \frac{1}{2}r\left(\frac{r}{\cos\theta}\right)\sin\theta$
		3	

	Answer	Mark	Partial Marks
(ii)	$\tan\theta = \frac{AT}{3} \rightarrow AT = 7.716$	M1	Correct use of trigonometry and radians in rt angle triangle
	Arc length = $r\theta$ = 3.6	B1	Accept 3×1.2
	OT by Pythagoras or $\cos 1.2 = \frac{3}{OT}$ (= 8.279)	M1	Correct method for OT
	Perimeter = AT + arc + OT - radius = 16.6	A1	CAO, www
		4	

$156.\ 9709_s18_ms_12\ Q:\ 6$

	Answer	Mark	Partial Marks
(i)	$AT \text{ or } BT = r \tan \theta \text{ or } OT = \frac{r}{\cos \theta}$	B1	May be seen on diagram.
	$\frac{1}{\sqrt{2}}r^2 2\theta$, & $\frac{1}{2} \times r \times (r \tan \theta \text{ or } AT)$ or $\frac{1}{2} \times r \times (\frac{r}{\cos \theta} \text{ or } OT) \sin \theta$	M1	Both formulae, $(\frac{1}{2}r^2\theta, \frac{1}{2}bh \text{ or } \frac{1}{2}absin\theta)$, seen with 2θ used when needed.
	$1/2r^2 2\theta = 2 \times 1/2 \times r \times r \tan \theta - 1/2r^2 2\theta \text{ oe } \rightarrow 2\theta = \tan \theta \text{ AG}$	A1	Fully correct working from a correct statement. Note: $\frac{1}{2}r^22\theta = \frac{1}{2}r^2\tan\theta$ is a valid statement.
		3	

	Answer	Mark	Partial Marks
(ii)	θ = 1.2 or sector area = 76.8	В1	
	Area of kite = 165 awrt	В1	
	164.6 – 76.8 = 87.8 awrt	B1	awrt 87.8 with little or no working can be awarded 3/3. SC Final answers that round to 88 with little or no working can be awarded 2/3.
		3	

157. 9709_s18_ms_13 Q: 5

Answer		Mark	Partial Marks
Angle $AOC = \frac{6}{5}$ or 1.2		M1	Allow 68.8°. Allow $\frac{5}{6}$
AB = $5 \times \tan(their 1.2)$ OR by e.g. Sine Rule	Expect 12.86	DM1	$OR OB = \frac{5}{\cos their 1.2} \cdot Expect 13.80$
Area $\triangle OAB = \frac{1}{2} \times 5 \times their 12.86$	Expect 32.15	DM1	OR $\frac{1}{2} \times 5 \times their OB \times sin their 1.2$
Area sector $\frac{1}{2} \times 5^2 \times their 1.2$	Expect 15	DM1	All DM marks are dependent on the first M1
Shaded region = $32.15 - 15 = 17.2$		A1	Allow degrees used appropriately throughout. 17.25 scores A0
		5	

158. 9709_w18_ms_11 Q: 9

Answer	Mark	Partial Marks
Angle $OAB = \pi / 2 - \pi / 5 = 3\pi / 10$ soi	B1	Allow 54° or 0.9425 rads
Sector $CAB = \frac{1}{2} \times \left(their \frac{3\pi}{10} \right) \times 5^2$	M1	Expect 11.78
$OA = \frac{5}{\sin\frac{\pi}{5}} = 8.507$	M1A1	May be implied by $OC = 3.507$
Sector $COD = \frac{1}{2} \times (their 3.507)^2 \times \frac{\pi}{5}$	M1	Expect 3.86
$\Delta OAB = \frac{1}{2} \times 5 \times (their 8.507) \sin \frac{3\pi}{10}$	M1	Or $\frac{1}{2} \times 5 \times \frac{5}{\tan \frac{\pi}{5}}$ or $2.5 \times \sqrt{(their 8.507)^2 - 25}$
= 17.20 or 17.21	A1	
Shaded area 17.20(or17.21) -11.78 - 3.86 = 1.56 or 1.57	A1	
	8	

159. 9709_w18_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	$A\hat{B}$ C using cosine rule giving $\cos^{-1}(\frac{-1}{8})$ or $2\sin^{-1}(\sqrt[3]{4})$ or $2\cos^{-1}(\frac{\sqrt{7}}{2})$	M1	Correct method for $A \hat{B} C$, expect 1.696° awrt
	or $B \hat{A} C = \cos^{-1}(34)$ or $B \hat{A} C = \sin^{-1} \frac{\sqrt{7}}{4}$ or $B \hat{A} C = \tan^{-1} \frac{\sqrt{7}}{3}$		Or for $B \hat{A} C$, expect 0.723^{c} awrt
	$C\hat{B}Y = \pi - A\hat{B}C \text{ or } 2 \times C\hat{A}B$	M1	For attempt at $C\hat{B}Y = \pi - A\hat{B}C$ or $C\hat{B}Y = 2 \times C\hat{A}B$
	OR		
	Find CY from Δ ACY using Pythagoras or similar Δ s	M1	Expect 4√7
	$C\hat{B} Y = \cos^{-1}\left(\frac{8^2 + 8^2 - (their CY)^2}{2 \times 8 \times 8}\right)$	M1	Correct use of cosine rule
	$C\hat{B} Y = 1.445^{\circ} AG$	A1	Numerical values for angles in radians, if given, need to be correct to 3 decimal places. Method marks can be awarded for working in degrees. Need 82.8° awrt converted to radians for A1. Identification of angles must be consistent for A1.
		3	
(ii)	Arc $CY = 8 \times 1.445$	B1	Use of $s=8\theta$ for arc CY, Expect 11.56
	$B\hat{A}C = \frac{1}{2}(\pi - A\hat{B}C) \text{ or } \cos^{-1}(\frac{3}{4})$	*M1	For a valid attempt at $B \hat{A} C$, may be from (i). Expect 0.7227°
	$Arc XC = 12 \times (their B \hat{A} C)$	DM1	Expect 8.673
	Perimeter = 11.56 + 8.673 + 4 = 24.2 cm awrt www	A1	Omission of '+4' only penalised here.
		4	

160. 9709_w18_ms_13 Q: 3

	Answer	Mark	Partial Marks
(i)	0.8 oe	B1	
		1	
(ii)	$BD = 5 \sin t heir 0.8$	М1	Expect 3.58(7). Methods using degrees are acceptable
	$DC = 5 - 5\cos their 0.8$	M1	Expect 1.51(6)
	Sector = $\frac{1}{2} \times 5^2 \times their \cdot 0.8$ OR Seg = $\frac{1}{2} \times 5^2 \times [their \cdot 0.8 - sintheir \cdot 0.8]$	M1	Expect 10 for sector. Expect 1.03(3) for segment
	Trap = $\frac{1}{2}(5 + theirDC) \times theirBD$ oe OR $\triangle BDC = \frac{1}{2}theirBD \times theirCD$	M1	OR (for last 2 marks) if X is on AB and XC is parallel to BD:
	Shaded area = 11.69 - 10 OR 2.71(9) - 1.03(3) = 1.69 cao	A1	$BDCX$ -(sector – ΔAXC) = 5.43(8) – [10 – 6.24(9)] = 1.69 cao M1A1
		5	

161. 9709_m17_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$ABC = \pi / 2 - \pi / 7 = 5\pi / 14$. $CBD = \pi - 5\pi / 14 = 9\pi / 14$	B1	AG Or other valid exact method.
	Total:	1	
(ii)	$\sin \frac{\pi}{7} = \frac{\frac{1}{2}BC}{8} \text{ or } \frac{BC}{\sin \frac{2\pi}{7}} = \frac{8}{\sin \frac{5\pi}{14}} \text{ or}$ $BC^2 = 8^2 + 8^2 - 2(8)(8)\cos \frac{2\pi}{7}$	M1	
	BC = 6.94(2)	A1	
	$arc CD = their 6.94 \times 9\pi / 14$	M1	Expect 14.02(0)
	$arc CB = 8 \times 2\pi / 7$	M1	Expect 7.18(1)
	perimeter = 6.94 + 14.02 + 7.18 = 28.1	A1	
	Total:	5	

162. 9709_s17_ms_11 Q: 8

	Answer	Mark	Partial Marks
(i)	Letting M be midpoint of AB		
	$OM = 8 \text{ (Pythagoras)} \rightarrow XM = 2$	B1	(could find √40 and use sin ⁻¹ or cos ⁻¹)
	$\tan AXM = \frac{6}{2} AXB = 2\tan^{-1} 3 = 2.498$	M1 A1	AG Needs × 2 and correct trig for M1
	(Alternative 1: $\sin AOM = \frac{6}{10}$, $AOM = 0.6435$, $AXB = \pi - 0.6435$)		(Alternative 1: Use of isosceles triangles, B1 for AOM, M1,A1 for completion)
			(Alternative 2: Use of circle theorem, B1 for AOB, M1 , A1 for completion)
	Total:	3	
(ii)	$AX = \sqrt{(6^2 + 2^2)} = \sqrt{40}$	B1	CAO, could be gained in part (i) or part (iii)
	$Arc AYB = r\theta = \sqrt{40} \times 2.498$	M1	Allow for incorrect $\sqrt{40}$ (not $r = 6 or 12 or 10$)
	Perimeter = 12 + arc = 27.8 cm	A1	
	Total:	3	
(iii)	area of sector $AXBY = \frac{1}{2} \times (\sqrt{40})^2 \times 2.498$	M1	Use of $\frac{1}{2}r^2\theta$ with their r , (not $r = 6 \text{ or } r = 10$)
	Area of triangle $AXB = \frac{1}{2} \times 12 \times 2$, Subtract these $\rightarrow 38.0 \text{ cm}^2$	M1 A1	Use of $\frac{1}{2}bh$ and subtraction. Could gain M1 with $r = 10$.
	Total:	3	

163. 9709_s17_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$(AB) = 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos 2\theta} \text{ or } \frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	В1	Allow unsimplified throughout eg r + r, $\frac{2\theta}{2}$ etc
	$(\operatorname{Arc} AB) = 2r\theta$	B1	
	$(P =) 2r + 2r\theta + 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos 2\theta} \text{ or } \frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	B1	
	Total:	3	

	Answer	Mark	Partial Marks
(ii)	Area sector $AOB = (\frac{1}{2}r^2 2\theta) \frac{25\pi}{6} \text{ or } 13.1$	В1	Use of segment formula gives 2.26 B1B1
	Area triangle $AOB = (\frac{1}{2} \times 2r\sin\theta \times r\cos\theta \text{ or } \frac{1}{2} \times r^2 \sin 2\theta)$ $\frac{25\sqrt{3}}{4} \text{ or } 10.8$	В1	
	Area rectangle $ABCD = (r \times 2r\sin\theta) 25$	В1	
	(Area =) Either $25 - (25\pi/6 - 25\sqrt{3}/4)$ or 22.7	B1	Correct final answer gets B4.
	Total:	4	

164. 9709_s17_ms_13 Q: 7

	Answer	Mark	Partial Marks
(i)	$\sin ABC = 8/10 \rightarrow ABC = 0.927(3)$	В1	Or $\cos = 6/10$ or $\tan = 8/6$. Accept 0.295π .
	Total:	1	
(ii)	$AB = 6$ (Pythagoras) $\rightarrow \Delta BCD = 8 \times 6 = 48.0$	M1A1	OR 8×10sin0.6435 or ½×10×10sin((2)×0.927)=48. 24or 40or80 gets M1A0
	Area sector $BCD = \frac{1}{2} \times 10^2 \times (2) \times their 0.9273$	*M1	Expect 92.7(3). 46.4 gets M1
	Area segment = 92.7(3) – 48	*A1	Expect 44.7(3). Might not appear until final calculation.
	Area semi-circle – segment = $\frac{1}{2} \times \pi \times 8^2 - their(92.7 - 48)$	DM1	Dep. on previous M1A1 OR $\pi \times 8^2 - (\frac{1}{2} \times \pi \times 8^2 + their 44.7)$.
	Shaded area = 55.8 – 56.0	A1	
	Total:	6	

165. 9709_w17_ms_11 Q: 5

	Answer	Mark	Partial Marks
(i)	$\cos A = 8/10 \rightarrow A = 0.6435$	B1	AG Allow other valid methods e.g. $\sin A = 6/10$
		1	
(ii)	EITHER: Area $\triangle ABC = \frac{1}{2} \times 16 \times 6$ or $\frac{1}{2} \times 10 \times 16 \sin 0.6435 = 48$	(M1A1	
	Area 1 sector ½×10 ² ×0.6435	M1	
	Shaded area = $2 \times their$ sector $-their \Delta ABC$	M1)	
	OR: $\Delta BDE = 12$, $\Delta BDC = 30$	(B1 B1	
	Sector = 32.18	М1	
	$2 \times \text{segment} + \Delta BDE$	M1)	
	=16.4	A1	
		5	

166. 9709_w17_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	Pythagoras $\rightarrow r = \sqrt{72}$ OE or $\cos 45 = \frac{6}{r} \rightarrow r = \frac{6}{\cos 45} = 6\sqrt{2}$	M1	Correct method leading to $r =$
	Arc $DC = \sqrt{72} \times \frac{1}{4}\pi = \frac{3\sqrt{2}}{2}\pi$, 2.12 π , 6.66	M1 A1	Use of $s=r\theta$ with their r (NOT 6) and $\frac{1}{4}\pi$
		3	
(ii)	Area of sector- <i>BDC</i> is $\frac{1}{2} \times 72 \times \frac{1}{4}\pi$ (= 9π or 28.274)	*M1	Use of $\frac{1}{2}r^2\theta$ with their r (NOT 6) and $\frac{1}{4}\pi$
	Area $Q = 9\pi - 18 (10.274)$	DM1	Subtracts their $\frac{1}{2} \times 6 \times 6$ from their $\frac{1}{2}r^2\theta$
	Area <i>P</i> is $(\frac{1}{4}\pi 6^2 - \text{area } Q) = 18$	M1	Uses $\{\frac{1}{4}\pi6^2$ – (their area Q using $\sqrt{72}$)
	Ratio is $\frac{18}{9\pi - 18} \left(\frac{18}{10.274} \right) \to 1.75$	A1	
		4	

167. 9709_w17_ms_13 Q: 7

	Answer		Mark	Partial Marks
(i)	$\sin^{-1}\left(\frac{3}{5}\right) = 0.6435$	AG	M1	OR $(PBC =)\cos^{-1}\left(\frac{3}{5}\right) = 0.9273 \Rightarrow (ABP =)\frac{\pi}{2} - 0.9273 = 0.6435$ Or other valid method. Check working and diagram for evidence of incorrect method
(ii)	Use (once) of sector area = $\frac{1}{2}r^2\theta$		M1	
	Area sector $BAP = \frac{1}{2} \times 5^2 \times 0.6435 = 8.04$		A1	
	Area sector $DAQ = \frac{1}{2} \times \frac{1}{2} \pi \times 3^2 = 7.07$, Allow $\frac{9\pi}{4}$		A1	
			3	

	Answer	Mark	Partial Marks
(iii)	EITHER: Region = sect + sect - (rect - Δ) or sect - [rect - (sect + Δ)]	(M1	<u>Use</u> of correct strategy
	(Area $\triangle BPC = 1 \frac{1}{2} \times 3 \times 4 = 6$ Seen	A1	
	8.04 + 7.07 - (15 - 6) = 6.11	A1)	
	OR1: Region = sector ADQ - (trap ABPD - sector ABP).	(M1	<u>Use</u> of correct strategy
	(Area trap <i>ABPD</i> =) $\frac{1}{2} (5+1) \times 3 = 9$ Seen	A1	
	7.07 - (9 - 8.04) = 7.07 - 0.96 = 6.11	A1)	
	OR2: Area segment AP = 2.5686 Area segment AQ = 0.5438 Region = segment AP + segment AQ + ΔAPQ .	(M1	<u>Use</u> of correct strategy
	(Area $\triangle APQ = $) $\frac{1}{2} \times 2 \times 3 = 3$ Seen	A1	
	2.57 + 0.54 + 3 = 6.11	A1)	
		3	

168. 9709_m16_ms_12 Q: 9

	Answer	Mark	Partial Marks
(a) (i)	$BAO = OBA = \frac{\pi}{2} - \alpha$		Allow use of 90° or 180°
	$AOB = \pi - \left(\frac{\pi}{2} - \alpha\right) - \left(\frac{\pi}{2} - \alpha\right) = 2\alpha AG$	M1A1 [2]	Or other valid reasoning
(ii)	$\frac{1}{2}r^2(2\alpha) - \frac{1}{2}r^2\sin 2\alpha \text{oe}$	B2,1,0 [2]	SCB1 for reversed subtraction
(b)	Use of $\alpha = \frac{\pi}{6}$, $r = 4$	B1B1	
	1 segment $S = \left(\frac{1}{2}\right)4^2 \left(\frac{\pi}{3}\right) - \left(\frac{1}{2}\right)4^2 \sin\frac{\pi}{3}$		
	$= \left(\frac{8\pi}{3} - 4\sqrt{3}\right)$	M1	Ft their (ii), α , r
	Area ABC $T = \left(\frac{1}{2}\right)4^2 \sin\frac{\pi}{3} \left(=4\sqrt{3}\right)$	B1	$OR AXB = \frac{T}{3} = 4 \tan \frac{\pi}{6} \text{ or}$
	$T - 3S = \left(\frac{1}{2}\right)4^2 \sin\frac{\pi}{3} - 3$		$\frac{1}{2}\left(\frac{4}{\sqrt{3}}\right)^2\sin\frac{2\pi}{3}\left(=\frac{4\sqrt{3}}{3}\right)$
	$\left[\left(\frac{1}{2} \right) 4^2 \left(\frac{\pi}{3} \right) - \left(\frac{1}{2} \right) 4^2 \sin \frac{\pi}{3} \right]$	M1	OR $3\left[\frac{T}{3} - S\right] = 3\left[\frac{4\sqrt{3}}{3} - \left(\frac{8\pi}{3} - 4\sqrt{3}\right)\right]$
	$16\sqrt{3} - 8\pi$ cao	A1 [6]	

169. 9709_s16_ms_11 Q: 7

	Answer	Mark	Partial Marks
(i)	$CD = r\cos\theta$, $BD = r - r\sin\theta$ oe Arc $CB = r(\frac{1}{2}\pi - \theta)$ oe	B1 B1 B1	allow degrees but not for last B1
	$\rightarrow P = r\cos\theta + r - r\sin\theta + r\left(\frac{1}{2}\pi - \theta\right) \text{ oe}$	B1 √ [4]	√ sum – assuming trig used
(ii)	Sector = $\frac{1}{2}$.5 ² .($\frac{1}{2}\pi$ - 0.6) (12.135) Triangle = $\frac{1}{2}$.5cos0.6.5sin0.6 (5.825)	M1 M1	Uses $\frac{1}{2}r^2\theta$ Uses $\frac{1}{2}bh$ with some use of trig.
	$\rightarrow \text{Area} = 6.31$ (or $\frac{1}{4}$ circle – triangle – sector)	A1 [3]	2

170. 9709_s16_ms_12 Q: 6

	Answer	Ма	ırk	Partial Marks
(i)	$PT = r \tan \alpha$	B1		
	$QT = OT - OQ = \frac{r}{\cos \alpha} - r$ or $\sqrt{r^2 + r^2 \tan^2 \alpha} - r$			
	or $\sqrt{r^2 + r^2 \tan^2 \alpha} - r$	B1		
	Perimeter = sum of the 3 parts including $r\alpha$	B1	[3]	
(ii)	Area of triangle = $\frac{1}{2} \times 10 \times 10 \tan \frac{\pi}{3}$	M1		Correct formula used, $50\sqrt{3},86.6$
	Area of sector = $\frac{1}{2} \times 10^2 \times \frac{1}{3}\pi$	M1		Correct formula used, $\frac{50\pi}{3}$, 52.36
	Shaded region has area 34 (2sf)	A1	[3]	

171. 9709_w16_ms_11 Q: 3

	Answer	Mark		Partial Marks
(i)	$2r\alpha + r\alpha + 2r = 4.4r$	M1		At least 3 of the 4 terms required
	lpha=0.8	A1		-
			[2]	
(ii)	$\frac{1}{2}(2r)^2 0.8 - \frac{1}{2}(r^2)0.8 = 30$ $(3/2)r^2 \times 0.8 = 30 \rightarrow r = 5$	M1A1√ A1		Ft through on their α
	(3/2)/ \(\delta\).0-30 \(\delta\) / 1-3	A	[3]	

172. 9709_w16_ms_12 Q: 6

	Answer	Mark		Partial Marks
(i)	$\frac{r}{10} = \sin 0.6 \text{ or } \frac{r}{10} = \cos 0.97$ or $BD = \sqrt{200 - 200 \cos 1.2} (=11.3)$	M1		Or other valid alternative.
	$r = 10 \times 0.5646, r = 10 \times \sin 0.6,$ $r = 10 \times \cos 0.971 \text{ or } r = \frac{1}{2}BD$ $\rightarrow r = 5.646$	AG A1	[2]	
(ii)	Major arc = $10(\theta)$ (= 50.832) $\theta = 2\pi - 1.2$ (= 5.083) or C = $2\pi \times 10$, Minor arc = 1.2×10 Semicircle = 5.646π (= 17.737) Major arc + semicircle = 68.6	M1 B1	[3]	$\theta = 2\pi - 1.2$ or $\pi - 1.2$ Implied by 5.1
(iii)	Area of major sector $= \frac{1}{2}10^{2}(\theta) \ (= 254.159)$ Area of triangle <i>OBD</i> $= \frac{1}{2}10^{2}\sin 1.2 \ (= 46.602)$ Area = semicircle + sector + triangle (= 50.1 + 254.2 + 46.6) = 351	M1 M1 A1	[3]	$\theta = 2\pi - 1.2$ or $\pi - 1.2$ Use of $\frac{1}{2}ab\sin C$ or other complete method

173. 9709_w16_ms_13 Q: 5

	Answer	Mark		Partial Marks
(i)	$\cos 0.9 = OE / 6$ or $= \sin \left(\frac{\pi}{2} - 0.9\right)$ oe $OE = 6\cos 0.9 = 3.73$ oe AG	M1 A1	[2]	Other methods possible
(ii)	Use of $(2\pi - 1.8)$ or equivalent method Area of large sector $= \frac{1}{2} \times 6^2 \times (2\pi - 1.8)$ oe Area of small sector $\frac{1}{2} \times 3.73^2 \times 1.8$ Total area = $80.7(0) + 12.5(2) = 93.2$	M1 M1 M1 A1	[4]	Expect 4.48 Or $\pi 6^2 - \frac{1}{2}6^2 1.8$. Expect 80.70 Expect 12.52 Other methods possible

174. 9709_s15_ms_11 Q: 5

	Answer	Mark	Partial Marks
(i)	$24 = r + r + r\theta$		(May not use θ)
	$\rightarrow \theta = \frac{24 - 2r}{r}$	M1	Attempt at $s = r\theta$ linked with 24 and r
	$A = \frac{1}{2} r^2 \theta = \frac{24r}{2} - r^2 = 12r - r^2$. aef, ag	M1A1 [3]	Uses A formula with θ as f(r). cao
(ii)	$(A =)36 - (r - 6)^2$	B1 B1 [2]	cao
(iii)	Greatest value of $A = 36$	B1√	Ft on (ii).
	$(r=6) \rightarrow \theta=2$	B1	cao, may use calculus or the
		[2]	discriminant on $12r - r^2$

175. 9709_s15_ms_12 Q: 5

	Answer	Mark	Partial Marks
(i)	$\frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}.$ Divides top and bottom by $\cos \theta$ $\rightarrow \frac{t-1}{t+1}$	B1 [1]	Answer given.
(ii)	$\frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} = \frac{1}{6} \tan \theta$ $\rightarrow \frac{t-1}{t+1} = \frac{t}{6}$ $\rightarrow t^2 - 5t + 6 = 0$ $\rightarrow t = 2 \text{ or } t = 3$ $\rightarrow \theta = 63.4^{\circ} \text{ or } 71.6^{\circ}$	B1 M1 A1 A1 [4]	Using the identity. Forms a 3 term quadratic with terms all on same side. co co

176. 9709_s15_ms_13 Q: 11

	Answer	Mark	Partial Marks
(i)	$OC = r \cos \alpha$ or $AC = r \sin \alpha$ or oe soi $(Area \ \Delta OAC =) \frac{1}{2} r^2 \sin \alpha \cos \alpha$	M1 A1	
	$\frac{1}{2}r^2 \sin \alpha \cos \alpha = \frac{1}{2} \times \frac{1}{2}r^2 \alpha \text{oe}$	M1	Or e.g. $\frac{1}{2}r^{2}\alpha - \frac{1}{2}r^{2}\cos\alpha\sin\alpha = \frac{1}{4}r^{2}\alpha$ $\frac{1}{2}r^{2}\alpha - \frac{1}{2}r^{2}\cos\alpha\sin\alpha = \frac{1}{2}r^{2}\cos\alpha\sin\alpha$
	$\sin \alpha \cos \alpha = \frac{1}{2}\alpha$	A1 [4]	AG
(ii)	Perimeter $\triangle OAC = r + r \sin \alpha + r \cos \alpha = 2.4(0)r$ Perim.	M1A1	Allow with r a number. 2.0164 gets M1A0
	$ACB = r\alpha + r\sin\alpha + r - r\cos\alpha = 2.18r \text{ or } 2.17r$	M1A1	Allow with <i>r</i> a number. 0.9644 gets M1A0 Allow 2.2 www.
	Ratio = $\frac{2.4(0)}{2.18 or 2.17} : 1 = 1.1 : 1$	A1 [5]	Use of $\cos = 0.6$, $\sin = 0.8$, $\alpha = 0.9$ is PA 1
(iii)	54.3° cao	B1 [1]	

177. 9709_w15_ms_11 Q: 7

	Answer	Mark	Partial Marks
(i)	$BC^2 = r^2 + r^2 = 2r^2 \to BC = r\sqrt{2}$	B1 [1]	AG
(ii)	Area sector $BCFD = \frac{1}{4}\pi(r\sqrt{2})^2$ soi	M1	Expect $\frac{1}{2}\pi r^2$
	Area $\triangle BCAD = \frac{1}{2}(2r)r$	M1	Expect r^2 (could be embedded)
	Area segment $CFDA = \frac{1}{2}\pi r^2 - r^2$.oe	A1	
	Area semi-circle $CADE = \frac{1}{2}\pi r^2$	B1	
	Shaded area $\frac{1}{2}\pi r^2 - \left(\frac{1}{2}\pi r^2 - r^2\right)$		
	or $\pi r^2 - \left(\frac{1}{2}\pi r^2 + \left(\frac{1}{2}\pi r^2 - r^2\right)\right)$	DM1	Depends on the area $\triangle BCD$
	$=r^2$	A1 [6]	

178. 9709_w15_ms_12 Q: 5

	Answer	Ma	ırk	Partial Marks
(i)	Length of $OB = \frac{6}{\cos 0.6} = 7.270$	M1	[1]	ag Any valid method
(ii)	$AB = 6 \tan 0.6 \text{ or } 4.1$ Arc length = $7.27 \times (\frac{1}{2}\pi - 0.6) = (7.06)$ Perimeter = $6 + 7.27 + 7.06 + 6 \tan 0.6 = 24.4$	B1 M1 A1	[3]	Sight of in (ii) Use of $s = r\theta$ with sector angle
(iii)	Area of $AOB = \frac{1}{2} \times 6 \times 7.27 \times \sin 0.6$ Area of $OBC = \frac{1}{2} \times 7.27^2 \times (\frac{1}{2}\pi - 0.6)$ $\rightarrow \text{ area} = 12.31 + 25.65 = 38.0$	M1 M1 A1	[3]	Use of any correct area method Use of $\frac{1}{2}r^2\theta$.

179. 9709_w15_ms_13 Q: 4

	Answer	Mark	Partial Marks
(i)	Sector $OCD = \frac{1}{2}(2r)^2\theta \ (=2r^2\theta)$	B1	$2r^2\theta$ seen somewhere
	Sector(s) $OAB/OEF = (2)\frac{1}{2}r^2(\pi - \theta)$	B1	Accept with/without factor (2) AG www
	Total = $r^2(\pi + \theta)$	B1 [3]	AG WWW
(ii)	Arc $CD = 2r\theta$ Arc(s) AB/EF $(2)r(\pi - \theta)$	B1 B1	Accept with/without factor (2)
	Straight edges = $4r$ Total $2\pi r + 4r$ (which is independent of θ)	B1 B1	Must be simplified
		[4]	

180. 9709_m22_ms_12 Q: 7

Question	Answer	Marks	Guidance
(a)	$\frac{(\sin\theta + 2\cos\theta)(\cos\theta + 2\sin\theta) - (\sin\theta - 2\cos\theta)(\cos\theta - 2\sin\theta)}{(\cos\theta - 2\sin\theta)(\cos\theta + 2\sin\theta)}$	*M1	Obtain an expression with a common denominator
	$\frac{5\sin\theta\cos\theta + 2\cos^2\theta + 2\sin^2\theta - \left(5\sin\theta\cos\theta - 2\sin^2\theta - 2\cos^2\theta\right)}{\cos^2\theta - 4\sin^2\theta}$ $= \frac{4\left(\cos^2\theta + \sin^2\theta\right)}{\cos^2\theta - 4\sin^2\theta}$	A1	
	$\frac{4}{\cos^2\theta - 4(1-\cos^2\theta)}$	DM1	Use $\cos^2 \theta + \sin^2 \theta = 1$ twice
	$\frac{4}{5\cos^2\theta - 4}$	A1	AG
		4	
(b)	$\frac{4}{5\cos^2\theta - 4} = 5 \text{leading to} 25\cos^2\theta = 24$ $\text{leading to} \cos\theta = \sqrt{\frac{24}{25}} \left[= (\pm)0.9798 \right]$	M1	Make $\cos \theta$ the subject
	$\theta = 11.5^{\circ} \text{ or } 168.5^{\circ}$	A1 A1 FT	FT on 180° – 1st solution
		3	

181. 9709_m21_ms_12 Q: 3

Question	Answer	Marks	Guidance
	$\tan\theta + 2\sin\theta = 3\tan\theta - 6\sin\theta$ leading to $2\tan\theta - 8\sin\theta$ [= 0]	M1	OE
	$2\sin\theta - 8\sin\theta\cos\theta \ (=0)$ leading to $[2]\sin\theta (1-4\cos\theta) \ [=0]$	M1	
	$\cos \theta = \frac{1}{4}$	A1	Ignore $\sin \theta = 0$
	$\theta = 75.5^{\circ}$ only	A1	
		4	

182. 9709_s21_ms_11 Q: 4

Question	Answer	Marks	Guidance
	a = 2	B1	
	$b = \frac{\pi}{4}$	B1	or $\frac{2\pi}{8}$
	c = 1	B1	
		3	

183. 9709_s21_ms_11 Q: 7

Question	Answer	Marks	Guidance
(a)	Reach $\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta}$ or $\frac{1-\sin^2\theta}{1-\sin^2\theta} - \frac{\sin^2\theta}{\cos^2\theta}$ or $\frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta} - 2\tan^2\theta$ or $\sec^2\theta - \frac{2\sin^2\theta}{\cos^2\theta}$ or $2-\sec^2\theta$ or $\frac{\cos 2\theta}{\cos^2\theta}$	M1	May start with $1-\tan^2\theta$
	$1-\tan^2\theta$	A1	AG, must show sufficient stages
		2	
(b)	$1 - \tan^2 \theta = 2\tan^4 \theta \Rightarrow 2\tan^4 \theta + \tan^2 \theta - 1 = 0$	M1	Forming a 3-term quadratic in $\tan^2 \theta$ or e.g. u
	$\tan^2 \theta = 0.5 \text{ or } -1 \text{ leading to } \tan \theta = [\pm] \sqrt{0.5}$	M1	
	θ = 35.3° and 144.7° (AWRT)	A1	Both correct. Radians 0.615, 2.53 scores A0.
		3	

$184.\ 9709_s21_ms_12\ Q:\ 10$

Question	Answer	Marks	Guidance
(a)	$\frac{1 + \sin x}{1 - \sin x} - \frac{1 - \sin x}{1 + \sin x} = \frac{\left(1 + \sin x\right)^2 - \left(1 - \sin x\right)^2}{\left(1 - \sin x\right)\left(1 + \sin x\right)}$	*M1	For using a common denominator of $(1-\sin x)(1+\sin x)$ and reasonable attempt at the numerator(s).
	$\equiv \frac{1 + 2\sin x + \sin^2 x - \left(1 - 2\sin x + \sin^2 x\right)}{\left(1 - \sin x\right)\left(1 + \sin x\right)}$	DM1	For multiplying out the numerators correctly. Condone sign errors for this mark.
	$\equiv \frac{4\sin x}{1 - \sin^2 x} \equiv \frac{4\sin x}{\cos^2 x}$	DM1	For simplifying denominator to $\cos^2 x$.
	$\equiv \frac{4\sin x}{\cos x \cos x} \equiv \frac{4\tan x}{\cos x}$	A1	AG. Do not award A1 if undefined notation such as s, c, t or missing x's used throughout or brackets are missing.
	Alternative method for Question 10(a)		
	$\frac{4\tan x}{\cos x} = \frac{4\sin x}{\cos^2 x} = \frac{4\sin x}{1-\sin^2 x}$	*M1	Using $\tan x = \frac{\sin x}{\cos x}$ and $\cos^2 x = 1 - \sin^2 x$
	$\equiv \frac{-2}{1+\sin x} + \frac{2}{1-\sin x}$	DM1	Separating into partial fractions.
	$\equiv 1 + \frac{-2}{1 + \sin x} + \frac{2}{1 - \sin x} - 1$	DM1	Use of 1-1 or similar
	$\equiv -\frac{1-\sin x}{1+\sin x} + \frac{1+\sin x}{1-\sin x}$	A1	
		4	

Question	Answer	Marks	Guidance
(b)	$\cos x = \frac{1}{2}$	*B1	OE. WWW.
	$x = \frac{\pi}{3}$	DB1	Or AWRT 1.05
	$x = 0 \text{ from } \tan x = 0 \text{ or } \sin x = 0$	B1	WWW. Condone extra solutions outside the domain 0 to $\frac{\pi}{2}$ but B0 if any inside.
		3	

$185.\ 9709_s21_ms_13\ Q:\ 4$

Question	Answer	Marks	Guidance
(a)	$\frac{\tan x + \sin x}{\tan x - \sin x} [=k] \text{ leading to } \frac{\sin x + \sin x \cos x}{\sin x - \sin x \cos x} [=k]$ or $\frac{\frac{1}{\cos x} + 1}{\frac{1}{\cos x} - 1} [=k] \text{ or } \frac{\tan x + \tan x \cos x}{\tan x - \tan x \cos x} [=k]$	M1	Multiply numerator and denominator by $\cos x$, or divide numerator and denominator by $\tan x$ or $\sin x$
	$\frac{\sin x(1+\cos x)}{\sin x(1-\cos x)} \text{ or } \frac{\frac{1}{\cos x}+1}{\frac{1}{\cos x}-1} \cdot \frac{\cos x}{\cos x} \text{ or } \frac{\tan x(1+\cos x)}{\tan x(1-\cos x)} \text{ leading to } \frac{1+\cos x}{1-\cos x} [=k]$	A1	AG, WWW
		2	
(b)	$k - k\cos x = 1 + \cos x$ leading to $k - 1 = k\cos x + \cos x$	M1	Gather like terms on LHS and RHS
	$k-1=(k+1)\cos x$ leading to $\cos x = \frac{k-1}{k+1}$	A1	WWW, OE
		2	
(c)	Obtaining $\cos x$ from their (b) or (a)	M1	Expect $\cos x = \frac{3}{5}$
	± 0.927 (only solutions in the given range)	A1	AWRT. Accept ±0.295π
		2	

186. $9709_{w21}_{ms_11} Q: 3$

Question	Answer	Marks	Guidance
	$3\cos\theta(2\tan\theta-1)+2(2\tan\theta-1)[=0]$	M1	Or similar partial factorisation; condone sign errors.
	$(2\tan\theta - 1)(3\cos\theta + 2) [= 0]$	M1	OE. At least 2 out of 4 products correct.
	[leading to $\tan \theta = \frac{1}{2}$, $\cos \theta = -\frac{2}{3}$]		
	26.6°, 131.8°	A1 A1	WWW. Must be 1 d.p. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2\tan\theta - 1$ leading to 131.8° or division by $3\cos\theta + 2$ or similar leading to 26.6° .
	Alternative method for question 3		
	$6\cos\theta \left(\frac{\sin\theta}{\cos\theta}\right) - 3\cos\theta + 4\left(\frac{\sin\theta}{\cos\theta}\right) - 2 = 0$	M1	Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and reaching a partial factorisation; condone sign errors.
	$6\cos\theta\sin\theta - 3\cos^2\theta + 4\sin\theta - 2\cos\theta = 0$ $2\sin\theta(3\cos\theta + 2) - \cos\theta(3\cos\theta + 2) = 0$		Contone sign cirois.
	$(2\sin\theta - \cos\theta)(3\cos\theta + 2) [= 0]$ [leading to $\tan\theta = \frac{1}{2}$, $\cos\theta = -\frac{2}{3}$]	M1	At least 2 out of 4 products correct.
	26.6°, 131.8°	A1 A1	WWW. Must be 1 d.p. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2\tan\theta - 1$ leading to 131.8° or division by $3\cos\theta + 2$ or similar leading to 26.6° .
		4	

187. $9709_{w21}_{ms_11} Q: 5$

Question	Answer	Marks	Guidance
(a)	<i>a</i> = 5	B1	
	b=2	B1	
	c = 3	B1	
		3	

Question	Answer	Marks	Guidance
(b)(i)	3	В1	
		1	
(b)(ii)	2	B1	
		1	

188. 9709_w21_ms_12 Q: 1

Question	Answer	Marks	Guidance
	$2\cos^2\theta - 7\cos\theta + 3[=0]$	M1	Forming a 3-term quadratic expression with all terms on the same side or correctly set up prior to completing the square. Allow \pm sign errors.
	$(2\cos\theta - 1)(\cos\theta - 3) = 0$	DM1	Solving <i>their</i> 3-term quadratic using factorisation, formula or completing the square.
	$[\cos \theta = \frac{1}{2} \text{ or } \cos \theta = 3 \text{ leading to}] \theta = -60^{\circ} \text{ or } \theta = 60^{\circ}$	A1	
	$\theta = -60^{\circ}$ and $\theta = 60^{\circ}$	A1 FT	FT for \pm same answer between 0° and 90° or 0 and $\frac{\pi}{2}$.
			$\pm \frac{\pi}{3}$ or ± 1.05 AWRT scores maximum M1M1A0A1FT. Special case: If M1 DM0 scored then SC B1 for $\theta = -60^{\circ}$ or $\theta = 60^{\circ}$, and SC B1 FT can be awarded for $\pm (4b_{\rm cir}, 60^{\circ})$
		4	$\pm (their 60^{\circ})$.

189. $9709_{w21}_{s}_{13} = 13 Q: 7$

Question	Answer	Marks	Guidance
(a)	$\tan x + \cos x = k(\tan x - \cos x)$ leading to $\sin x + \cos^2 x = k(\sin x - \cos^2 x)$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and clear fraction.
	$\sin x + 1 - \sin^2 x = k \sin x - k + k \sin^2 x$	*M1	Use $\cos^2 x = 1 - \sin^2 x$ twice to obtain an equation in sine.
	$k\sin^2 x + \sin^2 x + k\sin x - \sin x - k - 1 = 0$	DM1	Gather like terms on one side of the equation.
	$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0$	A1	AG. Factorise to obtain answer.
		4	
(b)	$5\sin^2 x + 3\sin x - 5 = 0$	B1	
	$\sin x = \frac{-3 \pm \sqrt{9 + 100}}{10}$	M1	Use formula or complete the square.
	$x = 48.1^{\circ}, 131.9^{\circ}$	A1 A1 FT	AWRT. Maximum A1 if extra solutions in range. FT for 180 – <i>their</i> answer or 540 – <i>their</i> answer if sinx is negative If M0 given and correct answers only SCB1B1 available. If answers in radians; 0.839, 2.30 can score SCB1 for both.
		4	

190. 9709_m20_ms_12 Q: 5

Answer	Mark	Partial Marks
$2\tan\theta - 6\sin\theta + 2 = \tan\theta + 3\sin\theta + 2 \rightarrow \tan\theta - 9\sin\theta \ (=0)$	M1	Multiply by denominator and simplify
$\sin\theta - 9\sin\theta\cos\theta \ (=0)$	M1	Multiply by $\cos \theta$
$\sin \theta (1 - 9\cos \theta) (= 0) \rightarrow \sin \theta = 0, \cos \theta = \frac{1}{9}$	M1	Factorise and attempt to solve at least one of the factors = 0
$\theta = 0$ or 83.6° (only answers in the given range)	A1A1	
	5	

191. 9709_m20_ms_12 Q: 11

	Answer	Mark	Partial Marks
(a)	$(\tan x - 2)(3\tan x + 1) (= 0)$. or formula or completing square	M1	Allow reversal of signs in the factors. Must see a method
	$\tan x = 2 \text{ or } -\frac{1}{3}$	A1	
	$x = 63.4^{\circ}$ (only value in range) or 161.6° (only value in range)	B1FT B1FT	
		4	
(b)	Apply $b^2 - 4ac < 0$	M1	SOI. Expect $25 - 4(3)(k) < 0$, tan x must not be in coefficients
	$k > \frac{25}{12}$	A1	Allow $b^2 - 4ac = 0$ leading to correct $k > \frac{25}{12}$ for M1A1
		2	
(c)	k = 0	M1	SOI
	$\tan x = 0 \text{ or } \frac{5}{3}$	A1	
	$x = 0^{\circ} \text{ or } 180^{\circ} \text{ or } 59.0^{\circ}$	A1	All three required
		3	

$192.\ 9709_s20_ms_11\ Q:\ 4$

(a)	$-1 \leqslant f(x) \leqslant 2$	B1 B1
		2
(b)	k=1	В1
	Translation by 1 unit upwards parallel to the y-axis	B1
		2
(c)	$y = -\frac{3}{2}\cos 2x - \frac{1}{2}$	B1
	2 2 2 2	
		1

193. 9709_s20_ms_11 Q: 7

(a)	$\frac{\left(1+\sin\theta\right)^2+\cos^2\theta}{\cos\theta\left(1+\sin\theta\right)}$	M1
	Use of $\sin^2 \theta + \cos^2 \theta = 1 \rightarrow \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} \rightarrow \frac{2}{\cos \theta}$.	M1A1
		3
(b)	$\frac{2}{\cos\theta} = \frac{3}{\sin\theta} \to \tan\theta = 1.5$	M1
	$\theta = 0.983$ or 4.12 (FT on second value for 1st value + π)	A1 A1FT
		3

194. 9709_s20_ms_12 Q: 2

(a)	$3\cos\theta = 8\tan\theta \to 3\cos\theta = \frac{8\sin\theta}{\cos\theta}$	M1
	$3(1-\sin^2\theta)=8\sin\theta$	M1
	$3\sin^2\theta + 8\sin\theta - 3 = 0$	A1
		3
(b)	$(3\sin\theta - 1)(\sin\theta + 3) = 0 \rightarrow \sin\theta = \frac{1}{2}$	M1
	θ = 19.5°	A1
		2

$195.\ 9709_s20_ms_12\ Q{:}\ 7$

(a)	$BC^{2} = r^{2} + 4r^{2} - 2r \cdot 2r \times \cos\left(\frac{\pi}{6}\right) = 5r^{2} - 2r^{2}\sqrt{3}$	M1
	$BC = r\sqrt{\left(5 - 2\sqrt{3}\right)}$	A1
		2
(b)	Perimeter = $\frac{2\pi r}{6} + r + r\sqrt{(5 - 2\sqrt{3})}$	M1 A1
		2
(c)	Area = sector - triangle	
	Sector area = $\frac{1}{2}4r^2\frac{\pi}{6}$	M1
	Triangle area = $\frac{1}{2} r$. $2r \sin \frac{\pi}{6}$	M1
	Shaded area = $r^2 \left(\frac{\pi}{3} - \frac{1}{2} \right)$	A1
		3

196. 9709_s20_ms_12 Q: 9

(a)	f(x) from -1 to 5	B1B1
	g(x) from -10 to 2 (FT from part (a))	B1FT
		3
(b)		B2, 1
		2
(c)	Reflect in x-axis	B1
	Stretch by factor 2 in the y direction	B1
	Translation by $-\pi$ in the x direction OR translation by $\begin{pmatrix} 0 \\ -\pi \end{pmatrix}$.	B1
		3

197. 9709_s20_ms_13 Q: 7

(a)	$\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{\tan \theta (1 - \cos \theta) + \tan \theta (1 + \cos \theta)}{1 - \cos^2 \theta}$	M1
	$=\frac{2\tan\theta}{\sin^2\theta}$	M1
	$=\frac{2\sin\theta}{\cos\theta\sin^2\theta}$	M1
	$=\frac{2}{\sin\theta\cos\theta} \mathbf{AG}$	A1
		4
(b)	$\frac{2}{\sin\theta\cos\theta} = \frac{6\cos\theta}{\sin\theta}$	M1
	$\cos^2\theta = \frac{1}{3} \to \cos\theta = (\pm)0.5774$	A1
	54.7°, 125.3° (FT for 180° – 1st solution)	A1 A1FT
		4

198. 9709_w20_ms_11 Q: 4

 Answer	Mark	Partial Marks
$(y=)[3]+[2]\left[\cos\frac{1}{2}\theta\right]$	B1 B1 B1	
	3	

199. 9709_w20_ms_11 Q: 7

	Answer	Mark	Partial Marks
(a)	$\left[\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} = \right] \frac{\sin \theta (1 + \sin \theta) - \sin \theta (1 - \sin \theta)}{1 - \sin^2 \theta}$	*M1	Put over a single common denominator
	$\frac{2\sin^2\theta}{\cos^2\theta}$	DM1	Replace $1-\sin^2\theta$ by $\cos^2\theta$ and simplify numerator
	$2 tan^2 \theta$	A1	AG
		3	
(b)	$2\tan^2\theta = 8 \rightarrow \tan\theta = (\pm)2$	B1	SOI
	(θ =) 63.4°, 116.6°	B1 B1 FT	FT on 180 – 1st solution (with justification)
		3	

 $200.\ 9709_w20_ms_12\ Q:\ 6$

	Answer	Mark	Partial Marks
(a)	$\left(\frac{1}{\cos x} - \frac{\sin x}{\cos x}\right) \left(\frac{1}{\sin x} + 1\right)$	B1	Uses "tanx = $\sin x \div \cos x$ " throughout
	$\left[\left(\frac{1 - \sin x}{\cos x} \right) \left(\frac{1 + \sin x}{\sin x} \right) \text{ or } \left(\frac{1 - \sin^2 x}{\cos x \sin x} \right) \right]$	M1	Correct algebra leading to two or four terms
	$\left(\frac{\cos^2 x}{\cos x \sin x}\right)$	A1	OE. A correct expression which can be cancelled directly to $\frac{\cos x}{\sin x}$ e.g. $\frac{\cos x \left(1-\sin^2 x\right)}{\sin x \left(1-\sin^2 x\right)}$
	$\left(\frac{\cos^2 x}{\cos x \sin x}\right) = \left(\frac{\cos x}{\sin x}\right) = \frac{1}{\tan x}$	A1	AG. Must show cancelling. If <i>x</i> is missing throughout their working withhold this mark.
		4	
(b)	Uses (a) $\rightarrow \frac{1}{\tan x} = 2\tan^2 x \tan^3 x = \frac{1}{2}$	M1	Reducing to $\tan^3 x = k$.
	$(x =) 38.4^{\circ}$	A1	AWRT. Ignore extra answers outside the range 0 to 180° but A0 if within.
		2	

201. 9709_w20_ms_12 Q: 11

	Answer	Mark	Partial Marks
(a)	5, -1	B1 B1	Sight of each value
		2	
(b)	6	*B1	Needs to be a curve, not straight lines. One complete cycle starting and finishing at <i>their</i> largest value.
	0 n2 n	DB1	One complete cycle starting and finishing at $y = 5$ and going down to $y = -1$ and starting to level off at least one end.
		2	
(c)(i)	0 solution	B1	
		1	
(c)(ii)	2 solutions	B1	
		1	
(c)(iii)	1 solution	B1	
		1	
(d)	Stretch by (scale factor) $\frac{1}{2}$, parallel to x-axis or in x direction (or horizontally)	B1	
	Translation of $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$	B1	Accept translation/shift Accept translation 4 units in positive y-direction.
		2	
(e)	Translation of $\begin{pmatrix} -\frac{\pi}{2} \\ 0 \end{pmatrix}$	B1	Accept translation/shift Accept translation $-\frac{\pi}{2}$ units in x-direction.
	Stretch by (scale factor) 2 parallel to <i>y</i> -axis (or vertically).	B1	
		2	
	1		1

202. 9709_w20_ms_13 Q: 3

Answer	Mark	Partial Marks
$3\tan^4\theta + \tan^2\theta - 2 \ (=0)$	M1	SOI 3-term quartic, condone sign errors for this mark only
$(3\tan^2\theta - 2)(\tan^2\theta + 1) (= 0)$	M1	Attempt to factorise or solve 3-term quadratic in $\tan^2 \theta$.
$\tan \theta = (\pm)\sqrt{\frac{2}{3}} \text{ or } (\pm)0.816 \text{ or } (\pm)0.817$	A1	SOI Implied by final answer = 39.2° after 1st M1 scored
39.2°, 140.8°	A1 A1 FT	FT for 2nd solution =180° – 1st solution
	5	

203. 9709_m19_ms_12 Q: 7

	Answer	Mark	Partial Marks
(a)	$3(1-\cos^2 2\theta) + 8\cos 2\theta = 0 \rightarrow 3\cos^2 2\theta - 8\cos 2\theta - 3 (= 0)$	M1	Use $s^2 = 1 - c^2$ and simplify to 3-term quadratic in 2θ
	$\cos 2\theta = -\frac{1}{3} \text{ soi}$	A1	Ignore other solution
	$2\theta = 109.(47)^{\circ} \text{ or } 250.(53)^{\circ}$	A1	One solution is sufficient, may be implied by either of the next solns
	$\theta = 54.7^{\circ} \text{ or } 125.3^{\circ}$	A1A1ft	Ft for 180° – other solution Use of double angles leads to $3c^4 - 7c^2 + 2 = 0 \Rightarrow c = \pm 1/\sqrt{3}$ for M1A1A1 then A1A1 for each angle Similar marking if $3\sin^2 2\theta = -8\cos 2\theta$ is squared leading to $9\sin^4 2\theta + 64\sin^2 2\theta - 64 = 0$
		5	
(b)	$\sqrt{3} = a + \tan 0 \rightarrow a = \sqrt{3}$	B1	b = 8 or -4 (or -10, 14 etc) scores M1A0
	$0 = \tan(-b\pi/6) + \sqrt{3}$ taken as far as \tan^{-1} , angle units consistent	M1	A0 if $\tan^{-1}(-\sqrt{3})$ is not exact; (b=2 no working scores B2)
	b=2	A1	
		3	

204. 9709_s19_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	LHS = $\left(\frac{1}{c} - \frac{s}{c}\right)^2 = \frac{(1-s)(1-s)}{c^2} = \frac{(1-s)(1-s)}{1-s^2}$	В1	Expresses tan in terms of sin and cos
		B1	correctly 1- s² as the denominator
	$= \frac{(1-s)(1-s)}{(1-s)(1+s)}$	M1	Factors and correct cancelling www
	$\frac{1-\sin x}{1+\sin x}$ AG	A1	
		4	
(ii)	Uses part (i) to obtain $\frac{1-\sin 2x}{1+\sin 2x} = \frac{1}{3} \rightarrow \sin 2x = \frac{1}{2}$	M1	Realises use of $2x$ and makes $\sin 2x$ the subject
	$x = \frac{\pi}{12}$	A1	Allow decimal (0.262)
	$(or) x = \frac{5\pi}{12}$	A1	FT for $\frac{1}{2}\pi$ – 1st answer. Allow decimal (1.31) $\frac{\pi}{12} \text{ and } \frac{5\pi}{12} \text{ only, and no others in range.}$ SC $\sin x = \frac{1}{2} \rightarrow \frac{\pi}{6} = \frac{5\pi}{6} \text{ B1}$
		3	

205. 9709_s19_ms_11 Q: 9

	Answer	Mark	Partial Marks
(i)	$-1 \le f(x) \le 5$ or $[-1, 5]$ (may use y or f instead of $f(x)$)	B1 B1	$-1 < f(x) \le 5 \text{ or } -1 \le x \le 5 \text{ or } (-1,5) \text{ or } [5,-1] \text{ B1 only}$
		2	
(ii)	5 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	*B1	Start and end at –ve y, symmetrical, centre +ve.
	$g(x) = 2 - 3\cos x \text{ for } 0 \leqslant x \leqslant p$	DB1	Shape all ok. Curves not lines. One cycle $[0,2\pi]$ Flattens at each end.
		2	
(iii)	(greatest value of p =) π	B1	
		1	
(iv)	$x = 2 - 3\cos x \rightarrow \cos x = \frac{1}{2}(2 - x)$	M1	Attempt at cosx the subject. Use of cos ⁻¹
	$g^{-1}(x) = \cos^{-1}\frac{2-x}{3}$ (may use 'y =')	A1	Must be a function of x,
		2	

206. 9709_s19_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$a^2 + 2ab + b^2, a^2 - 2ab + b^2$	B1	Correct expansions.
	$\sin^2 x + \cos^2 x = 1 \text{ used} \rightarrow (a+b)^2 + (a-b)^2 = 1$	M1	Appropriate use of $\sin^2 x + \cos^2 x = 1$ with $(a+b)^2$ and $(a-b)^2$
	$a^2 + b^2 = \frac{1}{2}$	A1	No evidence of ±2ab, scores 2/3
	Alternative method for question 4(i)		
	$2a = (s+c) & 2b = (s-c) \text{ or } a = \frac{1}{2}(s+c) & b = \frac{1}{2}(s-c)$	B1	
	$a^{2}+b^{2} = \frac{1}{4}(s+c)^{2} + \frac{1}{4}(s-c)^{2} = \frac{1}{2}(s^{2}+c^{2})$	M1	Appropriate use of $\sin^2 x + \cos^2 x = 1$
	$a^2 + b^2 = \frac{1}{2}$	A1	Method using only $(\sin x - b)^2$ and $(a - \cos x)^2$ scores 0/3.
		3	SC B1 for assuming θ is acute giving $a = \frac{1}{\sqrt{5}} + b$ or $2\sqrt{5} - b$
(ii)	$\tan x = \frac{\sin x}{\cos x} \to \frac{a+b}{a-b} = 2$	M1	Use of $\tan x = \frac{\sin x}{\cos x}$ to form an equation in a and b only
	a = 3b	A1	
		2	

207. 9709_s19_ms_12 Q: 6

	Answer	Mark	Partial Marks
(i)	3, -3	В1	Accept ± 3
	-1/2	B1	
	2½	B1	
		3	Condone misuse of inequality signs.
(ii)			Only mark the curve from $0 \to 2\pi$. If the x axis is not labelled assume that $0 \to 2\pi$ is the range shown. Labels on axes are not required.
	2 complete oscillations of a cosine curve starting with a maximum at (0,a), a>0	B1	
	Fully correct curve which must appear to level off at 0 and/or 2π .	B1	
	Line starting on positive y axis and finishing below the x axis at 2π . Must be straight.	B1	
		3	
(iii)	4	B1	
		1	

208. 9709_s19_ms_13 Q: 9

	Answer	Mark	Partial Marks
(i)	$q \leqslant f(x) \leqslant p + q$	B1B1	B1 each inequality – allow two separate statements Accept $<$, $(q, p+q)$, $[q, p+q]$ Condone y or x or f in place of $f(x)$
		2	
(ii)	(a) 2	B1	Allow $\frac{\pi}{4}$, $\frac{3\pi}{4}$
	(b) 3	B1	Allow $0, \frac{\pi}{2}, \pi$
	(c) 4	B1	Allow $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$
		3	
(iii)	$3\sin^2 2x + 2 = 4 \rightarrow \sin^2 2x = \frac{2}{3} \sin^2 2x = \frac{2}{3}$	M1	
	$\sin 2x = (\pm)0.816(5)$. Allow $\sin 2x = (\pm)\sqrt{\frac{2}{3}}$ or $2x = \sin^{-1}(\pm)\sqrt{\frac{2}{3}}$	A1	OR Implied by at least one correct value for x . Allow \sin^{-1} form
	(2x =) at least two of 0.955(3), 2.18(6), 4.09(7), 5.32(8)	A1	Can be implied by corresponding values of <i>x</i> below Allow for at least two of 0.304π , 0.696π , $1.30(4)\pi$, $1.69(6)\pi$ OR at least two of $54.7(4)^\circ$, $125.2(6)^\circ$, $234.7(4)^\circ$, $305.2(6)^\circ$
	(x=) 0.478, 1.09, 2.05, 2.66.	A1A1	Allow 0.152 π , 0.348 π , 0.652 π , 0.848 π SC A1 for 2 or 3 correct. SC A1 for all of 27.4°, 62.6°, 117.4°, 152.6° Sin2 $x = \pm \frac{2}{3} \rightarrow x = 0.365, 1.21, 1.94, 2.78$ scores SC M1A0A0A1
		5	

 $209.\ 9709_w19_ms_11\ Q{:}\ 5$

	Answer	Mark	Partial Marks
(i)	$4\tan x + 3\cos x + \frac{1}{\cos x} = 0 \to 4\sin x + 3\cos^2 x + 1 = 0$	M1	Multiply by $\cos x$ or common denominator of $\cos x$
	$4\sin x + 3(1-\sin^2 x) + 1 = 0 \rightarrow 3\sin^2 x - 4\sin x - 4 = 0$	M1	Use $\cos^2 x = 1 - \sin^2 x$ and simplify to 3-term quadratic in $\sin x$
	$\sin x = -\frac{2}{3}$	A1	AG
		3	
(ii)	$2x-20^{\circ} = 221.8^{\circ}, 318.2^{\circ}$	M1A1	Attempt to solve $\sin(2x-20) = -2/3(M1)$. At least 1 correct (A1)
	x = 120.9°, 169.1°	A1 A1FT	FT for 290° – other solution. SC A1 both answers in radians
		4	

210. 9709_w19_ms_12 Q: 6

	Answer	Mark	Partial Marks
(a)	$(2x + 1) = \tan^{-1}(\frac{1}{3}) (= 0.322 \text{ or } 18.4 \text{ OR } -0.339 \text{ rad or } 8.7^{\circ})$	*M1	Correct order of operations. Allow degrees.
	Either their $0.322 + \pi$ or 2π Or their $-0.339 + \frac{\pi}{2}$ or π	DM1	Must be in radians
	x = 1.23 or $x = 2.80$	A1	AWRT for either correct answer, accept 0.39π or 0.89π
		A1	For the second answer with no other answers between 0 and 2.8 SC1 For both 1.2 and 2.8
		4	
(b)(i)	$5\cos^2 x - 2$	B1	Allow $a = 5, b = -2$
		1	
(b)(ii)	-2	B1FT	FT for sight of their b
	3	B1FT	FT for sight of <i>their</i> $a + b$
		2	

211. 9709_w19_ms_13 Q: 7

	Answer	Mark	Partial Marks
(i)	$3\cos^4\theta + 4(1-\cos^2\theta) - 3(=0)$	M1	Use $s^2 = 1 - c^2$
	$3x^2 + 4(1-x) - 3(=0) \rightarrow 3x^2 - 4x + 1(=0)$	A1	AG
		2	
(ii)	Attempt to solve for x	M1	Expect $x = 1, 1/3$
	$\cos \theta = (\pm)1, \ (\pm)0.5774$	A1	Accept $(\pm)\left(\frac{1}{\sqrt{3}}\right)$ SOI
	(θ =) 0°, 180°, 54.7°, 125.3°	A3,2,1,0	A2,1,0 if more than 4 solutions in range
		5	

212. 9709_m18_ms_12 Q: 5

	Answer	Mark	Partial Marks
(a)	$2\tan x + 5 = 2\tan^2 x + 5\tan x + 3 \rightarrow 2\tan^2 x + 3\tan x - 2(=0)$	M1A1	Multiply by denom., collect like terms to produce 3-term quad. in tanx
	0.464 (accept 0.148π), 2.03 (accept 0.648π)	A1A1	SCA1 for both in degrees 26.6°, 116.6° only
		4	
(b)	$\alpha = 30^{\circ}$ $k = 4$	B1B1	Accept $\alpha = \pi / 6$
		2	

$213.\ 9709_s18_ms_11\ Q{:}\ 4$

	Answer	Mark	Partial Marks
(i)	$(\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta) \equiv \sin^3\theta + \cos^3\theta.$		Accept abbreviations s and c
	LHS = $\sin\theta + \cos\theta - \sin^2\theta\cos\theta - \sin\theta\cos^2\theta$	M1	Expansion
	$= \sin\theta(1 - \cos^2\theta) + \cos\theta(1 - \sin^2\theta) \text{ or } (s + c - c(1 - c^2) - s(1 - s^2))$	M1A1	Uses identity twice. Everything correct. AG
	Uses $\sin^2\theta + \cos^2\theta = 1 \rightarrow \sin^3\theta + \cos^3\theta$ (RHS)		or from RHS: M1 for use of trig ID twice
	Or		
	LHS = $(\sin \theta + \cos \theta)(\sin^2 \theta + \cos^2 \theta - \sin \theta \cos \theta)$	M1	M1 for factorisation
	$=\sin^3\theta + \sin\theta\cos^2\theta - \sin^2\theta\cos\theta + \cos\theta\sin^2\theta + \cos^3\theta - \sin\theta\cos^2\theta = \sin^3\theta + \cos^3\theta$	M1A1	
		3	

	Answer	Mark	Partial Marks
(ii)	$(\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta) = 3\cos^3\theta \rightarrow \sin^3\theta = 2\cos^3\theta$	M1	
	$\rightarrow \tan^3 \theta = 2 \rightarrow \theta = 51.6^{\circ} \text{ or } 231.6^{\circ} \text{ (only)}$	A1A1FT	Uses $\tan^3 = \sin^3 \div \cos^3$. A1 CAO. A1FT, 180 + their acute angle. $\tan^3 \theta = 0$ gets M0
		3	

214. 9709_s18_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$a + \frac{1}{2}b = 5$	B1	TI
	a-b=11	B1	after a or b has been eliminated.
	$\rightarrow a = 7$ and $b = -4$	B1	
		[3]	
(ii)	a + b or their $a + their b$ (3)	B1	Not enough to be seen in a table of values – must be selected. Graph from their values can get both marks.
	a-b or their a – their b (11).	B1	
	$\rightarrow k < 3, k > 11$	B1	Both inequalities correct. Allow combined statement as long as correct inequalities if taken separately. Both answers correct from T & I or guesswork 3/3 otherwise 0/3
		3	

$215.\ 9709_s18_ms_12\ Q:\ 10$

	Answer	Mark	Partial Marks
(i)	$2\cos x = -3\sin x \to \tan x = -\frac{2}{3}$	M1	Use of tan=sin/cos to get tan =, or other valid method to find sin or cos =. M0 for tanx = $\pm 1/3$
	$\rightarrow x = 146.3^{\circ} \text{ or } 326.3^{\circ} \text{awrt}$	A1 A1FT	FT for 180 added to an incorrect first answer in the given range. The second A1 is withheld if any further values in the range $0^{\circ} \le x \le 360^{\circ}$ are given. Answers in radians score A0, A0.
		3	

	Answer	Mark	Partial Marks
(ii)	No labels required on either axis. Assume that the diagram is 0° to 360° unless labelled otherwise. Ignore any part of the diagram outside this range.		
		B1	Sketch of $y = 2\cos x$. One complete cycle; start and finish at <u>top of curve</u> at roughly the same positive y value and go below the x axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Sketch of $y=-3\sin x$ One complete cycle; start and finish on the x axis, must be inverted and go below and then above the x axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Fully correct answer including the sine curve with clearly larger amplitude than cosine curve. Must now be reasonable curves.
			Note: Separate diagrams can score 2/3
		3	
(iii)	x < 146.3°, x > 326.3°	B1FT B1FT	Does not need to include 0°, 360°. √ from their answers in (i) Allow combined statement as long as correct inequalities if taken separately. SC For two correct values including ft but with ≤ and ≥ B1
		2	

$216.\ 9709_s18_ms_13\ Q{:}\ 7$

	Answer	Mark	Partial Marks
(a)(i)	$\frac{\tan^2\theta - 1}{\tan^2\theta + 1} = \frac{\frac{\sin\theta^2}{\cos\theta^2} - 1}{\frac{\sin\theta^2}{\cos\theta^2} + 1}$	M1	
	$= \frac{\sin \theta^2 - \cos \theta^2}{\sin \theta^2 + \cos \theta^2}$	A1	multiplying by $\cos\theta^2$ Intermediate stage can be omitted by multiplying directly by $\cos\theta^2$
	$= \sin \theta^2 - \cos \theta^2 = \sin \theta^2 - \left(1 - \sin \theta^2\right) = 2\sin^2 \theta - 1$	A1	Using $\sin \theta^2 + \cos \theta^2 = 1$ twice. Accept $a = 2$, $b = -1$
	ALT 1 $\frac{\sec^2\theta - 2}{\sec^2\theta}$	M1	ALT 2 $\frac{\tan^2\theta - 1}{\sec^2\theta}$
	$1 - \frac{2}{\sec^2 \theta} = 1 - 2\cos^2 \theta$	A1	$(\tan^2\theta - 1)\cos^2\theta$
	$1 - 2\left(1 - \sin^2\theta\right) = 2\sin^2\theta - 1$	A1	$\sin^2\theta - \cos^2\theta = \sin^2\theta - \left(1 - \sin^2\theta\right) = 2\sin^2\theta - 1$
		3	
(a)(ii)	$2\sin^2\theta - 1 = \frac{1}{4} \rightarrow \sin\theta = (\pm)\sqrt{\frac{5}{8}} \text{ or } (\pm)0.7906$	M1	OR $\frac{t^2 - 1}{t^2 + 1} = \frac{1}{4} \rightarrow 3t^2 = 5 \rightarrow t = (\pm)\sqrt{\frac{5}{3}}$ or $t = (\pm)1.2910$
	$\theta = -52.2$	A1	
		2	

	Answer	Mark	Partial Marks
(b)(i)	$\sin x = 2\cos x \to \tan x = 2$	M1	Or $\sin x = \sqrt{\frac{4}{5}}$ or $\cos x = \sqrt{\frac{1}{5}}$
	x = 1.11 with no additional solutions	A1	Accept 0.352π or 0.353π . Accept in co-ord form ignoring y co-ord
		2	
(b)(ii)	Negative answer in range $-1 < y < -0.8$	B1	
	-0.894 or -0.895 or -0.896	B1	
		2	

217. 9709_w18_ms_11 Q: 5

	Answer	Mark	Partial Marks
(i)	$\frac{(\cos\theta - 4)(5\cos\theta - 2) - 4\sin^2\theta}{\sin\theta(5\cos\theta - 2)} (=0)$	M1	Accept numerator only
	$\frac{5\cos^2\theta - 22\cos\theta + 8 - 4(1 - \cos^2\theta)}{\sin\theta(5\cos\theta - 2)} \ (= 0)$	M1	Simplify numerator and use $s^2 = 1 - c^2$. Accept numerator only
	$9\cos^2\theta - 22\cos\theta + 4 = 0 \text{ www } \mathbf{AG}$	A1	
		3	
(ii)	Attempt to solve for $\cos\theta$, (formula, completing square expected)	M1	Expect $\cos \theta = 0.1978$. Allow 2.247 in addition
	$\theta = 78.6^{\circ}$, 281.4° (only, second solution in the range)	A1A1FT	Ft for (360° – 1st solution)
		3	

218. 9709_w18_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$fg(x) = 2 - 3\cos(\frac{1}{2}x)$	B1	Correct fg
	$2 - 3\cos(\frac{1}{2}x) = 1 \to \cos(\frac{1}{2}x) = \frac{1}{3} \to \left(\frac{1}{2}x\right) = \cos^{-1}\left(their\frac{1}{3}\right)$	M1	M1 for correct order of operations to solve their $fg(x) = 1$ as far as using inverse cos expect 1.23, (or 70.5°) condone $x = 1$.
	$x = 2.46$ awrt or $\frac{4.7\pi}{6}(0.784\pi \text{awrt})$	A1	One solution only in the given range, ignore answers outside the range. Answer in degrees A0.
			Alternative:
			Solve $f(y) = 1 \rightarrow y = 1.23 \rightarrow \frac{1}{2}x = 1.23$ B1M1
			$\rightarrow x = 2.46 \text{ A1}$
		3	

	Answer	Mark	Partial Marks
(ii)	(ii)	В1	One cycle of \pm cos curve, evidence of turning at the ends not required at this stage. Can be a poor curve but not an inverted "V". If horizontal axis is not labelled mark everything to the right of the vertical axis. If axis is clearly labelled mark $0 \rightarrow 2\pi$.
		В1	Start and finish at roughly the same negative <i>y</i> value. Significantly more above the <i>x</i> axis than below or correct range implied by labels .
		В1	Fully correct. Curves not lines. Must be a reasonable curve clearly turning at both ends. Labels not required but must be appropriate if present.
		3	

$219.\ 9709_w18_ms_12\ Q:\ 6$

	Answer	Mark	Partial Marks
(i)	In $\triangle ABD$, $\tan \theta = \frac{9}{BD} \rightarrow BD = \frac{9}{\tan \theta}$ or $9\tan(90 - \theta)$ or $9\cot \theta$ or $\sqrt{\left[\left(20 \tan \theta\right)^2 - 9^2\right]}$ (Pythag) or $\frac{9\sin(90 - \theta)}{\sin \theta}$ (Sine rule)	В1	Both marks can be gained for correct equated expressions.
	In $\triangle DBC$, $\sin \theta = \frac{BD}{20} \rightarrow BD = 20\sin \theta$	B1	
	$20\sin\theta = \frac{9}{\tan\theta}$	M1	Equates their expressions for BD and uses $\sin\theta/\cos\theta = \tan\theta$ or $\cos\theta/\sin\theta = \cot\theta$ if necessary.
	$\rightarrow 20\sin^2\theta = 9\cos\theta AG$	A1	Correct manipulation of their expression to arrive at given answer.
			SC: In $\triangle DBC$, $\sin \theta = \frac{BD}{20} \rightarrow BD = 20 \sin \theta$ B1 In $\triangle ABD$, $BA = \frac{9}{\sin \theta}$ and $\cos \theta = \frac{BD}{BA}$ $\cos \theta = \frac{20 \sin \theta}{9 / \sin \theta} \rightarrow \cos \theta = \frac{20 \sin^2 \theta}{9}$ M1 $\rightarrow 20 \sin^2 \theta = 9 \cos \theta$ A1 Scores 3/4
		4	
(ii)	Uses $s^2 + c^2 = 1 \rightarrow 20\cos^2\theta + 9\cos\theta - 20 (= 0)$	M1	Uses $s^2 + c^2 = 1$ to form a three term quadratic in $\cos \theta$
	$\rightarrow \cos\theta = 0.8$	A1	www
	$\rightarrow \theta = 36.9^{\circ} \text{ awrt}$	A1	www. Allow 0.644° awrt. Ignore 323.1° or 2.50°. Note: correct answer without working scores 0/3.
		3	

$220.\ 9709_w18_ms_13\ Q:\ 7$

	Answer	Mark	Partial Marks
(i)	$\frac{(\tan\theta+1)(1-\cos\theta)+(\tan\theta-1)(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$ soi	M1	
	$\frac{\tan\theta - \tan\theta\cos\theta + 1 - \cos\theta + \tan\theta - 1 + \tan\theta\cos\theta - \cos\theta}{1 - \cos^2\theta}$ www	A1	
	$\frac{2(\tan\theta - \cos\theta)}{\sin^2\theta} \text{ www} $ AG	A1	
		3	

	Answer	Mark	Partial Marks
(ii)	$(2)(\tan\theta - \cos\theta) (=0) \rightarrow (2) \left(\frac{\sin\theta}{\cos\theta} - \cos\theta\right) (=0) \text{soi}$	M1	Equate numerator to zero and replace $\tan \theta$ by $\sin \theta / \cos \theta$
	$(2)\left(\sin\theta - \left(1 - \sin^2\theta\right)\right) \ (=0)$	DM1	Multiply by $\cos\theta$ and replace $\cos^2\theta$ by $1-\sin^2\theta$
	$\sin\theta = 0.618(0) \qquad \text{soi}$	A1	Allow (√5–1)/2
	<i>θ</i> = 38.2°	A1	Apply penalty -1 for extra solutions in range
		4	

221. 9709_m17_ms_12 Q: 5

	Answer	Mark	Partial Marks
(i)	$\tan x = \cos x \to \sin x = \cos^2 x$	M1	Use tan = sin/cos and multiply by cos
	$\sin x = 1 - \sin^2 x$	M1	Use $\cos^2 x = 1 - \sin^2 x$
	$\sin x = 0.6180$. Allow $(-1 + \sqrt{5})/2$	M1	Attempt soln of quadratic in $\sin x$. Ignore solution -1.618 . Allow $x = 0.618$
	x -coord of $A = \sin^{-1} 0.618 = 0.666$ cao	A1	Must be radians. Accept 0.212π
	Total:	4	
(ii)	EITHER x-coord of B is π – their 0.666	(M1	Expect 2.475(3). Must be radians throughout
	y-coord of B is $tan(their 2.475)$ or $cos(their 2.475)$	M1	
	x = 2.48, y = -0.786 or -0.787 cao	A1)	Accept $x = 0.788\pi$
	OR y-coord of B is $-$ (cos or tan (their 0.666))	(M1	
	x-coord of B is $\cos^{-1}(their\ y)$ or $\pi + \tan^{-1}(their\ y)$	M1	
	x = 2.48, y = -0.786 or -0.787	A1)	Accept $x = 0.788\pi$
	Total:	3	

222. 9709_s17_ms_11 Q: 3

	Answer	Mark	Partial Marks
(i)	$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = \frac{2}{\sin\theta}.$		
	$\frac{(1+c)^2 + s^2}{s(1+c)} = \frac{1+2c+c^2+s^2}{s(1+c)}$	M1	Correct use of fractions
	$= \frac{2+2c}{s(1+c)} = \frac{2(1+c)}{s(1+c)} \to \frac{2}{s}$	M1 A1	Use of trig identity, A1 needs evidence of cancelling
	Total:	3	
(ii)	$\frac{2}{s} = \frac{3}{c} \to t = \frac{2}{3}$	M1	Use part (i) and $t = s \div c$, may restart from given equation
	$\rightarrow \theta = 33.7^{\circ} \text{ or } 213.7^{\circ}$	A1 A1FT	FT for 180° + 1st answer. 2nd A1 lost for extra solns in range
	Total:	3	

223. 9709_s17_ms_11 Q: 5

	Answer	Mark	Partial Marks
	$y = 2\cos x$		
(i)		B1	One whole cycle – starts and finishes at –ve value
		DB1	Smooth curve, flattens at ends and middle. Shows (0, 2).
	Total:	2	
(ii)	$P(\frac{\pi}{3},1) Q(\pi,-2)$		
	$\rightarrow PQ^2 = \left(\frac{2\pi}{3}\right)^2 + 3^2 \rightarrow PQ = 3.7$	M1 A1	Pythagoras (on their coordinates) must be correct, OE.
	Total:	2	

	Answer	Mark	Partial Marks
(iii)	Eqn of PQ $y-1 = -\frac{9}{2\pi} \left(x - \frac{\pi}{3}\right)$	M1	Correct form of line equation or sim equations from their $P \& Q$
	If $y = 0 \rightarrow h = \frac{5\pi}{9}$	A1	AG, condone $x = \frac{5\pi}{9}$
	If $x = 0 \rightarrow k = \frac{5}{2}$,	A1	SR: non-exact solutions A1 for both
	Total:	3	

224. 9709_s17_ms_12 Q: 3

	Answer	Mark	Partial Marks
(i)	$LHS = \left(\frac{1}{c} - \frac{s}{c}\right)^2$	M1	Eliminates tan by replacing with $\frac{\sin}{\cos}$ leading to a function of \sin and/or \cos only.
	$=\frac{\left(1-s\right)^2}{1-s^2}$	M1	Uses $s^2 + c^2 = 1$ leading to a function of sin only.
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}=\frac{1-\sin\theta}{1+\sin\theta}$	A1	AG. Must show use of factors for A1.
	Total:	3	
(ii)	Uses part (i) $\rightarrow 2 - 2s = 1 + s$		
	$\rightarrow s = \frac{1}{3}$	М1	Uses part (i) to obtain $s = k$
	$\theta = 19.5^{\circ} \text{ or } 160.5^{\circ}$	A1A1 FT	FT from error in 19.5° Allow 0.340° (0.3398°) & $2.80(2)$ or $0.108\pi^{\circ}$ & $0.892\pi^{\circ}$ for A1 only. Extra answers in the range lose the second A1 if gained for 160.5°.
	Total:	3	

225. 9709_s17_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	$3\tan\left(\frac{1}{2}x\right) = -2 \to \tan\left(\frac{1}{2}x\right) = -\frac{2}{3}$	M1	Attempt to obtain $\tan\left(\frac{1}{2}x\right) = k$ from $3\tan\left(\frac{1}{2}x\right) + 2 = 0$
	$\frac{1}{2}x = -0.6 \ (-0.588) \rightarrow x = -1.2$	M1 A1	$\tan^{-1} k$. Seeing $\frac{1}{2}x = -33.69^{\circ}$ or $x = -67.4^{\circ}$ implies M1M1 .
			Extra answers between -1.57 &1.57 lose the A1. Multiples of π are acceptable (eg -0.374π)
	Total:	3	
(ii)	$\frac{y+2}{3} = \tan\left(\frac{1}{2}x\right)$	M1	Attempt at isolating tan(½x)
	$\rightarrow f^{-1}(x) = 2\tan^{-1}\left(\frac{x+2}{3}\right)$	M1 A1	Inverse tan followed by \times 2. Must be function of x for A1 .
	-5,1	B1 B1	Values stated B1 for -5, B1 for 1.
	Total:	5	

	Answer	Mark	Partial Marks
(iii)		B1 B1 B1	A tan graph through the first, third and fourth quadrants. (B1) An invtan graph through the first, second and third quadrants.(B1) Two curves clearly symmetrical about $y = x$ either by sight or by exact end points. Line not required. Approximately in correct domain and range. (Not intersecting.) (B1) Labels on axes not required.
	Total:	3	

226. 9709_s17_ms_13 Q: 5

	Answer	Mark	Partial Marks
(i)	$\frac{2\sin\theta + \cos\theta}{\sin\theta + \cos\theta} = \frac{2\sin\theta}{\cos\theta}$	M1	Replace $\tan \theta$ by $\sin \theta / \cos \theta$
	$2\sin\theta\cos\theta + \cos^2\theta = 2\sin^2\theta + 2\sin\theta\cos\theta \Rightarrow c^2 = 2s^2$	M1 A1	Mult by c(s + c) or making this a common denom. For A1 simplification to AG without error or omission must be seen.
	Total:	3	
(ii)	$\tan^2 \theta = 1/2$ or $\cos^2 \theta = 2/3$ or $\sin^2 \theta = 1/3$	В1	Use $\tan \theta = s / c$ or $c^2 + s^2 = 1$ and simplify to one of these results
	$\theta = 35.3^{\circ} \text{ or } 144.7^{\circ}$	B1 B1 FT	FT for 180 – other solution. SR B1 for radians 0.615, 2.53 (0.196π, 0.804π) Extra solutions in range amongst solutions of which 2 are correct gets B1B0
	Total:	3	

227. 9709_w17_ms_11 Q: 7

	Answer	Mark	Partial Marks
(a)	a=-2, b=3	B1B1	
		2	
(b)(i)	$s + s^2 - sc + 2c + 2sc - 2c^2 = s + sc \rightarrow s^2 - 2c^2 + 2c = 0$	B1	Expansion of brackets must be correct
	$1 - \cos^2\theta - 2\cos^2\theta + 2\cos\theta = 0$	M1	Uses $s^2 = 1 - c^2$
	$3\cos^2\theta - 2\cos\theta - 1 = 0$	A1	AG
		3	
(b)(ii)	$\cos \theta = 1$ or $-\frac{1}{3}$	B1	
	$\theta = 0^{\circ} \text{ or } 109.5^{\circ} \text{ or } -109.5^{\circ}$	B1B1B1 FT	FT for – <i>their</i> 109.5°
		4	

228. 9709_w17_ms_12 Q: 5

	Answer	Mark	Partial Marks
(i)	EITHER: Uses $\tan^2 2x = \frac{\sin^2 2x}{\cos^2 2x}$	(M1	Replaces $\tan^2 2x$ by $\frac{\sin^2 2x}{\cos^2 2x}$ not $\frac{\sin^2}{\cos^2} 2x$
	Uses $\sin^2 2x = (1 - \cos^2 2x)$	M1	Replaces $\sin^2 2x$ by $(1 - \cos^2 2x)$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
	$OR: \\ \tan^2 2x = \sec^2 2x - 1$	(M1	Replaces $\tan^2 2x$ by $\sec^2 2x - 1$
	$\sec^2 2x = \frac{1}{\cos^2 2x}$ Multiply through by $\cos^2 2x$ and rearrange	M1	Replaces $\sec^2 2x$ by $\frac{1}{\cos^2 2x}$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
		3	
(ii)	$\cos 2x = -\frac{1}{2}, -1$	M1	Uses (i) to get values for cos 2x. Allow incorrect sign(s).
	$2x = 120^{\circ}, 240^{\circ} \text{ or } 2x = 180^{\circ}1$ $x = 60^{\circ} \text{ or } 120^{\circ}$	A1 A1 FT	A1 for 60° or 120° FT for 180–1st answer
	or $x = 90^{\circ}$	A1	Any extra answer(s) in given range only penalise fourth mark so max 3/4.
		4	

229. 9709_w17_ms_12 Q: 6

	Answer	Mark	Partial Marks
(a)(i)	$4 = a + \frac{1}{2}b$ $3 = a + b$	M1	Forming simultaneous equations and eliminating one of the variables – probably a . May still include $\sin \frac{\pi}{2}$ and / or $\sin \frac{\pi}{6}$
	$\rightarrow a = 5, b = -2$	A1 A1	
		3	
(a)(ii)	$ff(x) = a + b\sin(a + b\sin x)$	M1	Valid method for ff. Could be $f(0) = N$ followed by $f(N) = M$.
	$ff(0) = 5 - 2\sin 5 = 6.92$	A1	
(b)	EITHER: 10 = c + d and -4 = c - d 10 = c - d and -4 = c + d	(M1	Either pair of equations stated.
	$c = 3, d = 7, -7 \text{ or } \pm 7$	A1 A1)	Either pair solved ISW
			Alternately c=3 B1, range = 14 M1 \rightarrow d = 7, -7 or ±7 A1
	OR: y=3+75m(x) y=3+75m(x) y=3-75m(x) y=3-75m(x)	(M1 A1 A1)	Either of these diagrams can be awarded M1.Correct values of c and/or d can be awarded the A1, A1
		3	

230. 9709_w17_ms_13 Q: 5

	Answer	Mark	Partial Marks
(i)	$\cos\theta + 4 + 5\sin^2\theta + 5\sin\theta - 5\sin\theta - 5 (= 0)$	M1	Multiply throughout by $\sin \theta + 1$. Accept if $5\sin \theta - 5\sin \theta$ is not seen
	$5(1-\cos^2\theta)+\cos\theta-1 \ (=0)$	М1	Use $s^2 = 1 - c^2$
	$5\cos^2\theta - \cos\theta - 4 = 0$ AG	A1	Rearrange to AG
		3	
(ii)	$\cos \theta = 1$ and -0.8	B1	Both required
	$\theta = [0^{\circ}, 360^{\circ}], [143.1^{\circ}], [216.9^{\circ}]$	B1 B1 B1 FT	Both solutions required for 1st mark. For 3rd mark FT for $(360^{\circ} - their 143.1^{\circ})$ Extra solution(s) in range (e.g. 180°) among 4 correct solutions scores $\frac{3}{4}$
		4	

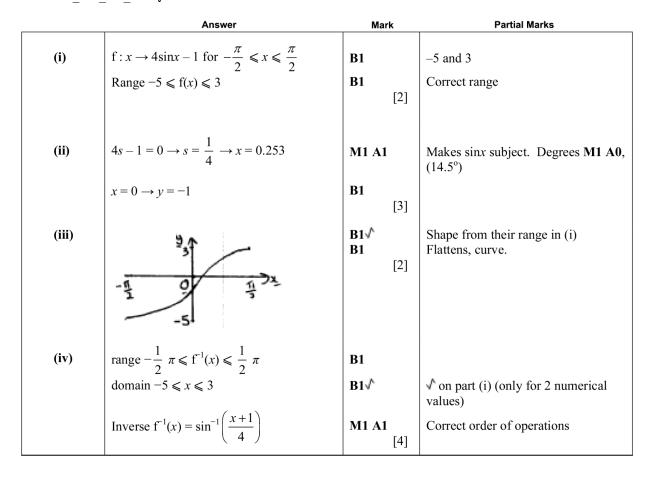
$231.\ 9709_m16_ms_12\ Q:\ 4$

	Answer	Mark	Partial Marks
(a)	$3x = -\sqrt{3}/2$	M1	Accept -0.866 at this stage
	$x = \frac{-\sqrt{3}}{6} \text{oe}$	A1 [2]	Or $\frac{-3}{6\sqrt{3}}$ or $\frac{-1}{2\sqrt{3}}$
(b)	$(2\cos\theta - 1)(\sin\theta - 1) = 0$ $\cos\theta = 1/2 \text{ or } \sin\theta = 1$ $\theta = \pi/3 \text{ or } \pi/2$	M1 A1 A1A1 [4]	Reasonable attempt to factorise and solve Award B1B1 www Allow 1.05, 1.57. SCA1for both 60°, 90°

 $232.\ 9709_s16_ms_11\ Q:\ 2$

Answer	Mark	Partial Marks
$3\sin^2\theta = 4\cos\theta - 1$ Uses $s^2 + c^2 = 1$		
$3c^{2} + 4c - 4 = 0$ $(\rightarrow c = \frac{2}{3} \text{ or } -2)$	M1 A1	Equation in $\cos\theta$ only. All terms on one side of (=)
$\rightarrow \theta = 48.2^{\circ} \text{ or } 311.8^{\circ}$ 0.841, 5.44 rads, A1 only	A1 A1√	For 360° – 1st answer.
$(0.268\pi, 1.73\pi)$	[4]	

 $233.\ 9709_s16_ms_11\ Q:\ 11$



 $234.\ 9709_s16_ms_12\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(i)	$\tan\left(\frac{\pi}{3}\right) = \frac{AC}{2x} \text{ or } \cos\left(\frac{\pi}{3}\right) \left(=\sin\frac{\pi}{6}\right) = \frac{2x}{AB}$ $\to AC = 2\sqrt{3}x \text{ or } AB = 4x$	B1	Either trig ratio
	$AM = \sqrt{13x^2}, \sqrt{13}x, 3.61x$	M1A1 [3]	Complete method.
(ii)	$\tan\left(\hat{MAC}\right) = \frac{x}{\text{Their }AC}$	M1	"Their AC " must be $f(x)$, $(M\hat{A}C) \neq \theta$.
	$\theta = \frac{1}{6}\pi - \tan^{-1}\frac{1}{2\sqrt{3}} \mathbf{AG}$	A1 [2]	Justifies $\frac{\pi}{6}$ and links MAC & θ

235. 9709_s16_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} \equiv \frac{4}{\sin\theta \tan\theta}$		
	LHS = $\frac{1 + 2c + c^2 - (1 - 2c + c^2)}{(1 - c)(1 + c)}$	M1	Attempt at combining fractions.
	$=\frac{4c}{1-c^2}$	A1 A1	A1 for numerator. A1 denominator
	$=\frac{4c}{s^2}$		Essential step for award of A1
	$=\frac{4}{ts} \mathbf{AG}$	A1 [4]	
(ii)	$\sin\theta \left(\frac{1 + \cos\theta}{1 - \cos\theta} - \frac{1 - \cos\theta}{1 + \cos\theta} \right) = 3.$		Uses part (i) to eliminate "s" correctly.
	$\rightarrow s \times \frac{4}{ts} = 3 (\rightarrow t = \frac{4}{3})$ $\theta = 53.1^{\circ} \text{ and } 233.1^{\circ}$	M1 A1 A1 [↑] [3]	$^{\uparrow}$ for $180^{\circ} + 1^{\text{st}}$ answer.

 $236.\ 9709_s16_ms_13\ Q:\ 6$

 Answer	Mark	Partial Marks
$BAC = \sin^{-1}(3/5) \text{ or } \cos^{-1}(4/5) \text{ or } \tan^{-1}(3/4)$	B1	Accept 36.8(7)°
$ABC = \sin^{-1}(4/5)$ or $\cos^{-1}(3/5)$ or $\tan^{-1}(4/3)$	B1	Accept 53.1(3)°
$ACB = \pi / 2 \text{(Allow 90°)}$	B1	
Shaded area = $\triangle ABC$ – sectors ($AEF + BEG + CFG$)	M1	
$\Delta ABC = \frac{1}{2} \times 4 \times 3 \text{ oe}$	B1	
Sum sectors = $\frac{1}{2} \left[3^2 0.6435 \right) +$		
$2^{2}0.9273 + 1^{2}1.5708$	M1	
OR $\frac{\pi}{360} [3^236.8(7) + 2^253.1(3) + 1^290]$		
6 - 5.536 = 0.464	A1 [7]	

 $237.\ 9709_s16_ms_13\ Q:\ 8$

	Answer	Mark	Partial Marks
(i)	$3\sin^2 x - \cos^2 x + \cos x = 0$ Use $s^2 = 1 - c^2$ and simplify to 3-term quad $\cos x = -3/4$ and 1	M1 M1 A1	Multiply by $\cos x$ Expect $4c^2 - c - 3 = 0$
	$x = 2.42$ (allow 0.77π) or 0 (extra in range max 1)	A1A1 [5]	SC1 for 0.723 (or 0.23 π), π following $4c^2 + c - 3 = 0$
(ii)	$2x = 2\pi - their 2.42$ or $360 - 138.6$	B1√	Expect $2x = 3.86$
	$x = 1.21 \ (0.385\pi), \ 1.93 \ (0.614/5\pi), \ 0, \ \pi \ (3.14)$ (extra max 1)	B1B1 [3]	Any 2 correct B1. Remaining 2 correct B1. SCB1for all 69.3, 110.7, 0, 180 (degrees) SCB1 for .361, $\pi/2$, 2.78 after $4c^2 + c - 3 = 0$

238. 9709_w16_ms_11 Q: 6

	Answer	Mark		Partial Marks
(i)	$\cos^4 x = (1 - \sin^2 x)^2$ = $1 - 2\sin^2 x + \sin^4 x$ AG	B1		Could be LHS to RHS or vice ersa
(ii)	$8\sin^4 x + 1 - 2\sin^2 x + \sin^4 x = 2(1 - \sin^2 x)$ $9\sin^4 x = 1$ $x = 35.3^{\circ} \text{ (or any correct solution)}$ Any correct second solution from 144.7°, 215.3°, 324.7° The remaining 2 solutions	M1 A1 A1 A1 A1 A1 A1 A1 A1 A1	O A	ubstitute for $\cos^4 x$ and $\cos^2 x$ or OR sub for $\sin^4 x \to 3\cos^2 x = 2$ $\to \cos x = (\pm)\sqrt{2/3}$ Allow the first 2 A1 marks for adians 0.616, 2.53, 3.76, 5.67)

239. 9709_w16_ms_12 Q: 2

		Answer	Mark		Partial Marks	
(1	i)	$2\sin 2x = 6\cos 2x$ $\tan 2x = k$ $\rightarrow \tan 2x = 3 \text{ or } k = 3$	M1 A1	[2]	Expand and collect as far as $tan2x = a$ constant from $sin \div cos$ soi cwo	
(i	i)	$x = (\tan^{-1}(their k)) \div 2$ $(71.6^{\circ} \text{ or } -108.4^{\circ}) \div 2$ $x = 35.8^{\circ}, -54.2^{\circ}$ $x = 0.624^{\circ}, -0.946^{\circ}$ $x = 0.198\pi^{\circ}, -0.301\pi^{\circ}$	M1 A1 A1 [↑]	[3]	Inverse then ÷2. soi.	

240. 9709_w16_ms_12 Q: 10

	Answer	Mark		Partial Marks
(i)	$3 \leqslant f(x) \leqslant 7$	B1 B1	[2]	Identifying both 3 and 7 or correctly stating one inequality. Completely correct statement. NB $3 \le x \le 7$ scores B1B0
(ii)		B1* DB1	[2]	One complete oscillation of a sinusoidal curve between 0 and π . All correct, initially going downwards, all above $f(x)=0$
(iii)	5-2sin2 $x = 6$ \rightarrow sin2 $x = -\frac{1}{2}$ $\rightarrow 2x = \frac{7\pi}{6}$ or $\frac{11\pi}{6}$ $\rightarrow x = \frac{7\pi}{12}$ or $\frac{11\pi}{12}$ 0.583 π or 0.917 π $\frac{\pi + 0.524}{2}$ or $\frac{2\pi - 0.524}{2}$ 1.83° or 2.88°	M1 A1 A1√	[3]	Make $\sin 2x$ the subject. $ \sqrt[4]{} \text{ for } \frac{3\pi}{2} - 1^{\text{st}} \text{ answer from } \sin 2x = -\frac{1}{2} \text{ only, if in given range} $ SR A1A0 for both.
(iv)	$k = \frac{\pi}{4}$	B1	[1]	
(v)	$2\sin 2x = 5 - y \rightarrow \sin 2x = \frac{1}{2}(5 - y)$ $(g^{-1}(x)) = \frac{1}{2}\sin^{-1}\frac{(5 - x)}{2}$	M1 M1		Makes $\pm \sin 2x$ the subject soi by final answer. Correct order of operations including correctly dealing with " $-$ ".
	(5 (4)) /2 sin 2	AI	[3]	ividst of a function of x

241. 9709_w16_ms_13 Q: 3

Answer	Mark		Partial Marks
$4\sin^2 x = 6\cos^2 x \Rightarrow \tan^2 x = \frac{6}{4} \text{ or } 4\sin^2 x = 6\left(1 - \sin^2 x\right)$	M1		$Or 4(1-\cos^2 x) = 6\cos^2 x$
[$\tan x = (\pm)1.225 \text{ or } \sin x = (\pm)0.7746 \text{ or } \cos x = (\pm)0.6325$] x = 50.8 (Allow 0.886 (rad)) Another angle correct	A1 A1√		Or any other angle correct Ft from 1st angle (Allow radians) All 4 angles correct in degrees
$x = 50.8^{\circ}, 129.2^{\circ}, 230.8^{\circ}, 309.2^{\circ}$ [0.886, 2.25/6, 4.03, 5.40 (rad)]	A1	[4]	

 $242.\ 9709_s15_ms_11\ Q:\ 1$

	Answer	Mark	Partial Marks
	θ is obtuse, $\sin \theta = k$		
(i)	$\cos\theta = -\sqrt{(1-k^2)}$	B1	cao
		[1]	
(ii)	$\tan \theta = \frac{\sin \theta}{\cos \theta} \text{ used}$	M1	Used, attempt at cosine seen in (i)
	$\rightarrow \tan \theta = -\frac{k}{\sqrt{(1-k^2)}}$ aef	A1√ [2]	Ft for their cosine as a function of <i>k</i> only, from part (i)
(iii)	$\sin\left(\theta+\pi\right)=-k$	B1	cao
		[1]	

 $243.\ 9709_s15_ms_11\ Q:\ 8$

	Answer	Mark	Partial Marks
	$f: x \mapsto 5 + 3\cos\left(\frac{1}{2}x\right) \text{ for } 0 \le x \le 2\pi.$		
(i)	$5 + 3\cos\left(\frac{1}{2}x\right) = 7$		(1.)
	$\cos\left(\frac{1}{2}x\right) = \frac{2}{3}$	B1	Makes $\cos\left(\frac{1}{2}x\right) = \frac{2}{3}$
	$\begin{vmatrix} \frac{1}{2}x = 0.84 & x = 1.68 \text{ only, aef} \\ \text{(in given range)} \end{vmatrix}$	M1A1 [3]	Looks up \cos^{-1} first, then ×2
(ii)	2 x 2m	B1 B1 [2]	y always +ve, m always –ve. from $(0, 8)$ to $(2\pi, 2)$ (may be implied)
(iii)	No turning point on graph or 1:1	B1 [1]	cao, independent of graph in (ii)
(iv)	$y = 5 + 3\cos\left(\frac{1}{2}x\right)$	M1	Tries to make x subject.
	Order; -5 , $\div 3$, \cos^{-1} , $\times 2$	M1	Correct order of operations
	$x = 2\cos^{-1}\left(\frac{x-5}{3}\right)$	A1 [3]	cao

244. 9709_s15_ms_12 Q: 1

 Answer	Mark	Partial Marks
$f'(x) = 5 - 2x^2$ and $(3, 5)$		
$f(x) = 5x - \frac{2x^3}{3} \ (+c)$	B1	For integral
	M1	Uses the point in an integral
Uses $(3, 5)$ $\rightarrow c = 8$	A1	co
	[3]	

245. 9709_s15_ms_12 Q: 8

	Answer	Mark	Partial Marks
(a)	1st, 2nd, <i>n</i> th are 56, 53 and -22 a = 56, $d = -3-22 = 56 + (n - 1)(-3)\rightarrow n = 27S_{27} = \frac{27}{2}(112 + 26(-3))\rightarrow 459$	M1 A1 M1 A1	Uses correct u_n formula. co Needs positive integer n
(b)	1^{st} , 2^{nd} , 3^{rd} are $2k + 6$, $2k$ and $k + 2$.	[4]	
(i)	Either $\frac{2k}{2k+6} = \frac{k+2}{2k}$ or uses a , r and eliminates	M1 DM1 A1 [3]	Correct method for equation in <i>k</i> . Forms quad. or cubic equation with no brackets or fractions. Co
(ii)	$S_{\infty} = \frac{a}{1-r} \text{ with } r = \frac{2k}{2k+6} \text{ or } \frac{k+2}{2k} \left(=\frac{2}{3}\right)$ $\rightarrow 54$	M1 A1 [2]	Needs attempt at a and r and S_{∞}

 $246.\ 9709_s15_ms_13\ Q:\ 4$

	Answer	Mark	Partial Marks
(i)	$\tan \theta = 1/3$ $\theta = 18.4^{\circ} \text{only}$	M1 A1 [2]	Ignore solns. outside range 0→180
(ii)	$\tan 2x = (\pm)1/\sqrt{3}$ Must be sq. root soi	M1	$\sin 2x = (\pm) 1/2 \text{ or } \cos 2x = (\pm) \sqrt{3/2}$ $u \sin c^2 + s^2 = 1. \text{ Not } \tan x = (\pm) \frac{1}{\sqrt{3}} \text{ etc.}$
	(x) = 15 $(x) = any correct second value (75, 105, 165)$ $(x) = cao$	A1 A1√ ^h A1 [4]	ft for (90 ± their 15) or (180 – their 15) All four correct. Extra solns in range 1

247. 9709_w15_ms_11 Q: 3

Answer	Mark	Partial Marks
$4x^2 + x^2 = 1/2$ soi	B1	
Solve as quadratic in x^2	M1	E.g. $(4x^2 - 1)(2x^2 + 1)$ or $x^2 = $ formula
$x^2 = 1/4$	A1	Ignore other solution
$x = \pm 1/2$	A1	
,	[4]	

248. 9709_w15_ms_11 Q: 4

	Answer	Mark	Partial Marks
(i)	$4\cos^2\theta + 15\sin\theta = 0$	M1	Replace $\tan \theta$ by $\frac{\sin \theta}{\cos \theta}$ and multiply by
	$4(1-s^{2}) + 15s = 0 \rightarrow 4\sin^{2}\theta - 15\sin\theta - 4 = 0$	M1A1 [3]	$\sin \theta$ or equivalent Use $c^2 = 1 - s^2$ and rearrange to AG (www)
(ii)	$\sin \theta = -1/4$ $\theta = 194.5 \text{ or } 345.5$	B1 B1B1√ [3]	Ignore other solution Ft from 1st solution, SC B1 both angles in rads (3.39 and 6.03)

 $249.\ 9709_w15_ms_12\ Q:\ 4$

	Answer	Mark	Partial Marks
(i)	$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \left(\frac{1}{s} - \frac{c}{s}\right)^2$	M1	Use of tan = sin/cos
	$\frac{(1-c)^2}{s^2} = \frac{(1-c)^2}{1-c^2}$	M1	Use of $s^2 = 1 - c^2$
	$= \frac{(1-c)(1-c)}{(1-c)(1+c)} \text{ or } \frac{(1-c)^2}{(1-c)(1+c)}$	A1	
	$\equiv \frac{1 - \cos x}{1 + \cos x}$	A1 [4]	ag
(ii)	$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \frac{2}{5}$		
	$\frac{1 - \cos x}{1 + \cos x} = \frac{2}{5} \to \cos x \frac{3}{7}$	M1	Making cosx the subject
	$\rightarrow x = 1.13 \text{ or } 5.16$	A1 A1 [↑] [3]	$2\pi - 1^{st}$ answer.

 $250.\ 9709_w15_ms_13\ Q:\ 7$

	Answer	Mark	Partial Marks
(a)	$1 + 3\sin^2\theta + 4\cos\theta = 0$ $1 + 3(1 - \cos^2\theta) + 4\cos\theta + 0$	M1 M1	Attempt to multiply by $\cos \theta$ Use $c^2 + s^2 = 1$
(b)	$3\cos^{2}\theta - 4\cos\theta - 4 = 0$ $\cos\theta = -2/3$ $\theta = 131.8 \text{ or } 228.2$ $c = b/a \text{cao}$ $d = a - b$	A1 B1 B1B1√ [6] B1 B1 [2]	Ignore other solution Ft for $360 - 1^{st}$ soln. -1 extra solns in range Radians 2.30 & 3.98 scores SCB1 Allow $D = (0, a - b)$

251. 9709_m22_ms_12 Q: 3

Question	Answer	Marks	Guidance
(a)	$^{6}C_{2}\times(3x)^{4}\left(\frac{2}{x^{2}}\right)^{2}$	B1	Can be seen within an expansion.
	15×3 ⁴ ×2 ²	B1	Identified. Powers must be correct.
	4860	B1	Without any power of x
		3	
(b)	Their 4860 and one other relevant term	M1	Using <i>their</i> 4860 and an attempt to find a term in x^{-3}
	Other term = $6C3(3x)^3 \left(\frac{2}{x^2}\right)^3$ or $6C3 \times 3^3 \times 2^3$ or 4320	A1	Must be identified. If M0 scored then SC B1 for 4320 as the only answer.
	[4860 – 4320 =] 540	A1	
		3	

$252.\ 9709_m22_ms_12\ Q:\ 4$

Question	Answer	Marks	Guidance
	$ar^2 = a + d$	B1	
	$ar^4 = a + 5d$	В1	
	$a^{2}r^{4} = a(a+5d)$ leading to $a^{2} + 5ad = (a+d)^{2}$	*M1	Eliminating r or complete elimination of a and d .
	$\begin{bmatrix} 3ad - d^2 = 0 & \text{leading to} \end{bmatrix} d = 3a \text{ OR } [r = 2 & \text{leading to}] d = 3a$	A1	
	$S_{20} = \frac{20}{2} [2a + 19 \times 3a]$	DM1	Use of formula with <i>their</i> d in terms of a .
	590a	A1	
		6	

253. 9709_m21_ms_12 Q: 1

Question	Answer	Marks	Guidance
(a)	$1+5x+10x^2$	B1	
		1	
(b)	$1-12x+60x^2$	B2, 1, 0	B2 all correct, B1 for two correct components.
		2	
(c)	$(1+5x+10x^2)(1-12x+60x^2)$ leading to $60-60+10$	M1	3 products required
	10	A1	Allow 10x ²
		2	

$254.\ 9709_m21_ms_12\ Q:\ 9$

Question	Answer	Marks	Guidance
(a)(i)	$\frac{\cos\theta}{1-r} = \frac{1}{\cos\theta}$	B1	
	$1-r = \cos^2\theta$ leading to $r = 1 - \cos^2\theta$	M1	Eliminate fractions
	$r = \sin^2 \theta$ leading to 2nd term = $\cos \theta \sin^2 \theta$	A1	AG
		3	
(a)(ii)	$S_{12} = \frac{\cos\left(\frac{\pi}{3}\right) \left[1 - \left(\sin^2\left(\frac{\pi}{3}\right)\right)^{12}\right]}{1 - \sin^2\left(\frac{\pi}{3}\right)} = \frac{0.5 \left[1 - \left(0.75\right)^{12}\right]}{1 - 0.75}$	M1	Evidence of correct substitution, use of S_n formula and attempt to evaluate
	1.937	A1	
		2	
(b)	$[d =] \cos \theta \sin^2 \theta - \cos \theta$	M1	Use of $d = u_2 - u_1$
	$-\frac{1}{8}$	A1	
	[85th term =] $\frac{1}{2} + 84 \times -\frac{1}{8}$	M1	Use of $a + 84d$ with a calculated value of d
	-10	A1	
		4	

$255.\ 9709_s21_ms_11\ Q:\ 2$

Question	Answer	Marks	Guidance
	10(2a+19d) = 405	В1	
	20(2a+39d) = 1410	В1	
	Solving simultaneously two equations obtained from using the correct sum formulae $[a = 6, d = 1.5]$	M1	Reach $a = \text{ or } d =$
	Using the correct formula for 60th term with their a and d	M1	
	60th term = 94.5	A1	OE, e.g. $\frac{189}{2}$
		5	

$256.\ 9709_s21_ms_11\ Q:\ 3$

Question	Answer	Marks	Guidance
(a)	243	B1	
	-810x	B1	
	$+1080x^{2}$	B1	
		3	
(b)	$(4+x)^2 = 16 + 8x + x^2$	В1	
	Coefficient of x^2 is $16 \times 1080 + 8 \times (-810) + 243$	M1	Allow if at least 2 pairs used correctly
	11043	A1	Allow 11043x ²
		3	

257. 9709_s21_ms_11 Q: 5

Question	Answer	Marks	Guidance	
	$(-12)^2 = 8k \times 2k$	M1	Forming an equation in k	
	k = -3	A1		
	Using correct formula for S_{∞} [$r = 0.5$, $a = -384$]	M1	With $-1 < r < 1$	
	$S_{\infty} = -768$	A1		
	Alternative method for Question 5			
	$r^2 = \frac{2k}{8k}$	M1		
	$r = [\pm]0.5$	A1		
	Using correct formula for S_{∞} [$r = 0.5$, $a = -384$]	M1	-1< <i>r</i> <1	
	$S_{\infty} = -768$	A1		
		4		

$258.\ 9709_s21_ms_12\ Q:\ 4$

Question	Answer	Marks	Guidance
	[Coefficient of x or $p = 1480$	B1	SOI. Allow 480x even in an expansion.
	$\left[\operatorname{Term in} \frac{1}{x} \operatorname{or} q = \right] [10 \times](2x)^{3} \left(\frac{k}{x^{2}}\right)^{2}$	M1	Appropriate term identified and selected.
	$[10 \times 2^3 k^2 =] 80k^2$	A1	Allow $\frac{80k^2}{x}$
	$p = 6q \text{ used } (480 = 6 \times 80k^2 \text{ or } 80 = 80k^2)$	M1	Correct link used for <i>their</i> coefficient of x and $\frac{1}{x}$ (p and q) with no x's.
	$[k^2 = 1 \Rightarrow] k = \pm 1$	A1	A0 if a range of values given. Do not allow $\pm\sqrt{1}$.
		5	

259. 9709_s21_ms_12 Q: 8

Question	Answer	Marks	Guidance
(a)	$\left(a+b=2\times\frac{3}{2}a\right) \Rightarrow b=2a$	B1	SOI
	$18^2 = a(b+3)$ OE or 2 correct statements about r from the GP, e.g. $r = \frac{18}{a}$ and $b+3=18r$ or $r^2 = \frac{b+3}{a}$	В1	SOI
	$324 = a(2a + 3) \Rightarrow 2a^{2} + 3a - 324[= 0]$ or $b^{2} + 3b - 648[= 0]$ or $6r^{2} - r - 12[= 0]$ or $4d^{2} + 3d - 162[= 0]$	M1	Using the correct connection between AP and GP to form a 3-term quadratic with all terms on one side.
	(a-12)(2a+27)[=0] or $(b-24)(b+27)[=0]$ or $(2r-3)(3r+4)[=0]$ or $(d-6)(4d+27)[=0]$	M1	Solving <i>their</i> 3-term quadratic by factorisation, formula or completing the square to obtain answers for <i>a</i> , <i>b</i> , <i>r</i> or <i>d</i> .
	a = 12, b = 24	A1	WWW. Condone extra 'solution' $a = -13.5, b = -27$ only.
		5	

Question	Answer	Marks	Guidance
(b)	Common difference $d = 6$	B1 FT	SOI. FT their $\frac{a}{2}$
	$S_{20} = \frac{20}{2} (2 \times 12 + 19 \times 6)$	M1	Using correct sum formula with their a, their calculated d and 20.
	1380	A1	
		3	

260. 9709_s21_ms_13 Q: 7

Question	Answer	Marks	Guidance
(a)	$(a-x)^6 = a^6 - 6a^5x + 15a^4x^2 - 20a^3x^3 + \dots$	B2, 1, 0	Allow extra terms. Terms may be listed. Allow a^6x^0 .
		2	
(b)	$\left[\left(1+\frac{2}{ax}\right)\left(15a^4x^2-20a^3x^3+\right) \text{ leading to } \left[x^2\right]\left(15a^4-40a^2\right)\right]$	M1	Attempting to find 2 terms in x^2
	$15a^4 - 40a^2 = -20$ leading to $15a^4 - 40a^2 + 20[=0]$	A1	Terms on one side of the equation
	$(5a^2-10)(3a^2-2) = 0$	M1	OE. M1 for attempted factorisation or solving for a^2 or u (= a^2) using e.g. formula or completing the square
	$a = \pm\sqrt{2}, \ \pm\sqrt{\frac{2}{3}}$	B1 B1	OE exact form only If B0B0 scored then SC B1 for $\sqrt{2}$, $\sqrt{\frac{2}{3}}$ WWW or $\pm 1.41, \pm 0.816$ WWW
		5	

261. 9709_s21_ms_13 Q: 9

Question	Answer	Marks	Guidance
(a)	$ar = \frac{24}{100} \times \frac{a}{1-r}$	M1	Form an equation using a numerical form of the percentage and correct formula for u_2 and S_∞
	$100r^2 - 100r + 24[=0]$	A1	OE. All 3 terms on one side of an equation.
	$(20r-8)(5r-3)[=0] \rightarrow r = \frac{2}{5}, \frac{3}{5}$	A1	Dependent on factors or formula seen from their quadratic.
		3	

Question	Answer	Marks	Guidance
(b)	$3 \times \{(a+4d)\} = \{(2(a+1)+11(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one { } correct
	Simplifies to $a+d=13$	A1	
	$\left[\frac{5}{2}\right] \times 3\left\{ (2a+4d) \right\} = \left[\frac{5}{2}\right] \times 2\left\{ (4(a+1)+4(d+1)) \right\}$	*M1	SOI Attempt to cross multiply with contents of at least one { } correct
	Simplifies to $-a + 2d = 8$	A1	
	Solve 2 linear equations simultaneously	DM1	Elimination or substitution expected
	$d = 7, \ a = 6$	A1	SC B1 for a=6, d=7 without complete working
		6	

262. 9709_w21_ms_11 Q: 1

Question	Answer	Marks	Guidance
(a)	$1 - \frac{1}{x} + \frac{1}{4x^2}$	B1	OE. Multiply or use binomial expansion. Allow unsimplified.
		1	
(b)	$1 + 12x + 60x^2 + 160x^3$	B2, 1, 0	Withhold 1 mark for each error; B2, 1, 0. ISW if more than 4 terms in the expansion.
		2	
(c)	their (1×12) + their (-1×60) + their $(\frac{1}{4}\times160)$	M1	Attempts at least 2 products where each product contains one term from each expansion.
	[12 - 60 + 40 =] -8	A1	Allow –8x.
		2	

$263.\ 9709_w21_ms_11\ Q:\ 4$

Question	Answer	Marks	Guidance
(a)	$\frac{5a}{1-\left(\pm\frac{1}{4}\right)}$	B1	Use of correct formula for sum to infinity.
	$\frac{8}{2} \left[2a + 7\left(-4\right) \right]$	*M1	Use of correct formula for sum of 8 terms and form equation; allow 1 error.
	4a = 8a - 112 leading to $a = [28]$	DM1	Solve equation to reach a value of <i>a</i> .
	a = 28	A1	Correct value.
		4	
(b)	their $28 + (k-1)(-4) = 0$	М1	Use of correct method with their a.
	[k =]8	A1	
		2	

264. 9709_w21_ms_12 Q: 5

Question	Answer	Marks	Guidance
(a)	$[(3^{rd} \text{ term} - 1^{st} \text{ term}) = (5^{th} \text{ term} - 3^{rd} \text{ term}) \text{ leading to} \dots]$ $-6\sqrt{3} \sin x - 2\cos x = 10\cos x + 6\sqrt{3} \sin x$ $[\text{ leading to } -12\sqrt{3} \sin x = 12\cos x]$ OR $[(1^{st} \text{ term} + 5^{th} \text{ term}) = 2 \times 3^{rd} \text{ term leading to} \dots] 12\cos x = -12\sqrt{3}\sin x$	*M1	OE. From the given terms, obtain 2 expressions relating to the common difference of the arithmetic progression, attempt to solve them simultaneously and achieve an equation just involving sinx and cosx.
	Elimination of sinx and cosx to give an expression in tanx $\left[\tan x = -\frac{1}{\sqrt{3}}\right]$	DM1	For use of $\frac{\sin x}{\cos x} = \tan x$
	$[x =] \frac{5\pi}{6} \text{ only}$	A1	CAO. Must be exact.
		3	
(b)	$d = 2\cos x$ or $d = 2\cos(their x)$	B1 FT	Or an equivalent expression involving sinx and cosx e.g. $-3\sqrt{3}\sin(their\ x) - \cos(their\ x) \left[= -\sqrt{3} \right]$ FT for $their\ x$ from (a) only. If not $\pm\sqrt{3}$, must see unevaluated form.
	$S_{25} = \frac{25}{2} \left(2 \times \left(2\cos(their x) \right) + (25-1) \times \left(their d \right) \right)$	M1	Using the correct sum formula with $\frac{25}{2}$, $(25-1)$ and with
	$\left[= 12.5 \left(2 \times \left(-\sqrt{3} \right) + 24 \left(-\sqrt{3} \right) \right) \right]$		a replaced by either $2(\cos(their x))$ or $\pm \sqrt{3}$ and d replaced by either $2(\cos(their x))$ or $\pm \sqrt{3}$.
	-325√3	A1	Must be exact.
		3	

265. 9709_w21_ms_12 Q: 6

Question	Answer	Marks	Guidance
	$ar = 54$ and $\frac{a \text{ or } their a}{1-r} = 243$	B1	SOI
	$\frac{54}{r} = 243(1-r) \text{ leading to } 243r^2 - 243r + 54[=0] [9r^2 - 9r + 2 = 0]$ OR $a^2 - 243a + 13122[=0]$	*M1	Forming a 3-term quadratic expression in r or a using their 2nd term and S_{∞} . Allow \pm sign errors.
	k(3r-2)(3r-1)[=0] OR $(a-81)(a-162)[=0]$	DM1	Solving <i>their</i> 3-term quadratic using factorisation, formula or completing the square. If factorising, factors must expand to give $\pm their$ coefficient of r^2 .
	$54 + \left(their \frac{2}{3}\right) = a \text{ OR } 54 + \left(their 81\right) = r$	DM1	May be implied by final answer.
	Tenth term = $\frac{512}{243}$ [OR $81 \times \left(\frac{2}{3}\right)^9$ OR $54 \times \left(\frac{2}{3}\right)^8$]	A1	OE. Must be exact. Special case: If B1M1DM0DM1 scored then SC B1 can be awarded for the correct final answer.
		5	

266. 9709_w21_ms_12 Q: 8

Question	Answer	Marks	Guidance
(a)	Terms required for x^2 : $-5 \times 2^4 \times ax + 10 \times 2^3 \times a^2 x^2 \Big[= -80ax + 80a^2 x^2 \Big]$	B1	Can be seen as part of an expansion or in correct products.
	$2 \times (\pm their \text{ coefficient of } x) + 4 \times (\pm their \text{ coefficient of } x^2)$	*M1	
	x^2 coefficient is $320a^2 - 160a = -15$ ⇒ $64a^2 - 32a + 3$ ⇒ $(8a - 3)(8a - 1)$	DM1	Forming a 3-term quadratic in a , with all terms on the same side or correctly setting up prior to completing the square and solving using factorisation, formula or completing the square. If factorising, factors must expand to give <i>their</i> coefficient of a^2 .
	$a = \frac{1}{8} \text{ or } a = \frac{3}{8}$	A1	OE. Special case: If DM0 for solving quadratic, SC B1 can be awarded for correct final answers.
		4	

Question	Answer	Marks	Guidance
(b)	$320a^2 - 160a = k \Rightarrow 320a^2 - 160a - k = 0$	M1	Forming a 3-term quadratic in a with all terms on the same side. Allow \pm sign errors.
	Their $b^2 - 4ac = 0$, $[160^2 - 4 \times 320 \times (-k) = 0]$	M1	Any use of discriminant on a 3-term quadratic.
	k = -20	A1	
	$a = \frac{1}{4}$	B1	Condone $a = \frac{1}{4}$ from $k = 20$.
	Alternative method for question 8(b)		
	$320a^2 - 160a = k$ and divide by $320 \left[a^2 - \frac{a}{2} = \frac{k}{320} \right]$	M1	Allow ± sign errors.
	Attempt to complete the square $\left[\left(a - \frac{1}{4} \right)^2 - \frac{1}{16} = \frac{k}{320} \right]$	M1	Must have $\left(a - \frac{1}{4}\right)^2$
	$a = \frac{1}{4}$	A1	
	k = -20	В1	
Question	Answer	Marks	Guidance
(b) cont'd	Alternative method for question 8(b)		
	$320a^2 - 160a = k$ and attempt to differentiate LHS $[640a - 160]$	M1	Allow ± sign errors.
	Setting <i>their</i> $(640a-160)=0$ and attempt to solve.	M1	
	$a = \frac{1}{4}$	A1	
	k = -20	В1	
		4	

267. 9709_w21_ms_13 Q: 2

Question	Answer	Marks	Guidance
(a)	$1+6ax+15a^2x^2$	B1	Terms must be evaluated.
		1	
(b)	their $15a^2 \pm (3 \times their 6a)$	*M1	Expect $15a^2 - 18a$.
	$15a^2 - 18a = -3$	A1	
	(3)(a-1)(5a-1)[=0]	DM1	Dependent on 3-term quadratic. Or solve using formula or completing the square.
	$a=1,\frac{1}{5}$	A1	WWW. If DM0 awarded SC B1 if both answers correct.
		4	

$268.\ 9709_w21_ms_13\ Q:\ 4$

Question	Answer	Marks	Guidance
(a)	84 - 3(n - 1) = 0	М1	OE, SOI. Allow either = 0 or < 0 (to -3).
	Smallest n is 30	A1	SC B2 for answer only $n = 30$ WWW.
		2	
(b)	$\left[\frac{2k}{2} \right] \left[168 + (2k-1)(-3) \right] = \left(\frac{k}{2} \right) \left[168 + (k-1)(-3) \right]$	M1 A1	M1 for forming an equation using correct formula. A1 for at least one side correct.
	k = 19	A1	
		3	

269. 9709_m20_ms_12 Q: 6

	Answer	Mark	Partial Marks
(a)	$5C2 \left[2(x)\right]^{3} \left[\frac{a}{(x^{2})}\right]^{2}$	B1	SOI Can include correct x's
	$10 \times 8 \times a^2 \left(\frac{x^3}{x^4}\right) = 720 \left(\frac{1}{x}\right)$	В1	SOI Can include correct x's
	a = ±3	В1	
		3	
(b)	$5C4 \left[2(x)\right] \left[\frac{their\ a}{\left(x^2\right)}\right]^4$	B1	SOI Their a can be just one of their values (e.g. just 3). Can gain mark from within an expansion but must use their value of a
	810 identified	В1	Allow with x^{-7}
		2	

270. 9709_m20_ms_12 Q: 8

Answer		Mark	Partial Marks
(a)	2%	B1	
		1	
(b)	Bonus = $600 + 23 \times 100 = 2900$	В1	
	Salary = 30000×1.03^{23}	M1	Allow 30000×1.03 ²⁴ (60984)
	= 59207.60	A1	Allow answers of 3significant figure accuracy or better
	their 2900 their 59200	M1	SOI
	4.9(0)%	A1	
		5	

$271.\ 9709_s20_ms_11\ Q:\ 1$

$117 = \frac{9}{2}(2a + 8d)$	B1
Either $91 = S_4$ with 'a' as $a + 4d$ or $117 + 91 = S_{I3}$ (M1 for overall approach. M1 for S_n)	M1M1
Simultaneous Equations $\rightarrow a = 7, d = 1.5$	A1
	4

$272.\ 9709_s20_ms_11\ Q:\ 2$

$\left(kx+\frac{1}{x}\right)^5+\left(1-\frac{2}{x}\right)^8$	B1B1
Coefficient in $\left(kx + \frac{1}{x}\right)^5 = 10 \times k^2$	
(B1 for 10. B1 for k^2)	
Coefficient in $\left(1 - \frac{2}{x}\right)^8 = 8 \times -2$	B2,1,0
$10k^2 - 16 = 74 \to k = 3$	B1
	5

273. 9709_s20_ms_11 Q: 3

(a)	\$36 $000 \times (1.05)^n$ (B1 for $r = 1.05$. M1 method for r th term)	B1M1
	\$53 200 after 8 years.	A1
		3
(b)	$S_{10} = 36000 \frac{\left(1.05^{10} - 1\right)}{\left(1.05 - 1\right)}$	M1
	\$453 000	A1
		2

274. 9709_s20_ms_12 Q: 1

(a)	$(2+3x)(x-\frac{2}{x})^6$	B1
	$(2+3x)(x-\frac{2}{x})^{6}$ Term in x^{2} in $(x-\frac{2}{x})^{6} = 15x^{4} \times \left(\frac{-2}{x}\right)^{2}$	
	Coefficient = 60	B1
		2
(b)	Constant term in $\left(x - \frac{2}{x}\right)^6 = 20x^3 \times \left(\frac{-2}{x}\right)^3$ (-160)	B2, 1
	Coefficient of x^2 in $(2+3x)(x-\frac{2}{x})^6 = 120-480 = -360$	B1FT
		3

275. 9709_s20_ms_12 Q: 4

1st term is -6, 2nd term is -4.5 (M1 for using kth terms to find both a and d)	M1
$\rightarrow a = -6, d = 1.5$	A1 A1
$S_n = 84 \rightarrow 3n^2 - 27n - 336 = 0$	M1
Solution $n = 16$	A1
	5

$276.\ 9709_s20_ms_13\ Q:\ 4$

(a)	$1 + 5a + 10a^2 + 10a^3 + \dots$	B1
		1
(b)	$1+5(x+x^2)+10(x+x^2)^2+10(x+x^2)^3+$ SOI	M1
	$1+5(x+x^2)+10(x^2+2x^3+)+10(x^3+)+$ SOI	A1
	$1 + 5x + 15x^2 + 30x^3 + \dots$	A1
		3

277. 9709_s20_ms_13 Q: 8

(a)	$r = \cos^2 \theta$ SOI	M1
	$S_{\infty} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$	M1
	1	A1
		3
(b)(i)	$d = \sin^2\theta \cos^2\theta - \sin^2\theta$	M1
	$\sin^2\!\theta \! \left(\cos^2\!\theta - 1\right)$	M1
	$-\sin^4 heta$	A1
		3
(b)(ii)	Use of $S_{16} = \frac{16}{2} [2a + 15d]$	M1
	With both $a = \frac{3}{4}$ and $d = -\frac{9}{16}$	A1
	$S_{16} = -55\frac{1}{2}$	A1
		3

278. 9709_w20_ms_11 Q: 5

	Answer	Mark	Partial Marks
(a)	$6C2 \times \left[2(x^2)\right]^4 \times \left[\frac{a}{(x)}\right]^2, 6C3 \times \left[2(x^2)\right]^3 \times \left[\frac{a}{(x)}\right]^3$	B1 B1	SOI Can be seen in an expansion
	$15 \times 2^4 \times a^2 = 20 \times 2^3 \times a^3$	M1	SOI Terms must be from a correct series
	$a = \frac{15 \times 2^4}{20 \times 2^3} = \frac{3}{2}$	A1	OE
		4	
(b)	0	B1	
		1	

279. 9709_w20_ms_11 Q: 8

	Answer	Mark	Partial Marks
(a)	$S = \frac{a}{1-r} , \qquad 2S = \frac{a}{1-R}$	B1	SOI at least one correct
	$\frac{2a}{1-r} = \frac{a}{1-R}$	M1	SOI
	$2 - 2R = 1 - r \rightarrow r = 2R - 1$	A1	AG
		3	
(b)	$ar^2 = aR \rightarrow (a)(2R-1)^2 = R(a)$	*M1	
	$4R^{2} - 5R + 1 (= 0) \rightarrow (4R - 1)(R - 1) (= 0)$	DM1	Allow use of formula or completing square.
	$R = \frac{1}{4}$	A1	Allow $R = 1$ in addition
	$S = \frac{2a}{3}$	A1	
	Alternative method for question 8(b)		
	$ar^2 = aR \rightarrow (a)r^2 = \frac{1}{2}(r+1)(a)$	*M1	Eliminating 1 variable
	$2r^2 - r - 1 (= 0) \to (2r + 1)(r - 1) (= 0)$	DM1	Allow use of formula or completing square. Must solve a quadratic.
	$r = -\frac{1}{2}$	A1	Allow $r = 1$ in addition
	$S = \frac{2a}{3}$	A1	
		4	

 $280.\ 9709_w20_ms_12\ Q:\ 1$

	Answer	Mark	Partial Marks
	Coefficient of x^3 in $(1-2x)^5$ is -80	B1	Can be seen in an expansion but must be simplified correctly.
	Coefficient of x^2 in $(1-2x)^5$ is 40	В1	
	Coefficient of x^3 in $(1+kx)(1-2x)^5$ is $40k-80=20$	M1	Uses the relevant two terms to form an equation = 20 and solves to find k . Condone x^3 appearing in some terms if recovered.
	$(k=)\frac{5}{2}$	A1	
		4	

281. 9709_w20_ms_12 Q: 2

Answer	Mark	Partial Marks
$(-2p)^2 = (2p+6) \times (p+2) \text{ or } \frac{-2p}{2p+6} = \frac{p+2}{-2p}$	M1	OE. Using "a, b, c then $b^2 = ac$ " or $a = 2p + 6$, $ar = -2p$ and $ar^2 = p + 2$ to form a correct relationship in terms of p only
$(2p^2-10p-12=0)p=6$	A1	
$a = 18$ and $r = -\frac{2}{3}$	A1	
$ (s_{\infty}) = their \ a \div (1 - their \ r) $ $ \left(= 18 + \frac{5}{3} \right) $	M1	Correct formula used with their values for a and r , $ r < 1$ Both $a \& r$ from the same value of p.
$(s_{\infty}=)10.8$	A1	OE. A0 if an extra solution given
		SC B2 for $s_{\infty} = \frac{2p+6}{1-\frac{-2p}{2p+6}} or \frac{2p+6}{1-\frac{p+2}{-2p}}$ ignore any subsequent algebraic simplification.
	5	

282. 9709_w20_ms_12 Q: 4

Answer	Mark	Partial Marks
S_x and S_{x+1}	M1	Using two values of n in the given formula
a = 5, d = 2	A1 A1	
$a + (n-1) d > 200 \rightarrow 5 + 2(k-1) > 200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n
(k =) 99	A1	Condone ≥ 99
Alternative method for question 4		
$\frac{n}{2}(2a + (n-1)d) \equiv n^2 + 4n \to \left(\frac{d}{2} = 1, a - \frac{1}{2}d = 4\right)$	M1	Equating two correct expressions of S_n and equating coefficients of n and n^2
d = 2, a = 5	A1 A1	
$a + (n-1) d > 200 \rightarrow 5 + 2(k-1) > 200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n
(k=) 99	A1	Condone ≥ 99
Alternative method for question 4		
$sum_k - sum_{k-1} \rightarrow k^2 + 4k - (k-1)^2 - 4(k-1)$	M1 A1	Using given formula with consecutive expressions subtracted. Allow <i>k</i> +1 and <i>k</i> .
2k+3>200 or = 200	M1 A1	Simplifying to a linear equation or inequality
(k =) 99	A1	Condone ≥ 99
	5	

283. 9709_w20_ms_13 Q: 5

Answer	Mark	Partial Marks
$\left[7C1a^6b(x)\right], \left[7C2a^5b^2(x^2)\right], \left[7C4a^3b^4(x^4)\right]$	B2, 1, 0	SOI, can be seen in an expansion.
$\boxed{\frac{7C2a^5b^2(x^2)}{7C1a^6b(x)} = \frac{7C4a^3b^4(x^4)}{7C2a^5b^2(x^2)} \rightarrow \frac{21a^5b^2}{7a^6b} = \frac{35a^3b^4}{21a^5b^2}}$	M1 A1	M1 for a correct relationship OE (Ft from <i>their</i> 3 terms). For A1 binomial coefficients must be correct & evaluated.
$\frac{a}{b} = \frac{5}{9}$	A1	OE
	5	

284. $9709_{w20}_{s}_{13} = 2.7$

	Answer	Mark	Partial Marks
(a)	$(d=)-\frac{\tan^2\theta}{\cos^2\theta}-\frac{1}{\cos^2\theta}$	B1	Allow sign error(s). Award only at form $(d =)$ stage
	$-\frac{\sin^2\theta}{\cos^4\theta} - \frac{1}{\cos^2\theta} \text{or} \frac{-\sec^2\theta}{\cos^2\theta}$	M1	Allow sign error(s). Can imply B1
	$\frac{-\sin^2\theta - \cos^2\theta}{\cos^4\theta} \text{ or } \frac{-\frac{1}{\cos^2\theta}}{\cos^2\theta}$	M1	
	$-\frac{1}{\cos^4 \theta}$	A1	AG, WWW
		4	
(b)	$a = \frac{4}{3}, d = -\frac{16}{9}$	B1	SOI, both required. Allow $a = \frac{1}{\frac{3}{4}}$, $d = -\frac{1}{\frac{9}{16}}$
	$u_{13} = \frac{1}{\cos^2 \theta} - \frac{12}{\cos^4 \theta} = \frac{4}{3} + 12 \left(\frac{-16}{9}\right)$	M1	Use of correct formula with <i>their a</i> and <i>their d</i> . The first 2 steps could be reversed
	-20	A1	www
		3	

 $285.\ 9709_m19_ms_12\ Q:\ 1$

Answer	Mark	Partial Marks
$5C3[(-)(px)^3]$ soi	В1	Can be part of expansion. Condone omission of – sign
(-1) 10 $p^3 = -2160$ then \div and cube root	M1	Condone omission of – sign.
p=6	A1	
	3	

 $286.\ 9709_m19_ms_12\ Q{:}\ 6$

	Answer	Mark	Partial Marks
(i)	$S_n = \frac{p(2^n - 1)}{2 - 1} \text{ soi}$	M1	
	$p(2^{n}-1)>1000 p \rightarrow 2^{n}>1001$ AG	A1	
		2	
(ii)	p + (n-1)p = 336	B1	Expect $np = 336$
	$\frac{n}{2} \left[2p + (n-1)p \right] = 7224$	B1	Expect $\frac{n}{2}(p+np) = 7224$
	Eliminate n or p to an equation in one variable	M1	Expect e.g. $168(1+n) = 7224$ or $1 + 336/p = 43$ etc
	n = 42, p = 8	A1A1	
		5	

287. 9709_s19_ms_11 Q: 1

	Answer	Mark	Partial Marks
(i)	Ind term = $(2x)^3 \times \left(\frac{k}{x}\right)^3 \times {}_{6}C_3$	B2,1,0	Term must be isolated
	$=540 \rightarrow k = 1\frac{1}{2}$	B1	
		3	
(ii)	Term, in x^2 is $(2x)^4 \times \left(\frac{k}{x}\right)^2 \times {}_{6}C_2$	B1	All correct – even if k incorrect.
	$15 \times 16 \times k^2 = 540 \text{ (or } 540 x^2\text{)}$	B1	FT For $240k^2$ or $240k^2x^2$
		2	

288. 9709_s19_ms_11 Q: 8

	Answer	Mark	Partial Marks
(a)	$ar^2 = 48$, $ar^3 = 32$, $r = \frac{4}{3}$ or $a = 108$	M1	Solution of the 2 eqns to give r (or a). A1 (both)
	$r = \frac{1}{3}$ and $a = 108$	A1	
	$S\infty = \frac{108}{\frac{1}{3}} = 324$	A1	FT Needs correct formula and r between -1 and 1 .
		3	
(b)	Scheme A $a = 2.50$, $d = 0.16$ S _n = $12(5 + 23 \times 0.16)$	M1	Correct use of either AP S _n formula.
	$S_n = 104$ tonnes.	A1	
	Scheme B $a = 2.50$, $r = 1.06$	B1	Correct value of r used in GP.
	$=\frac{2.5(1.06^{24}-1)}{1.06-1}$	M1	Correct use of either S_n formula.
	$S_n = 127$ tonnes.	A1	
		5	

289. 9709_s19_ms_12 Q: 1

 Answer	Mark	Partial Marks
For $\left(\frac{2}{x} - 3x\right)^5$ term in x is 10 or 5C ₃ or 5C2 × $\left(\frac{2}{x}\right)^2$ × $(-3x)^3$ or	B2,1	3 elements required. –1 for each error with or without <i>x</i> 's. Can be seen in an expansion.
$\left(\frac{2}{x}\right)^5 \frac{5.4.3}{3!} \left(-\frac{3}{2}x^2\right)^3 \text{ or } (-3x)^5 \frac{5.4}{2!} \left(\frac{2}{3x^2}\right)^2$		
-1080 identified	B1	Allow –1080x Allow if expansion stops at this term. Allow from expanding brackets.
	3	

290. 9709_s19_ms_12 Q: 10

	Answer	Mark	Partial Marks
(a)(i)	$S_{10} = S_{15} - S_{10} \text{ or } S_{10} = S_{(11 \text{ to } 15)}$	M1	Either statement seen or implied.
	5(2a+9d) oe	B1	
	7.5(2a + 14d) – 5(2a + 9d) or $\frac{5}{2}$ [(a + 10d) + (a+14d)] oe	A1	
	$d = \frac{a}{3} AG$	A1	Correct answer from convincing working
		4	Condone starting with $d = \frac{a}{3}$ and evaluating both summations as 25a.
(a)(ii)	(a+9d) = 36 + (a+3d)	M1	Correct use of $a+(n-1)d$ twice and addition of ± 36
	a = 18	A1	
		2	Correct answer www scores 2/2
(b)	$S_{\infty} = 9 \times S_4; \frac{a}{1-r} = 9 \frac{a(1-r^4)}{1-r} \text{ or } 9(a+ar+ar^2+ar^3)$	B1	May have 12 in place of a.
	$9(1-r^n) = 1$ where $n = 3,4$ or 5	M1	Correctly deals with a and correctly eliminates $(1-r)^2$
	$r^4 = \frac{8}{9} \text{ oe}$	A1	
	(5 th term =) 10½ or 10.7	A1	
		4	Final answer of 10.6 suggests premature approximation – award 3/4 www.

291. 9709_s19_ms_13 Q: 2

	Answer	Mark	Partial Marks
(i)	$\frac{-5}{x} + \frac{5}{8x^3} - \frac{1}{32x^5} \text{ (or } -5x^{-1} + \frac{5}{8}x^{-3} - \frac{1}{32}x^{-5}\text{)}$	B1B1B1	B1 for each correct term SCB1 for both $\frac{+5}{x}$ & $\frac{+1}{32x^5}$
		3	
(ii)	$1 \times 20 + 4 \times their(-5) = 0$	M1A1	Must be from exactly 2 terms SCB1 for 20 + 20 = 40
		2	

292. 9709_s19_ms_13 Q: 5

	Answer	Mark	Partial Marks
(i)	$\frac{x}{2} [2 + (x-1)(-/+0.02)]$ or $1.01x - 0.01x^2$ or $0.99x + 0.01x^2$ oe	B1	Allow – or + 0.02. Allow n used
		1	
(ii)	Equate to 13 then <i>either</i> simplify to a 3-term quadratic equation or find at least 1 solution (need not be correct) to an unsimplified quadratic	M1	Expect $n^2 - 101n + 1300$ (=0) or $0.99x + 0.01x^2 = 13$. Allow x used
	16	A1	Ignore 85.8 or 86
		2	
(iii)	Use of $\frac{a(1-r^n)}{1-r}$ with $a = 1, r = 0.92, n = 20$ soi	M1	
	(=) 10.1	A1	
	Use of $\left(S_{\infty}=\right)\frac{a}{1-r}$ with $a=1, r=0.92$	М1	OR $\frac{(1)(1-0.92^n)}{1-0.92} = 13 \rightarrow 0.92^n = -0.04$ oe
	$S_{\infty} = 12.5$ so never reaches target or ≤ 13	A1	Conclusion required – 'Shown' is insufficient No solution so never reaches target or < 13
		4	

 $293.\ 9709_w19_ms_11\ Q:\ 1$

Answer	Mark	Partial Marks
$6C2 \times (2x)^4 \times \frac{1}{(4x^2)^2}$	В1	SOI SC: Condone errors in $(4^{-1})^2$ evaluation or interpretation for B1 only
$15 \times 2^4 \times \frac{1}{4^2}$	B1	Identified as required term.
15	B1	
	3	

 $294.\ 9709_w19_ms_11\ Q:\ 4$

	Answer	Mark	Partial Marks
(i)	Identifies common ratio as 1.1	B1	
	Use of $x(1.1)^{20} = 20$	М1	SOI
	$x \left(= \frac{20}{(1.1)^{20}} \right) = 3.0$	A1	Accept 2.97
		3	
(ii)	their3.0× $\frac{\left[(1.1)^{21}-1\right]}{1.1-1} \to 192$	M1 A1	Correct formula used for M mark. Allow 2.97 used from (i) Accept 190 from $x = 2.97$
		2	

295. 9709_w19_ms_12 Q: 1

Answer	Mark	Partial Marks
$\frac{6x}{2}, 15 \times \frac{x^2}{4}$	B1 B1	OE In or from a correct expansion. Can be implied by correct equation.
$\times (4 + ax) \rightarrow 3a + 15 = 3$	M1	2 terms in x^2 equated to 3 or $3x^2$. Condone x^2 on one side only.
a = -4	A1	CAO
	4	

296. 9709_w19_ms_12 Q: 8

	Answer	Mark	Partial Marks
(a)(i)	$21st term = 13 + 20 \times 1.2 = 37 (km)$	B1	
		1	
(a)(ii)	$S_{21} = \frac{1}{2} \times 21 \times (26 + 20 \times 1.2) \text{ or } \frac{1}{2} \times 21 \times (13 + their 37)$	M1	A correct sum formula used with correct values for a , d and n .
	525 (km)	A1	
		2	
(b)(i)	$\frac{x-3}{x} = \frac{x-5}{x-3}$ oe (or use of a, ar and ar ²)	M1	Any valid method to obtain an equation in one variable.
	(a = or x =) 9	A1	
		2	
(b)(ii)	$r = \left(\frac{x-3}{x}\right) \text{ or } \left(\frac{x-5}{x-3}\right) \text{ or } \sqrt{\frac{x-5}{x}} = \frac{2}{3}. \text{ Fourth term} = 9 \times (\frac{2}{3})^3$	M1	Any valid method to find r and the fourth term with their $a \& r$.
	2½ or 2.67	A1	OE, AWRT
		2	
(b)(iii)	$S\infty = \frac{a}{1-r} = \frac{9}{1-\frac{2}{3}}$	M1	Correct formula and using <i>their 'r'</i> and 'a', with $ r < 1$, to obtain a numerical answer.
	27 or 27.0	A1	AWRT
		2	

297. 9709_w19_ms_13 Q: 1

	Answer	Mark	Partial Marks
(i)	$1+6y+15y^2$	B1	CAO
		1	
(ii)	$1+6(px-2x^2)+15(px-2x^2)^2$	M1	SOI. Allow $6C1 \times 1^5 (px - 2x^2)$, $6C2 \times 1^4 (px - 2x^2)^2$
	$(15p^2 - 12)(x^2) = 48(x^2)$	A1	1 term from each bracket and equate to 48
	p = 2	A1	SC: A1 $p = 4$ from $15p - 12 = 48$
		3	

298. 9709_w19_ms_13 Q: 9

	Answer	Mark	Partial Marks
(i)	$\frac{5k-6}{3k} = \frac{6k-4}{5k-6} \to (5k-6)^2 = 3k(6k-4)$	M1	OR any valid relationship
	$25k^2 - 60k + 36 = 18k^2 - 12k \rightarrow 7k^2 - 48k + 36$	A1	AG
		2	
(ii)	$k = \frac{6}{7} , 6$	B1B1	Allow 0.857(1) for $\frac{6}{7}$
	When $k = \frac{6}{7}$, $r = -\frac{2}{3}$	B1	Must be exact
	When $k = 6$, $r = \frac{4}{3}$	B1	
		4	
(iii)	Use of $S_{\infty} = \frac{a}{1-r}$ with $r = their - \frac{2}{3}$ and $a = 3 \times their - \frac{6}{7}$	M1	Provided $0 < their - 2/3 < 1$
	$\left[\frac{18}{7} \div \left(1 + \frac{2}{3}\right) = \frac{54}{35} \text{ or } 1.54\right]$	A1	FT if 0.857(1) has been used in part (ii).
		2	

299. 9709_m18_ms_12 Q: 2

	Answer	Mark	Partial Marks
(i)	$^{7}C_{2}(+/-2x)^{2} \text{ or } ^{7}C_{3}(-2x)^{3}$	M1	SOI, Allow for either term correct. Allow + or – inside first bracket.
	$84(x^2), -280(x^3)$	A1A1	
		3	
(ii)	$2 \times (their - 280) + 5 \times (their 84)$ only	М1	
	-140	A1	
		2	

 $300.\ 9709_m18_ms_12\ Q:\ 3$

	Answer	Mark	Partial Marks
(i)	$40 + 60 \times 1.2 = 112$	M1A1	Allow 1.12 m. Allow M1 for 40 + 59 × 1.2 OE
		2	

	Answer	Mark	Partial Marks
(ii)	Find rate of growth e.g. 41.2/40 or 1.2/40	*M1	SOI, Also implied by 3%, 0.03 or 1.03 seen
	$40 \times (1 + their \ 0.03)^{60 \text{ or } 59}$	DM1	
	236	A1	Allow 2.36 m
		3	

301. 9709_s18_ms_11 Q: 1

	Answer	Mark	Partial Marks
(i)	$(1-2x)^5 = 1-10x + 40x^2$ (no penalty for extra terms)	B2,1	Loses a mark for each incorrect term. Treat $-32x^5 + 80x^4 - 80x^3$ as MR -1
		2	
(ii)	$\to (1 + ax + 2x^2)(1 - 10x + 40x^2)$		
	$3 \text{ terms in } x^2 \rightarrow 40 - 10a + 2$	M1 A1FT	Selects 3 terms in x^2 . FT from (i)
	Equate with $12 \rightarrow a = 3$	A1	CAO
		3	

$302.\ 9709_s18_ms_11\ Q:\ 8$

	Answer	Mark	Partial Marks
(a)	$ar = 12$ and $\frac{a}{1-r} = 54$	B1 B1	CAO, OE CAO, OE
	Eliminates a or $r \to 9r^2 - 9r + 2 = 0$ or $a^2 - 54a + 648 = 0$	M1	Elimination leading to a 3-term quadratic in a or r
	$\rightarrow r = \frac{2}{3} \text{ or } \frac{1}{3} \text{ hence to } a \rightarrow a = 18 \text{ or } 36$	A1	Needs both values.
		4	
(b)	nth term of a progression is $p + qn$		
(b)(i)	first term = $p + q$. Difference = q or last term = $p + qn$	B1	Need first term and, last term or common difference
	$S_n = \frac{n}{2} (2(p+q) + (n-1)q) \text{ or } \frac{n}{2} (2p+q+nq)$	M1A1	Use of S_n formula with their a and d . ok unsimplified for A1.
		3	
(b)(ii)	Hence $2(2p+q+4q)=40$ and $3(2p+q+6q)=72$	DM1	Uses their S_n formula from (i)
	Solution $\rightarrow p = 5$ and $q = 2$ [Could use S_n with a and $d \rightarrow a = 7$, $d = 2 \rightarrow p = 5$, $q = 2$.]	A1	Note: answers 7, 2 instead of 5, 2 gets M1A0 – must attempt to solve for M1
		2	

303. 9709_s18_ms_12 Q: 1

Answer	Mark	Partial Marks
Coefficient of x^2 in $\left(2 + \frac{x}{2}\right)^6$ is ${}_6C_2 \times 2^4 \times (\frac{1}{2})^2 (x^2) (= 60)$	B2,1,0	3 things wanted -1 each incorrect component, must be multiplied together. Allow ${}_6C_4$, $\binom{6}{4}$ and factorial equivalents. Marks can be awarded for correct term in an expansion.
Coefficient of x^2 in $(a+x)^5$ is ${}_5C_2 \times a^3 (x^2) (= 10a^3)$	В1	Marks can be awarded for correct term in an expansion.
\rightarrow 60 + 10 a^3 = 330	M1	Forms an equation 'their 60° + 'their $10a^{3^{\circ}}$ = 330, OK with x^2 in all three terms initially. This can be recovered by a correct answer.
a = 3	A1	Condone ±3 as long as +3 is selected.
	5	

$304.\ 9709_s18_ms_12\ Q:\ 3$

	Answer	Mark	Partial Marks
(i)	$r = 1.02$ or $\frac{102}{100}$ used in a GP in some way.	В1	Can be awarded here for use in S_n formula.
	Amount in 12th week = 8000 (their r) ¹¹ or (their a from $\frac{8000}{their r}$) (their r) ¹²	M1	Use of a^{n-1} with a = 8000 & $n = 12$ or with a = $\frac{8000}{1.02}$ and $n = 13$.
	= 9950 (kg) awrt	A1	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of terms.
		3	

	Answer	Mark	Partial Marks
(ii)	In 12 weeks, total is $\frac{8000((their r)^{12} - 1)}{((their r) - 1)}$	M1	Use of S_n with a = 8000 and $n = 12$ or addition of 12 terms.
	= 107000 (kg) awrt	A1	Correct answer but no working 2/2
		2	

$305.\ 9709_s18_ms_13\ Q:\ 2$

Answer	Mark	Partial Marks
$_{3}C_{3} x^{2} \left(\frac{-2}{x}\right)^{3} SOI$	B2,1,0	-80 www scores B3. Accept ₅ C ₂ .
$-80 \text{ Accept } \frac{-80}{x}$	В1	+80 without clear working scores SCB1
	3	

$306.\ 9709_s18_ms_13\ Q:\ 3$

Answer	Mark	Partial Marks
$\left[\frac{a(1-r^n)}{1-r}\right] \left[\div\right] \left[\frac{a}{1-r}\right]$	M1M1	Correct formulae <u>used</u> with/without $r = 0.99$ or $n = 100$.
	DM1	Allow numerical a (M1M1). 3rd M1 is for division $\frac{-n}{S_{\infty}}$ (or ratio)
		SOI
$1-0.99^{100}$ SOI OR $\frac{63(a)}{100(a)}$ SOI	A1	Could be shown multiplied by 100(%). Dep. on DM1
63(%) Allow 63.4 or 0.63 but not 2 infringements (e.g. 0.634, 0.63%)	A1	$n = 99$ used scores Max M3. Condone $a = 0.99$ throughout $S_n = S_\infty$ (without division shown) scores 2/5
	5	

307. 9709_w18_ms_11 Q: 4

	Answer	Mark	Partial Marks
(i)	$S_{80} = \frac{80}{2} [12 + 79 \times (-4)] \text{ or } \frac{80}{2} [6 + l], l = -310$	M1A1	Correct formula (M1). Correct a , d and n (A1) .
	-12 160	A1	
		3	
(ii)	$S_{\infty} = \frac{6}{1 - \frac{1}{3}} = 9$	M1A1	Correct formula with $ r < 1$ for M1
		2	

308. 9709_w18_ms_12 Q: 1

Answer	Mark	Partial Marks
For a correctly selected term in $\frac{1}{x^2}$: $(3x)^4$ or 3^4	В1	Components of coefficient added together 0/4 B1 expect 81
$\times \left(\frac{2}{3x^2}\right)^3 \text{ or } (2/3)^3$	B1	B1 expect 8/27
$\times_7 C_3$ or $_7 C_4$	B1	B1 expect 35
$\rightarrow 840 \text{ or } \frac{840}{x^2}$	В1	All of the first three marks can be scored if the correct term is seen in an expansion <u>and it is selected</u> but then wrongly simplified.
		SC: A completely correct unsimplified term seen in an expansion but not correctly selected can be awarded B2.
	4	

309. 9709_w18_ms_12 Q: 5

	Answer	Mark	Partial Marks
(i)	From the AP: $x-4=y-x$	B1	Or equivalent statement e.g. $y = 2x - 4$ or $x = \frac{y+4}{2}$.
	From the GP: $\frac{y}{x} = \frac{18}{y}$	В1	Or equivalent statement e.g. $y^2 = 18x$ or $x = \frac{y^2}{18}$.
	Simultaneous equations: $y^2 - 9y - 36 = 0$ or $2x^2 - 17x + 8 = 0$	M1	Elimination of either x or y to give a three term quadratic $(=0)$
	OR		
	$4+d=x, 4+2d=y \to \frac{4+2d}{4+d}=r$ oe	B1	
	$(4+d)\left(\frac{4+2d}{4+d}\right)^2 = 18 \to 2d^2 - d - 28 = 0$	M1	Uses ar ² = 18 to give a three term quadratic (= 0)
	d=4	B1	Condone inclusion of $d = \frac{-7}{2}$ oe

	Answer	Mark	Partial Marks
(i)	OR		
	From the GP $\frac{y}{x} = \frac{18}{y}$	B1	
		В1	
	$4 + 2\left(\frac{y^2}{18} - 4\right) = y \rightarrow y^2 - 9y - 36 = 0$	M1	
	x = 8, y = 12.	A1	Needs both x and y. Condone $\left(\frac{1}{2}, -3\right)$ included in final
			answer. Fully correct answer www 4/4.
		4	
(ii)	AP 4th term = 16	В1	Condone inclusion of $\frac{-13}{2}$ oe
	GP 4th term = $8 \times \left(\frac{12}{8}\right)^3$	M1	A valid method using their x and y from (i).
	= 27	A1	Condone inclusion of -108
			Note: Answers from fortuitous $x = 8$, $y = 12$ in (i) can only score M1. Unidentified correct answer(s) with no working seen after valid $x = 8$, $y = 12$ to be credited with appropriate marks.
		3	

310. 9709_w18_ms_13 Q: 1

Answer	Mark	Partial Marks
$7C5 x^2 (-2/x)^5$ soi	B1	Can appear in an expansion. Allow 7C2
21×-32 soi	B1	Identified. Allow $(21x^2) \times (-32 x^{-5})$. Implied by correct answer
-672	B1	Allow $\frac{-672}{x^3}$. If 0/3 scored, 672 scores SCB1
	3	

311. 9709_w18_ms_13 Q: 5

Answer	Mark	Partial Marks
a+(n-1)3=94	B1	
$\frac{n}{2}[2a+(n-1)3]=1420$ OR $\frac{n}{2}[a+94]=1420$	B1	
Attempt elimination of a or n	M1	
$3n^2 - 191n + 2840 (= 0)$ OR $a^2 - 3a - 598 (= 0)$	A1	3-term quadratic (not necessarily all on the same side)
n = 40 (only)	A1	
a = -23 (only)	A1	Award 5/6 if a 2nd pair of solutions (71/3, 26) is given in addition or if given as the only answer.
	6	

312. 9709_m17_ms_12 Q: 2

Answer	Mark	Partial Marks
$5C2\left(\frac{1}{ax}\right)^3 \left(2ax^2\right)^2 \text{ soi}$	В1	Seen or implied. Can be part of an expansion.
$10 \times \frac{1}{a^3} \times 4a^2 = 5 \text{ soi}$	M1A1	M1 for identifying relevant term and equating to 5, all correct. Ignore extra x
a = 8 cao	A1	
Total:	4	

313. 9709_s17_ms_11 Q: 1

Answer	Mark	Partial Marks
$(3-2x)^6$		
Coeff of $x^2 = 3^4 \times (-2)^2 \times {}_{6}C_2 = a$	B3,2,1	Mark unsimplified forms1 each independent error but powers
Coeff of $x^3 = 3^3 \times (-2)^3 \times {}_{6}C_3 = b$		must be correct. Ignore any 'x' present.
$\frac{a}{b} = -\frac{9}{8}$	В1	OE. Negative sign must appear before or in the numerator
Total:	4	

$314.\ 9709_s17_ms_11\ Q:\ 4$

	Answer	Mark	Partial Marks
(a)	$a = 32, a + 4d = 22, \rightarrow d = -2.5$	В1	
	$a + (n-1)d = -28 \rightarrow n = 25$	B1	
	$S_{25} = \frac{25}{2} (64 - 2.5 \times 24) = 50$	M1 A1	M1 for correct formula with $n = 24$ or $n = 25$
	Total:	4	
(b)	a = 2000, r = 1.025	B1	$r = 1 + 2.5\%$ ok if used correctly in S_n formula
	$S_{10} = 2000(\frac{1.025^{10} - 1}{1.025 - 1}) = 22400$ or a value which rounds to this	M1 A1	M1 for correct formula with $n = 9$ or $n = 10$ and their a and r
			SR: correct answer only for $n = 10$ B3, for $n = 9$, B1 (£19 900)
	Total:	3	

315. 9709_s17_ms_12 Q: 1

	Answer	Mark	Partial Marks
(i)	Coefficient of $x = 80(x)$	B2	Correct value must be selected for both marks. SR +80 seen in an expansion gets B1 or -80 gets B1 <u>if selected.</u>
	Total:	2	
(ii)	Coefficient of $\frac{1}{x} = -40 \left(\frac{1}{x}\right)$	В2	Correct value soi in (ii), if powers unsimplified only allow if selected. SR +40 soi in (ii) gets B1 .
	Coefficient of $x = (1 \times \text{their } 80) + (3 \times \text{their } -40) = -40(x)$	M1 A1	Links the appropriate 2 terms only for M1.
	Total:	4	

316. 9709_s17_ms_12 Q: 7

	Answer	Mark	Partial Marks
(a)	$(S_n =) \frac{n}{2} [32 + (n-1)8]$ and 20000	M1	M1 correct formula used with d from $16 + d = 24$
		A1	A1 for correct expression linked to 20000.
	$\rightarrow n^2 + 3n - 5000 (<,=,> 0)$	DM1	Simplification to a three term quadratic.
	\rightarrow (n = 69.2) \rightarrow 70 terms needed.	A1	Condone use of 20001 throughout. Correct answer from trial and improvement gets 4/4.
	Total:	4	

	Answer	Mark	Partial Marks
(b)	$a = 6, \frac{a}{1-r} = 18 \rightarrow r = \frac{2}{3}$	M1A1	Correct $S\infty$ formula used to find r .
	New progression $a = 36$, $r = \frac{4}{9}$ oe	M1	Obtain new values for a and r by any valid method.
	New $S\infty = \frac{36}{1 - \frac{4}{9}} \to 64.8 \text{ or } \frac{324}{5} \text{ oe}$	A1	(Be aware that $r = -\frac{1}{3}$ leads to 64.8 but can only score M marks)
	Total:	4	

317. 9709_s17_ms_13 Q: 1

Answer	Mark	Partial Marks
$7C1 \times 2^{6} \times a(x), 7C2 \times 2^{5} \times \left[a(x)\right]^{2}$	B1 B1	SOI Can be part of expansion. Condone ax^2 only if followed by a^2 .
		ALT $2^{7}[1+ax/2]^{7} \to 7C1[a(x)/2] = 7C2[a(x)/2]^{2}$
$a = \frac{7 \times 2^6}{21 \times 2^5} = \frac{2}{3}$	B1	Ignore extra soln $a = 0$. Allow $a = 0.667$. Do not allow an extra x in the answer
Total:	3	

318. 9709_s17_ms_13 Q: 2

	Answer	Mark	Partial Marks
(i)	$S = \frac{r^2 - 3r + 2}{1 - r}$	M1	
	$S = \frac{(r-1)(r-2)}{1-r} = \frac{-(1-r)(r-2)}{1-r} = 2 - r \text{ OR}$ $\frac{(1-r)(2-r)}{1-r} = 2 - r \text{ OE}$	A1	AG Factors must be shown. Expressions requiring minus sign taken out must be shown
	Total:	2	
(ii)	Single range $1 < S < 3$ or $(1, 3)$	В2	Accept $1 < 2 - r < 3$. Correct range but with $S = 2$ omitted scores SR B1 $1 \le S \le 3$ scores SR B1 . [S > 1 and S < 3] scores SR B1 .
	Total:	2	

319. 9709_w17_ms_11 Q: 3

	Answer	Mark	Partial Marks
(i)	$\frac{3a}{1-r} = \frac{a}{1+2r}$	М1	Attempt to equate 2 sums to infinity. At least one correct
	3+6r=1-r	DM1	Elimination of 1 variable (a) at any stage and multiplication
	$r=-\frac{2}{7}$	A1	
		3	
(ii)	$\frac{1}{2} n \left[2 \times 15 + (n-1)4 \right] = \frac{1}{2} n \left[2 \times 420 + (n-1)(-5) \right]$	M1A1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	n = 91	A1	
		3	

$320.\ 9709_w17_ms_12\ Q:\ 1$

Answer	Mark	Partial Marks
EITHER: Term is ${}^{9}C_{3} \times 2^{6} \times (-\frac{1}{4})^{3}$	(B1, B1, B1)	OE
ORI: $ \left(\frac{8x^3 - 1}{4x^2}\right)^9 = \left(\frac{1}{4x^2}\right)^9 (8x^3 - 1)^9 \text{ or } -\left(\frac{1}{4x^2}\right)^9 (1 - 8x^3)^9 $		
Term is $-\frac{1}{4^9} \times {}^9C_3 \times 8^6$	(B1, B1, B1)	OE
$OR2:$ $(2x)^9 \left(1 - \frac{1}{8x^3}\right)^9$		
Term is $2^9 \times {}^9C_3 \times \left(-\frac{1}{8}\right)^3$	(B1, B1, B1)	OE
Selected term, which must be independent of $x = -84$	B1	
	4	

321. 9709_w17_ms_12 Q: 3

	Answer	Mark	Partial Marks
(a)	Uses $r = (1.05 \text{ or } 105\%)^{9, 10 \text{ or } 11}$	B1	Used to multiply repeatedly or in any GP formula.
	New value = $10000 \times 1.05^{10} = (\$)16300$	B1	
		2	

	Answer	Mark	Partial Marks
(b)	$EITHER: n = 1 \rightarrow 5 $	(B1	Uses $n = 1$ to find a
	$n=2 \rightarrow 13$	B1	Correct S_n for any other value of n (e.g. $n = 2$)
	$a + (a+d) = 13 \to d = 3$	M1 A1)	Correct method leading to $d =$
	$OR: \left(\frac{n}{2}\right) (2a + (n-1)d) = \left(\frac{n}{2}\right) (3n+7)$		$\left(\frac{n}{2}\right)$ maybe be ignored
	$\therefore dn + 2a - d = 3n + 7 \longrightarrow dn = 3n \longrightarrow d = 3$	(*M1A1	Method mark awarded for equating terms in n from correct S_n formula.
	2a - (their 3) = 7, a = 5	DM1 A1)	
		4	

322. 9709_w17_ms_13 Q: 1

Answer	Mark	Partial Marks
$\frac{1}{2}n[-24+(n-1)6] \sim 3000$ Note: \sim denotes <u>any</u> inequality or equality	M1	Use correct formula with RHS \approx 3000 (e.g. 3010).
$(3)(n^2-5n-1000)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
n~34.2 (&-29.2)	A1	
35. Allow $n \geqslant 35$	A1	
	4	

323. 9709_w17_ms_13 Q: 3

	Answer	Mark	Partial Marks
(i)	$6C3\left(\frac{2}{x}\right)^3\left(-3x\right)^3$ SOI also allowed if seen in an expansion	M1	Both x's can be missing.
	-4320 Identified as answer	A1	Cannot be earned retrospectively in (ii).
		2	
(ii)	$6C2\left(\frac{2}{x}\right)^4\left[(-3x)^2\right]$ SOI clearly identified as critical term	M1	Both x 's and minus sign can be missing.
	$15a\times16\times9-their4320(=0)$	A1 FT	FT on their 4320.
	a = 2	A1	
		3	

324. 9709_m16_ms_12 Q: 1

	Answer	Mark	Partial Marks
(i)	$80(x^4), -32(x^5)$	B1B1 [2]	Fully simplified
(ii)	$(-32+80p)(x^5) = 0$ p = 2/5 or $32/80$ oe	M1 A1 [↑] [2]	Attempt to mult. relevant terms & put = 0

$325.\ 9709_m16_ms_12\ Q:\ 3$

 Answer	Mark	Partial Marks
a+11d=17	B1	
$\frac{31}{2}(2a+30d)=1023$	B1	
Solve simultaneous equations	M1	
d = 4, $a = -2731st term = 93$	A1	At least one correct
31st term = 93	A1	
	[5]	

326. 9709_s16_ms_11 Q: 1

 Answer	Mark	Partial Marks
$\left(x-\frac{3}{2x}\right)^6$		
Term is ${}^{6}C_{3} \times x^{3} \times \left(\frac{-3}{2x}\right)^{3}$	B1 B1	B1 for Bin coeff. B1 for rest.
\rightarrow -67.5 oe	B1	
	[3]	

327. 9709_s16_ms_11 Q: 9

	Answer	Mark	Partial Marks
(a)	$a = 50, ar^2 = 32$	B1	seen or implied
	$\rightarrow r = \frac{4}{5} \text{ (allow } -\frac{4}{5} \text{ for M mark)}$	M1	Finding r and use of correct S_{∞} formula
	$\rightarrow S_{\infty} = 250$	A1 [3]	Only if $ \mathbf{r} < 1$
(b) (i)	$2\sin x$, $3\cos x$, $(\sin x + 2\cos x)$.		
	3c - 2s = (s + 2c) - 3c (or uses a, a + d, a + 2d)	M1	Links terms up with AP, needs one expression for <i>d</i> .
	$\rightarrow 4c = 3s \rightarrow t = \frac{4}{3}$	M1 A1 [3]	Arrives at $t = k$. ag
	SC uses $t = \frac{4}{3}$ to show		
	$u_1 = \frac{8}{5}, u_2 = \frac{9}{5}, u_3 = \frac{10}{5}, $ B1 only		
(ii)	$\rightarrow c = \frac{3}{5}, s = \frac{4}{5} \text{ or calculator } x = 53.1^{\circ}$	M1	
	$\rightarrow a = 1.6, d = 0.2$	M1	Correct method for both a and d.
	$\longrightarrow S_{20} = 70$	A1 [3]	(Uses S_n formula)

328. 9709_s16_ms_12 Q: 4

	Answer	Mark	Partial Marks
(i)	$\left(x - \frac{2}{x}\right)^{6}$ Term is ${}_{6}C_{3} \times (-2)^{3} = (-)160$ -160	B1 B1 [2]	±160 seen anywhere
(ii)	$\left(2 + \frac{3}{x^2}\right) \left(x - \frac{2}{x}\right)^6$ Term in $x^2 = {}_{6}C_{2}(-2)^2 x^2$ $= 60 (x^2)$	B1 B1	±60 seen anywhere
	Term independent of x : = $2 \times (\text{their}-160) + 3 \times (\text{their } 60)$ -140	M1 A1 [4]	Using 2 products correctly

329. 9709_s16_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i) (a)	$a+(n-1)d = 10 + 29 \times 2$	M1	Use of <i>n</i> th term of an AP with $a=\pm 10$, $d=\pm 2$, $n=30$ or 29
	= 68	A1 [2]	Condone $-68 \rightarrow 68$
(b)	$\frac{1}{2}n(20+2(n-1)) = 2000 \text{ or } 0$	M1	Use of S_n formula for an AP with $a=\pm 10$, $d=\pm 2$ and equated to either 0 or 2000.
		A1 A1 [3]	Correct 3 term quadratic = 0.
(ii)	r = 1.1, oe	B1	e.g. $\frac{11}{10}$, 110%
	Uses $S_{30} = \frac{10(1.1^{30} - 1)}{1.1 - 1} (= 1645)$	M1	Use of S_n formula for a GP, a=±10, n=30.
	Percentage lost = $\frac{2000 - 1645}{2000} \times 100$	DM1	Fully correct method for % left with "their 1645"
	= 17.75	A1 [4]	allow 17.7 or 17.8.

330. $9709_s16_ms_13$ Q: 1

 Answer	Mark	Partial Marks
$5C2\left(\frac{1}{x}\right)^3 \left(3x^2\right)^2$	B 1	Can be seen in expansion
$10(\times1)\times3^2$	B1	Identified as leading to answer
90 (x)	B1	
	[3]	

331. 9709_s16_ms_13 Q: 4

	Answer	Mark	Partial Marks
$r = \frac{3+2}{3}$	$\frac{2d}{3}$ or $\frac{3+12d}{3+2d}$ or $r^2 = \frac{3+12d}{3}$	B1	1 correct equation in r and d only is sufficient
	$^{2} = 3(3+12d)$ oe	M1	Eliminate <i>r</i> or <i>d</i> using valid method
OR sub 2d = 4 $(4)d(d)$ OR $3r^{2} = 18$		DM1	Attempt to simplify and solve quadratic
d = 6 $r = 5$		A1 A1 [5]	Ignore $d = 0$ or $r = 1$ Do not allow -5 or ± 5

332. 9709_w16_ms_11 Q: 2

 Answer	Mark		Partial Marks
$8C6(2x)^6 \left(\frac{1}{2x^3}\right)^2 \text{ soi}$	B1		May be seen within a number of terms
$28 \times 64 \times \frac{1}{4}$ oe (powers and factorials evaluated)	B2,1,0		May be seen within a number of
440	D1		terms
448	B1		Identified as answer
		[4]	

333. $9709_{\text{w}}16_{\text{ms}}11 \text{ Q: } 5$

Answer	Mark	Partial Marks
$a(1+r) = 50 \text{ or } \frac{a(1-r^2)}{1-r} = 50$	B1	
$ar(1+r) = 30 \text{ or } \frac{a(1-r^3)}{1-r} = 30+a$	B1	Or otherwise attempt to solve for r
Eliminating a or r	M1	Any correct method
r=3/5	A1	
a = 125/4 oe	A1	
S = 625 / 8 oe	A1 √	Ft through on <i>their</i> r and a
		6] $(-1 < r < 1)$

 $334.\ 9709_w16_ms_12\ Q{:}\ 4$

 Answer	Mark		Partial Marks
Term in $x = \frac{nx}{2}$	B1		Could be implied by use of a numerical n .
$(3-2x)(1+\frac{nx}{2}+) \to 7 = \frac{3n}{2} - 2$ \$\to n = 6\$	M1		(Their 2 terms in x) = 7
Term in $x^2 = \frac{n(n-1)}{2} \left(\frac{x}{2}\right)^2$	A1 B1		May be implied by (their n) × (their n -1) ÷ 8.
Coefficient of $x^2 = \frac{3n(n-1)}{8} - \frac{2n}{2}$	M1		Considers 2 terms in x^2 .
$=\frac{21}{4}$	A1	[6]	aef
		[6]	

335. 9709_w16_ms_12 Q: 8

	Answer	Mark		Partial Marks
(a) (i)	200+(15-1)(+/-5)	M1		Use of <i>n</i> th term with $a = 200$, $n = 14$ or 15 and $d = +/-5$.
	= 130	A1	[2]	
(ii)	$\frac{n}{2} \left[400 + (n-1)(+/-5) \right] = (3050)$ $\to 5n^2 - 405n + 6100 \ (=0)$ $\to 20$	M1 A1 A1	[3]	Use of S_n $a=200$ and $d = +/-5$.
(b) (i)	$ar^{2}, ar^{5} \rightarrow r = \frac{1}{2}$ $\frac{63}{2} = \frac{a(1 - \frac{1}{2}^{6})}{\frac{1}{2}} \rightarrow a = 16$	M1 A1 M1 A1	[4]	Both terms correct. Use of $S_n = 31.5$ with a numeric r .
(ii)	Sum to infinity = $\frac{16}{\frac{1}{2}}$ = 32	B1 √	[1]	

336. $9709_{\text{w}}16_{\text{ms}}13 \text{ Q: } 2$

Answer	Mark		Partial Marks
$(+/-)20\times3^3(x^3)$, $10a^3(x^3)$ soi	B1B1		Each term can include x^3
$-540+10a^3=100$ oe	M1		Must have 3 terms and include
			a^3 and 100
a=4	A1		
		[4]	

337. 9709_w16_ms_13 Q: 9

	Answer	Mark		Partial Marks
(:	$\frac{6}{1-r} = \frac{12}{1+r}$	M1		
	$r=\frac{1}{3}$	A1		
	S=9	A1	[2]	
			[3]	
	$\frac{13}{2} \left[2\cos\theta + 12\sin^2\theta \right] = 52$	M1*		Use of correct formula for sum of AP
	$2\cos\theta + 12(1-\cos^2\theta) = 8 \rightarrow 6\cos^2\theta - \cos\theta - 2(=0)$	DM1		Use $s^2 = 1 - c^2$ & simplify to 3- term quad
	$\cos \theta = 2/3$ or $-1/2$ soi	A1		
	$\theta = 0.841$, 2.09 Dep on previous A1	A1A1	[5]	Accept 0.268π , $2\pi/3$. SRA1 for 48.2° , 120° Extra solutions in range -1

 $338.\ 9709_s15_ms_11\ Q:\ 3$

	Answer	Mark	Partial Marks
	$(1-x)^2(1+2x)^6.$		
(i) (a)	$(1-x)^6 = 1 - 6x + 15x^2$	B2,1 [2]	−1 each error
(b)	$(1+2x)^6 = 1 + 12x + 60x^2$	B2,1 [2]	-1 each error SC B1 only, in each part, for all 3 correct descending powers SC only one penalty for omission of the '1' in each expansion
(ii)	Product of (a) and (b) with >1 term $\rightarrow 60 - 72 + 15 = 3$	M1 DM1A1 [3]	Must be 2 or more products M1 exactly 3 products. cao, condone $3x^2$

339. 9709_s15_ms_11 Q: 7

	Answer	Mark	Partial Marks
(a)	$ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$		
	$\rightarrow r = \frac{2}{3}$ aef	M1	Any valid method, seen or implied. Could be answers only.
	Substituting $\rightarrow a = \frac{3}{4}$	A1	Both a and r
	$\longrightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$	M1 A1 [4]	Correct formula with $ r < 1$, cao
(b)	$4a = a + 4d \rightarrow 3a = 4d$	B1	May be implied in $360 = 5/2(a+4a)$
	$360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$	M1	Correct S_n formula or sum of 5 terms
	$\rightarrow a = 28.8^{\circ} \text{ aef}$ Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef	A1 B1 [4]	cao, may be implied (may use degrees or radians)

340. 9709_s15_ms_12 Q: 3

	Answer	Mark	Partial Marks
(i)	$(2-x)^6$		
	Coeff of x^2 is 240 Coeff of x^3 is $-20 \times 8 = -160$	B1 B2,1 [3]	co B1 for +160
(ii)	$(3x+1)(2-x)^{6}$ Product needs exactly 2 terms $\rightarrow 720 - 160 = 560$	M1 A1√ [2]	3 × their 240 + their -160

341. 9709_s15_ms_12 Q: 7

	Answer	Mark	Partial Marks
	A(4,6), B(10,2).		
(i)	$M = (7, 4)$ $m \text{ of } AB = -\frac{2}{3}$ $m \text{ of perpendicular} = \frac{3}{2}$	B1 B1	co co
	$y - 4 = \frac{3}{2}(x - 7)$	M1 A1 [4]	Use of $m_1m_2 = -1$ & their midpoint in the equation of a line. co
(ii)	Eqn of line parallel to AB through (3, 11)	M1 DM1A1 [3]	Needs to use <i>m</i> of <i>AB</i> Must be using their correct lines. Co

342. 9709_s15_ms_13 Q: 3

	Answer	Mark	Partial Marks
(i)	$a^5 - 5a^4x + 10a^3x^2 - 10a^2x^3 + \dots$	B2,1,0 [2]	Ok full expansion (ignore extra terms) Descending: Ok if full expansion but max B1 for 4 terms
(ii)	$(1-ax)(10a^3x^2 - 10a^2x^3) = (x^3)(-10a^4 - 10a^2)$ $-10a^4 - 10a^2 = -200$ $a^2 = 4 ignore a^2 = -5$ $a = \pm 2 cao$	M1 A1 [↑] M1 A1 [4]	Attempt to find coeff. of x^3 from 2 terms Ft from <i>their</i> $10a^3$, $-10a^2$ from part (i) Attempt soln. for a^2 from 3-term quad. in a^2 Ignore any imaginary solutions

343. 9709_s15_ms_13 Q: 9

	Answer	Mark	Partial Marks
(a)	2222/17 (=131 or 130.7) 131 × 17 (=2227) -2222 + 2227 = 5	M1 M1 A1 [3]	Ignore signs. Allow 2239/17→131.7 or 132 Ignore signs. Use 131. 5 www gets 3/3
(b)	1 1/3	B1	
	$(-1 <) \frac{2\cos\theta}{\sqrt{3}} < 1 \text{or} (0 <) \frac{2\cos\theta}{\sqrt{3}} < 1 \text{ soi}$	M1 [∧]	Ft on <i>their r</i> . Ignore a 2nd inequality on LHS
	$\pi/6$, $5\pi/6$ soi (but dep. on M1) $\pi/6 < \theta < 5\pi/6$ cao	A1A1 A1 [5]	Allow 30°, 150°. Accept ≤

 $344.\ 9709_w15_ms_11\ Q:\ 1$

Answer	Mark	Partial Marks
$(a+x)^5 = a^5 + {}^5C_1a^4x + {}^5C_2a^3x^2 + \dots$ soi	M1	Ignore subsequent terms
$\left(-\frac{2}{a} \times (their 5a^4) + (their 10a^3)\right)(x^2)$	M1	
0	A1 [3]	AG

345. 9709_w15_ms_11 Q: 8

	Answer	Mark	Partial Marks
(i)	$x^2 - 4x = 12$	M1	$4x - x^2 = 12 \text{ scores M1A0}$
	x = -2 or 6	A1	
	3^{rd} term = $(-2)^2 + 12 = 16$ or $6^2 + 12 = 48$	A1A1	SC1 for 16, 48 after $x = 2, -6$
		[4]	
(ii)	$r^2 = \frac{x^2}{4x} \left(= \frac{x}{4} \right) $ soi	M1	
	$\frac{4x}{1-\frac{x}{4}} = 8$	M1	Accept use of unsimplified
	$1-\frac{x}{x}$		
	4		$\frac{x^2}{4x} \text{ or } \frac{4x}{x^2} \text{ or } \frac{4}{x}$
	$x = \frac{4}{3}$ or $r = \frac{1}{3}$	A1	
	$3^{\text{rd}} \text{ term} = \frac{16}{27} \text{ (or } 0.593)$	A1	
	$\frac{1}{27} (010.393)$	[4]	
	ALT		
	$\frac{4x}{1-r} = 8 \to r = 1 - \frac{1}{2}x$ or $\frac{4x}{1-r} = 8 \to x = 2(1-r)$	M1	
	$x^{2} = 4x \left(1 - \frac{1}{2}x\right) \qquad r = \frac{2(1-r)}{4}$	M1	
	$x = 4x\left(1 - \frac{1}{2}x\right)$ $r = \frac{1}{4}$	1711	
	$x = \frac{4}{3} \qquad \qquad r = \frac{1}{3}$	A1	
	. 3		

346. 9709_w15_ms_12 Q: 2

 Answer	Mark	Partial Marks	
$(x + 2k)^{7}$ Term in $x^{5} = 21 \times 4k^{2} = 84k^{2}$ Term in $x^{4} = 35 \times 8k^{3} = 280k^{3}$	B1 B1		
Equate and solve $\rightarrow k = 0.3$ or $\frac{3}{10}$	M1 A1 [4]	Correct method to obtain <i>k</i> .	

 $347.\ 9709_w15_ms_13\ Q:\ 2$

 Answer	Mark	Partial Marks
$\left[7C2\right] \times \left[\left(\frac{x}{3}\right)^{5}\right] \times \left[\left(\frac{9}{x^{2}}\right)^{2}\right] \text{soi}$	B2,1,0	Seen
$21 \times \frac{1}{3^5} \left(x^5\right) \times 81 \left(\frac{1}{x^4}\right) \qquad \text{soi}$	B1 B1	Identified as required term Accept 7 <i>x</i>
/	[4]	

348. 9709_w15_ms_13 Q: 6

	Answer	Mark	Partial Marks
(i) (a)	1.92 + 1.84 + 1.76 + oe	B1	OR <i>a</i> =0.96, <i>d</i> =04 & ans
	$\frac{20}{2} [2 \times 1.92 + 19 \times (-0.08)]$ oe	M 1	doubled/adjusted
	23.2 cao	A1	Corr formula used with corr d & their
		[3]	a, n $a = 1, n = 21 \rightarrow 12.6 (25.2),$
a >			$a = 0.96, n = 21 \rightarrow 11.76 (23.52)$
(b)	$1.92 + 1.92(.96) + 1.92(.96)^2 + \dots$	B 1	
	$\frac{1.92(196^{20})}{196}$	M 1	OR a=.96, r =.96 & ans
			/doubled/adjusted
	26.8 cao	A1	Corr formula used with $r = .96 \& their$
		[3]	a, n
			$a = .96, n = 21 \rightarrow 13.82 (27.63)$
			$a = 1, n = 21 \rightarrow 14.39 (28.78)$
Gib	$\frac{1.92}{196}$ = 48 or $\frac{0.96}{1-0.96}$ = 24 & then	M1A1	$a = 1 \rightarrow 25$ (50) but must be doubled
(11)		[2]	for M1
	Double AG	[2]	$1.92 \frac{(1-0.96^n)}{1-0.96} < 48 \rightarrow 0.96^n > 0$
			$1.92 \frac{1}{1 - 0.96} < 48 \rightarrow 0.96 > 0$
			(www)
			'which is true' scores SCB1

349. 9709_m22_ms_12 Q: 11

Question	Answer	Marks	Guidance
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{ -k\left(3x - k\right)^{-2} \right\} \left\{ \times 3 \right\} \left\{ +3 \right\}$	B2, 1, 0	
	$\frac{-3k}{(3x-k)^2} + 3 = 0 \text{leading to} (3)(3x-k)^2 = (3)k$ leading to $3x-k = [\pm]\sqrt{k}$	M1	Set $\frac{dy}{dx} = 0$ and remove the denominator
	$x = \frac{k \pm \sqrt{k}}{3}$	A1	OE
		4	
(b)	$a = \frac{4 \pm \sqrt{4}}{3}$ leading to $a = 2$	B1	Substitute $x = a$ when $k = 4$. Allow $x = 2$.
	$f''(x) = f'[-12(3x-4)^{-2} + 3] = 72(3x-4)^{-3}$	B1	Allow $18k(3x-k)^{-3}$
	> 0 (or 9) when $x = 2 \rightarrow$ minimum	B1 FT	FT on <i>their x</i> = 2, providing their $x \ge \frac{3}{2}$ and $f''(x)$ is correct
		3	

Question	Answer	Marks	Guidance
(c)	Substitute $k = -1$ leading to $g'(x) = \frac{3}{(3x+1)^2} + 3$	M1	Condone one error.
	g'(x) > 0 or $g'(x)$ always positive, hence g is an increasing function	A1	WWW. A0 if the conclusion depends on substitution of values into $g'(x)$.
	Alternative method for question 11(c)		
	$x = \frac{k \pm \sqrt{k}}{3}$ when $k = -1$ has no solutions, so g is increasing or decreasing	M1	Allow the statement 'no turning points' for increasing or decreasing
	Show g'(x) is positive for any value of x, hence g is an increasing function	A1	Or show $g(b) > g(a)$ for $b > a \rightarrow g$, hence g is an increasing function
		2	

350. 9709_s21_ms_12 Q: 3

Question	Answer	Marks	Guidance
(a)	1.2679	B1	AWRT. ISW if correct answer seen. $3 - \sqrt{3}$ scores B0
		1	
(b)	1.7321	B1	AWRT. ISW if correct answer seen.
		1	
(c)	Sight of 2 or 2.0000 or two in reference to the gradient	*B1	
	This is because the gradient at E is the limit of the gradients of the chords as the x -value tends to 3 or ∂x tends to 0.	DB1	Allow it gets nearer/approaches/tends/almost/approximately 2
		2	

351. 9709_s21_ms_13 Q: 2

Question	Answer	Marks	Guidance
	$\left[f^{-1}(x) = \int ((2x-1)^{1/2}) \times \left(\frac{1}{3} \times 2 \times \frac{3}{2}\right) (-2)\right]$	B2, 1, 0	Expect $(2x-1)^{1/2}-2$
	$(2x-1)^{1/2} - 2 \le 0 \rightarrow 2x - 1 \le 4 \text{ or } 2x - 1 < 4$	M1	SOI. Rearranging and then squaring, must have power of $\frac{1}{2}$ not present Allow '=0'at this stage but do not allow ' \geq 0' or ' $>$ 0' If '-2' missed then must see \leq or \leq for the M1
	Value [of a] is $2\frac{1}{2}$ or $a = 2\frac{1}{2}$	A1	WWW, OE e.g. $\frac{5}{2}$, 2.5 Do not allow from '=0' unless some reference to negative gradient.
		4	

352. 9709_w21_ms_12 Q: 9

Question	Answer	Marks	Guidance
(a)	$\left[\frac{\mathrm{d}V}{\mathrm{d}r}\right] \frac{9}{2} \left(r - \frac{1}{2}\right)^2$	В1	OE. Accept unsimplified.
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1.5}{their} \frac{\mathrm{d}V}{\mathrm{d}r} \left[= \frac{1.5}{\frac{9}{2} \left(5.5 - \frac{1}{2}\right)^2} = \frac{1.5}{112.5} \right]$	M1	Correct use of chain rule with 1.5, their differentiated expression for $\frac{dV}{dr}$ and using $r = 5.5$.
	0.0133 or $\frac{3}{225}$ or $\frac{1}{75}$ [metres per second]	A1	
		3	
(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} \text{ or } their \frac{\mathrm{d}V}{\mathrm{d}r} = \frac{1.5}{0.1} \text{ or } 15 \text{ OR } 0.1 = \frac{1.5}{their \frac{\mathrm{d}V}{\mathrm{d}r}} \left[= \frac{2 \times 1.5}{9 \left(r - \frac{1}{2}\right)^2} \text{OE} \right]$	B1 FT	Correct statement involving $\frac{dV}{dr}$ or their $\frac{dV}{dr}$, 1.5 and 0.1.
	$\left[\frac{9}{2}\left(r - \frac{1}{2}\right)^2 = 15 \Rightarrow \right]r = \frac{1}{2} + \sqrt{\frac{10}{3}}$	B1	OE e.g. AWRT 2.3 Can be implied by correct volume.
	[Volume =] 8.13 AWRT	B1	OE e.g. $\frac{-3 + 5\sqrt{30}}{3}$. CAO.
		3	

$353.\ 9709_w21_ms_12\ Q:\ 10$

Question	Answer	Marks	Guidance
(a)	$[f'(x) =] 2x - \frac{k}{x^2}$	B1	
	$\mathbf{f}'(2) = 0 \left[2 \times 2 - \frac{k}{2^2} = 0 \right] \Rightarrow k = \dots$	M1	Setting <i>their</i> 2-term $f'(2) = 0$, at least one term correct and attempting to solve as far as $k = 0$.
	k = 16	A1	
		3	
(b)	$f''(2) = e.g. 2 + \frac{2k}{2^3}$	M1	Evaluate a two term f"(2) with at least one term correct. Or other valid method.
	$\left[2 + \frac{2k}{2^3}\right] > 0 \Rightarrow \text{minimum or} = 6 \Rightarrow \text{minimum}$	A1 FT	WWW. FT on positive k value.
		2	
(c)	When $x = 2$, $f(x) = 14$	B1	SOI
	[Range is or y or $f(x)$] \geqslant their $f(2)$	B1 FT	Not $x \ge their f(2)$
		2	

 $354.\ 9709_w21_ms_13\ Q:\ 3$

Question	Answer	Marks	Guidance
(a)	$\left\{5(y-3)^2\right\} \{+5\}$	B1 B1	Accept $a = -3$, $b = 5$
		2	
(b)	$[f'(x)] = 3x^4 - 30x^2 + 50$	B1	
	$5(x^2-3)^2+5$ or $b^2<4ac$ and at least one value of $f'(x)>0$	М1	
	> 0 and increasing	A1	www
		3	

 $355. 9709 m20 ms_{12} Q: 1$

Answer	Mark	Partial Marks
$f'(x) = [-(3x+2)^{-2}] \times [3] + [2x]$	B2, 1, 0	
< 0 hence decreasing	B1	Dependent on at least B1 for $f'(x)$ and must include < 0 or '(always) neg'
	3	

 $356.\ 9709_m20_ms_12\ Q:\ 4$

Answer	Mark	Partial Marks
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B1	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{6}$	B1	OE, SOI
$their(2x-2) = their\frac{4}{6}$	M1	LHS and RHS must be <i>their</i> $\frac{dy}{dx}$ expression and value
$x = \frac{4}{3}$ oe	A1	
	4	

 $357. 9709_s20_ms_11 Q: 9$

(a)	$\frac{dy}{dx} = 3(3-2x)^2 \times -2 + 24 = -6(3-2x)^2 + 24$ (B1 without ×-2. B1 for ×-2)	B1B1
	$\frac{d^2y}{dx^2} = -12(3-2x)\times -2 = 24(3-2x)$ (B1FT from $\frac{dy}{dx}$ without -2)	B1FT B1
		4
(b)	$\frac{dy}{dx} = 0$ when $6(3-2x)^2 = 24 \rightarrow 3-2x = \pm 2$	M1
	$x = \frac{1}{2}, y = 20 \text{ or } x = 2\frac{1}{2}, y = 52$ (A1 for both x values or a correct pair)	A1A1
		3
(c)	If $x = \frac{1}{2}$, $\frac{d^2y}{dx^2} = 48$ Minimum	B1FT
	If $x = 2\frac{1}{2}$, $\frac{d^2y}{dx^2} = -48$ Maximum	B1FT
		2

 $358.\ 9709_s20_ms_12\ Q:\ 3$

(a)	Volume after 30 s = 18000 $\frac{4}{3}\pi r^3 = 18000$	M1
	r = 16.3 cm	A1
		2
(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{600}{4\pi r^2}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.181 \mathrm{cm}$ per second	A1
		3

 $359.\ 9709_s20_ms_12\ Q:\ 10$

(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 54 - 6(2x - 7)^2$	B2,1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -24(2x - 7)$	B2,1 FT
	(FT only for omission of '×2' from the bracket)	
		4
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to (2x - 7)^2 = 9$	M1
	x = 5, y = 243 or x = 2, y = 135	A1 A1
		3
(c)	$x = 5 \frac{d^2y}{dx^2} = -72 \rightarrow \text{Maximum}$	B1FT
	(FT only for omission of '×2' from the bracket)	
	$x = 2 \frac{d^2 y}{dx^2} = 72 \rightarrow Minimum$	B1FT
	(FT only for omission of '×2' from the bracket)	
		2

 $360.\ 9709_s20_ms_13\ Q:\ 6$

(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(5x-1)^{-1/2}\right] \times [5]$	B1 B1
	Use $\frac{dy}{dt} = 2 \times \left(their \frac{dy}{dx} \text{ when } x = 1 \right)$	M1
	$\frac{5}{2}$	A1
		4
(b)	$2 \times their \frac{5}{2} (5x-1)^{-1/2} = \frac{5}{8}$ oe	M1
	$\left(5x-1\right)^{1/2}=8$	A1
	x=13	A1
		3

 $361.\ 9709_w20_ms_11\ \ Q:\ 3$

Answer	Mark	Partial Marks
(Derivative =) $4\pi r^2 (\rightarrow 400\pi)$	B1	SOI Award this mark for $\frac{\mathrm{d}r}{\mathrm{d}V}$
50 their derivative	M1	Can be in terms of r
$\frac{1}{8\pi}$ or 0.0398	A1	AWRT
	3	

362. 9709_w20_ms_11 Q: 6

 Answer	Mark	Partial Marks
$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}\left(25 - x^2\right)^{-1/2}\right] \times \left[-2x\right]$	B1 B1	
$\frac{-x}{\left(25 - x^2\right)^{1/2}} = \frac{4}{3} \to \frac{x^2}{25 - x^2} = \frac{16}{9}$	M1	Set = $\frac{4}{3}$ and square both sides
$16(25-x^2) = 9x^2 \to 25x^2 = 400 \to x = (\pm)4$	A1	
When $x = -4$, $y = 5 \rightarrow (-4, 5)$	A1	
	5	

363. 9709_w20_ms_13 Q: 8

	Answer	Mark	Partial Marks
(a)	$\frac{dy}{dx} = [2] [-2(2x+1)^{-2}]$	B1 B1	
	$\frac{d^2 y}{dx^2} = 8(2x+1)^{-3}$	B1	
		3	
(b)	Set their $\frac{dy}{dx} = 0$ and attempt solution	М1	
	$(2x+1)^2 = 1 \rightarrow 2x + 1 = (\pm) 1 \text{ or } 4x^2 + 4x = 0 \rightarrow (4)x(x+1) = 0$	M1	Solving as far as $x =$
	x = 0	A1	WWW. Ignore other solution.
	(0, 2)	A1	One solution only. Accept $x = 0$, $y = 2$ only.
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} > 0 \text{ from a solution } x > -\frac{1}{2} \text{ hence minimum}$	B1	Ignore other solution. Condone arithmetic slip in value of $\frac{d^2y}{dx^2}$.
			Their $\frac{d^2y}{dx^2}$ must be of the form $k(2x+1)^{-3}$
		5	

$364.\ 9709_m19_ms_12\ Q:\ 4$

	Answer	Mark	Partial Marks
(i)	$dy / dx = -2(2x - 1)^{-2} + 2$	B2,1,0	Unsimplified form ok (-1 for each error in '-2', ' $(2x-1)^{-2}$ ' and '2')
	$d^2y/dx^2 = 8(2x-1)^{-3}$	B1	Unsimplified form ok
		3	
(ii)	Set dy/dx to zero and attempt to solve – at least one correct step	M1	
	x = 0, 1	A1	Expect $(2x-1)^2 = 1$
	When $x = 0$, $d^2y / dx^2 = -8$ (or < 0). Hence MAX	B1	
	When $x = 1$, $d^2y / dx^2 = 8$ (or > 0). Hence MIN	B1	Both final marks dependent on correct x and correct d^2y/dx^2 and no errors May use change of sign of dy/dx but not at $x = 1/2$
		4	

 $365.\ 9709_m19_ms_12\ Q:\ 5$

	Answer	Mark	Partial Marks
(i)	$\mathbf{u}.\mathbf{v} = 8q + 2q - 2 + 6q^2 - 42$	В1	May be unsimplified
	$6q^2 + 10q - 44 = 0 \text{ oe}$	M1	Simplify, set to zero and attempt to solve
	q = 2, -11/3	A1	Both required. Accept -3.67
		3	
(ii)	$\mathbf{u} = \begin{pmatrix} 0 \\ 2 \\ 6 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 8 \\ -1 \\ -7 \end{pmatrix} \mathbf{u} \cdot \mathbf{v} = -2 - 42$	M1	Correct method for scalar product
	$ \mathbf{u} \times \mathbf{v} = \sqrt{2^2 + 6^2} \times \sqrt{8^2 + 1^2 + 7^2}$	M1	Prod of mods. At least one methodically correct.
	$\cos\theta = \frac{-44}{\sqrt{40} \times \sqrt{114}} = \frac{-44}{4\sqrt{285}} = \frac{-4}{\sqrt{11}}$	M1	All linked correctly and inverse cos used correctly
	$\theta = 130.7^{\circ} \text{ or } 2.28(05) \text{ rads}$	A1	No other angles between 0° and 180°
		4	

 $366.\ 9709_s19_ms_11\ Q:\ 7$

	Answer	Mark	Partial Marks
(i)	$\frac{\overline{AM}}{\overline{GM}} = 1.5\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ $\frac{1}{\overline{GM}} = 6.5\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$	B3,2,1	Loses 1 mark for each error.
	-	3	
(ii)	\overrightarrow{AM} . $\overrightarrow{GM} = 9.75 - 16 - 25 = -31.25$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$ on AM and GM
	\overline{AM} . $\overline{GM} = \sqrt{(1.5^2 + 4^2 + 5^2)} \times \sqrt{(6.5^2 + 4^2 + 5^2)} \cos GMA$	M1 M1	M1 for product of 2 modulii M1 all correctly connected
	Equating → Angle <i>GMA</i> = 121°	A1	
		4	

367. 9709_s19_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	$6 \times 3 + 2 \times k + 6 \times 3 = 0$ $(18 - 2k + 18 = 0)$	M1	Use of scalar product = 0. Could be $\overrightarrow{AO} \cdot \overrightarrow{OB}$, $\overrightarrow{AO} \cdot \overrightarrow{BO}$ or $\overrightarrow{OA} \cdot \overrightarrow{BO}$
	k = 18	A1	
	Alternative method for question 8(i)		
	$76 + 18 + k^2 = 18 + (k+2)^2$	M1	Use of Pythagoras with appropriate lengths.
	k = 18	A1	
		2	
(ii)	$36 + 4 + 36 = 9 + k^2 + 9$	M1	Use of modulus leading to an equation and solve to $k=$ or $k^2=$
	$k = \pm \sqrt{58} \text{ or } \pm 7.62$	A1	Accept exact or decimal answers. Allow decimals to greater accuracy.
		2	
(iii)	$\overline{AB} = \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} \rightarrow \overline{AC} = \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix} \text{ then } \overline{OA} + \overline{AC}$	M1	Complete method using $\overrightarrow{AC} = \pm \frac{1}{2} \overrightarrow{AB}$ And then $\overrightarrow{OA} + their \overrightarrow{AC}$
	$\overline{OC} = \begin{pmatrix} 4\\2\\-4 \end{pmatrix}$	A1	
	$\div \sqrt{\left(their 4\right)^2 + \left(their 2\right)^2 + \left(their -4\right)^2}$	M1	Divides by modulus of their \overrightarrow{OC}
	$= \frac{1}{6} \begin{pmatrix} 4\\2\\-4 \end{pmatrix} \text{ or } \frac{1}{6} (4i + 2j - 4k)$	A1	
	Alternative method for question 8(iii)		
	Let $\overrightarrow{OC} = \begin{pmatrix} p \\ q \\ r \end{pmatrix} \rightarrow \overrightarrow{AC} = \begin{pmatrix} p-6 \\ q+2 \\ r+6 \end{pmatrix} \& \overrightarrow{CB} = \begin{pmatrix} 3-p \\ 4-q \\ -3-r \end{pmatrix}$	M1	Correct method. Equates coefficients leading to values for p, q, r
	p-6=2(3-p); q+2=2(4-q); r+6=2(-3-r) $\rightarrow p=4, q=2 \& r=-4$	A1	
	$\div \sqrt{\left(their4\right)^2 + \left(their2\right)^2 + \left(their-4\right)^2}$	M1	Divides by modulus of their \overrightarrow{OC}
	$= \frac{1}{6} \begin{pmatrix} 4\\2\\-4 \end{pmatrix} \text{ or } \frac{1}{6} (4i + 2j - 4k)$	A1	
(iii)	Alternative method for question 8(iii)		
	$\overline{CB} = \overline{OB} - \overline{OC} : 2(\overline{OB} - \overline{OC}) = \overline{OC} - \overline{OA}$	M1	Correct method. Gets to a numerical expression for $k \overline{OC}$ from $\overline{OA} \& \overline{OB}$.
	$\rightarrow 2 \overrightarrow{OB} + \overrightarrow{OA} = 3 \overrightarrow{OC} :: 3 \overrightarrow{OC} = \begin{pmatrix} 12 \\ 6 \\ -12 \end{pmatrix}$		
	$\overline{OC} = \begin{pmatrix} 4\\2\\-4 \end{pmatrix}$	A1	
	$\div \sqrt{\left(their4\right)^2 + \left(their2\right)^2 + \left(their-4\right)^2}$	M1	Divides by modulus of their \overrightarrow{OC}
	$= \frac{1}{6} \begin{pmatrix} 4\\2\\-4 \end{pmatrix} \text{ or } \frac{1}{6} (4i + 2j - 4k)$	A1	
		4	
	T	1	1

	Answer	Mark	Partial Marks
	For C ₁ : $\frac{dy}{dx} = 2x - 4 \rightarrow m = 2$	B1	
	y - 'their 4' = 'their m' (x - 3) or using $y = mx + c$	M1	Use of: $\frac{dy}{dx}$ and (3, their 4) to find the tangent equation.
	y-4=2(x-3) or $y=2x-2$	A1	If using $= mx + c$, getting $c = -2$ is enough.
	$2x - 2 = \sqrt{4x + k} \ (\to 4x^2 - 12x + 4 - k = 0)$	*M1	Forms an equation in one variable using tangent & C_2
	Use of $b^2 - 4ac = 0$ on a 3 term quadratic set to 0.	*DM1	Uses 'discriminant = 0'
	$144 = 16(4 - k) \to k = -5$	A1	
	$4x^2 - 12x + 4 - k = 0 \rightarrow 4x^2 - 12x + 9 = 0$	DM1	Uses k to form a 3 term quadratic in x
	$x = \frac{3}{2} \left(or \frac{1}{2} \right), y = 1 (\text{or} - 1).$	A1	Condone 'correct' extra solution.
	Alternative method for question 9	ı	
	For C_1 : $\frac{dy}{dx} = 2x - 4 \rightarrow m = 2$	B1	
	y - 'their 4' = 'their m' (x - 3) or using $y = mx + c$	M1	Use of: $\frac{dy}{dx}$ and (3, their 4) to find the tangent equation.
	y-4=2(x-3) or $y=2x-2$	A1	If using $= mx + c$, getting $c = -2$ is enough.
	For C ₂ : $\frac{dy}{dx} = A(4x+k)^{-\frac{1}{2}}$	*M1	Finds $\frac{dy}{dx}$ for C_2 in the form $A(4x+k)^{-\frac{1}{2}}$
	At P: 'their 2' = $A(4x+k)^{\frac{1}{2}}$ " $\to (x=\frac{1-k}{4} \text{ or } 4x+k=1)$	*DM1	Equating 'their 2' to 'their $\frac{dy}{dx}$ ' and simplify to form a linear equation linking $4x + k$ and a constant.
	$(2x-2)^2 = 4x + k \rightarrow (2x-2)^2 = 1 \rightarrow (4x^2 - 8x + 3 = 0)$	DM1	Using their $y = 2x - 2$, $y^2 = 4x + k$ and their $4x + k = 1$ (but not =0) to form a 3 term quadratic in x .
	$x = \frac{3}{2} \left(or \frac{1}{2} \right) \text{ and from } k = -5 \left(or -1 \right)$	A1	Needs correct values for x and k .
	from $y^2 = 4x + k$, $y = 1$ (or -1).	A1	Condone 'correct' extra solution.
	Alternative method for question 9		
	For C ₁ : $\frac{dy}{dx} = 2x - 4 \rightarrow m = 2$	B1	
	y - 'their 4' = 'their m' $(x - 3)$ or using $y = mx + c$	M1	Use of: $\frac{dy}{dx}$ and (3, their 4) to find the tangent equation.
	y-4=2(x-3) or $y=2x-2$	A1	If using $= mx + c$, getting $c = -2$ is enough.
	For C ₂ : $\frac{dy}{dx} = A(4x+k)^{-\frac{1}{2}}$	*M1	Finds $\frac{dy}{dx}$ for C_2 in the form $A(4x+k)^{-\frac{1}{2}}$
	At P: 'their 2' = $A(4x+k)^{\frac{1}{2}}$ " $\to (x=\frac{1-k}{4} \text{ or } 4x+k=1)$	*DM1	Equating 'their 2' to 'their $\frac{dy}{dx}$ ' and simplify to form a linear equation linking $4x + k$ and a constant.
	From $4x + k = 1$ and $y^2 = 4x + k \rightarrow y^2 = 1$	DM1	Using their $4x + k = 1$ (but not =0) and C_2 to form $y^2 = a$ constant
	$y = 1(or - 1)$ and $x = \frac{3}{2} \left(or \frac{1}{2} \right)$	A1	Needs correct values for y and x .
	From $4x + k = 1$, $k = -5$ (or -1)	A1	Condone 'correct' extra solution
		8	
•			

369. 9709_s19_ms_13 Q: 6

	Answer	Mark	Partial Marks
(i)	$\mathbf{MF} = -4\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$	B1	
		1	
(ii)	FN = 2i - j	В1	
		1	
(iii)	$\mathbf{MN} = -2\mathbf{i} + \mathbf{j} + 7\mathbf{k}$	B1	FT on their (MF + FN)
		1	
(iv)	MF.MN = 8 + 2 + 49 = 59	*M1	MF.MN or FM.NM but allow if one is reversed (implied by -59)
	$ \mathbf{MF} \times \mathbf{MN} = \sqrt{4^2 + 2^2 + 7^2} \times \sqrt{2^2 + 1^2 + 7^2}$	*DM1	Product of modulus. At least one methodically correct
	$\cos FMN = \frac{+/-59}{\sqrt{69} \times \sqrt{54}}$	DM1	All linked correctly. Note $\sqrt{69} \times \sqrt{54} = 9\sqrt{46}$
	FMN=14.9° or 0.259	A1	Do not allow if exactly 1 vector is reversed – even if adjusted finally
		4	

370. 9709_s19_ms_13 Q: 8

	Answer	Mark	Partial Marks
f'(-1)	$= 0 \rightarrow 3 - a + b = 0 \text{ f}'(3) = 0 \rightarrow 27 + 3a + b = 0$	M1	Stationary points at $x = -1$ & $x = 3$ gives sim. equations in $a \& b$
a = -6		A1	Solve simultaneous equation
b=-9		A1	
Hence	$f'(x) = 3x^2 - 6x - 9 \rightarrow f(x) = x^3 - 3x^2 - 9x(+c)$	В1	FT correct integration for <i>their a,b</i> (numerical <i>a, b</i>)
2 = -1 -	-3+9+c	M1	Sub $x = -1$, $y = 2$ into <i>their</i> integrated $f(x)$. c must be present
c = -3		A1	FT from their $f(x)$
f(3)=	$k \to k = 27 - 27 - 27 - 3$	M1	Sub $x = 3$, $y = k$ into <i>their</i> integrated $f(x)$ (Allow c omitted)
k = -30	0	A1	
		8	

371. 9709_w19_ms_11 Q: 2

Answer	Mark	Partial Marks
Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) > 0$	M1	SOI
(x-2)(x-4)	A1	2 and 4 seen
(Least possible value of n is) 4	A1	Accept $n = 4$ or $n \geqslant 4$
	3	

372. 9709_w19_ms_11 Q: 10

	Answer	Mark	Partial Marks
(i)	$\mathbf{AB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}, \qquad \mathbf{BC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$	B1B1	Condone reversal of labels
	AB.BC = $6 - 6 \rightarrow = 0$ (hence perpendicular)	B1	AG
(ii)	$\mathbf{DC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}$	B1	Or: $\mathbf{CD} = \begin{pmatrix} -2\\4\\-6 \end{pmatrix}$
	AB = kDC	M1	OE Expect $k = \frac{3}{2}$ Or: DC.BC = $4 - 4 = 0$ hence BC is also perpendicular to DC Or: AB.DC = 1 or AB.CD = -1 , angle between lines is 0 or 180
	AB is parallel to DC, hence ABCD is a trapezium	A1	
(iii)	$ \mathbf{AB} = \sqrt{9 + 36 + 81} = \sqrt{126} = 11.22$ $ \mathbf{DC} = \sqrt{4 + 16 + 36} = \sqrt{56} = 7.483$ $ \mathbf{BC} = \sqrt{4 + 1 + 0} = \sqrt{5} = 2.236$	M1	Method for finding at least 2 magnitudes
	Area = $\frac{1}{2}$ (theirAB + theirDC)×theirBC = 20.92	M1A1	OE

$373.\ 9709_w19_ms_12\ Q:\ 5$

	Answer	Mark	Partial Marks
(i)	Use of Pythagoras $\rightarrow r^2 = 15^2 - h^2$	M1	
	$V = \frac{1}{3}\pi(225 - h^2) \times h \to \frac{1}{3}\pi(225h - h^3)$	A1	AG WWW e.g. sight of $r = 15 - h$ gets A0.
		2	
(ii)	$\left(\frac{\mathrm{d}v}{\mathrm{d}h} = \right)\frac{\pi}{3}\left(225 - 3h^2\right)$	B1	
	Their $\frac{dv}{dh} = 0$	M1	Differentiates, sets <i>their</i> differential to 0 and attempts to solve at least as far as $h^2 \neq 0$.
	$(h =) \sqrt{75}, 5\sqrt{3} \text{ or AWRT } 8.66$	A1	Ignore $-\sqrt{75}$ OE and ISW for both A marks
	$\frac{\mathrm{d}^2 h}{\mathrm{d}h^2} = \frac{\pi}{3} \ (-6h) \ (\rightarrow -\mathrm{ve})$	M1	Differentiates for a second time and considers the sign of the second differential or any other valid complete method.
	→ Maximum	A1FT	Correct conclusion from correct 2nd differential, value for h not required, or any other valid complete method. FT for <i>their</i> h , if used, as long as it is positive.
			SC Omission of π or $\frac{\pi}{3}$ throughout can score B0M1A1M1A0
		5	

374. 9709_w19_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$(\overline{PB}) = 5\mathbf{i} + 8\mathbf{j} - 5\mathbf{k}$	B2,1,0	B2 all correct, B1 for two correct components.
	$(\overrightarrow{PQ}) = 4\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}$	B2,1,0	B2 all correct, B1 for two correct components.
			Accept column vectors. SC B1 for each vector if all components multiplied by -1.
		4	
(ii)	(Length of $PB = $) $\sqrt{(5^2 + 8^2 + 5^2)} = (\sqrt{114} \approx 10.7)$ (Length of $PQ = $) $\sqrt{(4^2 + 8^2 + 5^2)} = (\sqrt{105} \approx 10.2)$	M1	Evaluation of both lengths. Other valid complete comparisons can be accepted.
	P is nearer to Q .	A1	www
		2	
(iii)	$(\overrightarrow{PB}.\overrightarrow{PQ}) = 20 + 64 - 25$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$ on their \overrightarrow{PB} and \overrightarrow{PQ}
	$(Their\sqrt{114})(their\sqrt{105})\cos BPQ = (their 59)$	M1	All elements present and in correct places.
	BPQ = 57.4(°) or 1.00 (rad)	A1	AWRT Calculating the obtuse angle and then subtracting gets A0.
		3	

375. 9709_w19_ms_13 Q: 3

 Answer	Mark	Partial Marks
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 8$	B1	
Set to zero (SOI) and solve	M1	
(Min) $a = -2$, (Max) $b = 4/3$. – in terms of a and b .	A1 A1	Accept $a \ge -2$, $b \le \frac{4}{3}$ SC: A1 for $a > -2$, $b < \frac{4}{3}$ or for $-2 < x < \frac{4}{3}$
	4	

$376.\ 9709_w19_ms_13\ Q:\ 5$

	Answer	Mark	Partial Marks
(i)	$S = 28x^2, V = 8x^3$	B1B1	SOI
	$7V^{\frac{2}{3}} = 7 \times 4x^2 = S$	B1	AG, WWW
		3	
(ii)	$\left(\frac{dS}{dV}\right) = \frac{14V^{-\frac{1}{3}}}{3} = \frac{14}{30}$ SOI when $V = 1000$	*M1 A1	Attempt to differentiate For M mark $\left(\frac{dS}{dV}\right)$ to be of form $kV^{-\frac{1}{3}}$
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}t} \times \frac{\mathrm{d}V}{\mathrm{d}S}\right) \text{ OE used with } \frac{\mathrm{d}S}{\mathrm{d}t} = 2 \text{ and } \frac{1}{their \frac{14}{30}}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
	Alternative method for question 5(ii)		
	$V = \frac{S^{\frac{3}{2}}}{7\sqrt{7}} \rightarrow \left(\frac{\mathrm{d}V}{\mathrm{d}S}\right) = \frac{3}{2} \times S^{\frac{1}{2}} \times \frac{1}{7\sqrt{7}} = \frac{30}{14} \text{ SOI when } S = 700$	*M1 A1	Attempt to differentiate For M mark $\left(\frac{dV}{dS}\right)$ to be of form $kS^{\frac{1}{2}}$
	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dV}{dS}$ OE used with $\frac{dS}{dt} = 2$ and $\frac{1}{their \frac{14}{30}}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
(ii)	Alternative method for question 5(ii)		
	Attempt to find either $\frac{dV}{dx}$ or $\left(\frac{dS}{dx} \text{ and } \frac{dV}{dS}\right)$ together with either $\frac{dx}{dt}$	*M1	
	$\frac{dV}{dx} = 24x^2 \text{ or } \left(\frac{dS}{dx} = 56x \text{ and } \frac{dV}{dS} = \frac{3x}{7}\right), \frac{dx}{dt} = \frac{1}{140} \text{ or } x = 5 \text{ (A1)}$	A1	
	Correct method for $\frac{\mathrm{d}V}{\mathrm{d}t}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
		4	

377. 9709_w19_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	$\mathbf{AX} = \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}, \text{ and one of } \mathbf{AB} = \begin{pmatrix} 18 \\ 6 \\ 9 \end{pmatrix}, \mathbf{XB} = \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix}, \mathbf{BX} = \begin{pmatrix} -12 \\ -4 \\ -6 \end{pmatrix}$	B1B1	
	State $\mathbf{AB} = 3\mathbf{AX}$ (or $\mathbf{XB} = 2\mathbf{AX}$ or $\mathbf{AB} = \frac{3}{2}\mathbf{XB}$ etc) hence straight line \mathbf{OR} $\frac{\mathbf{AX}.\mathbf{AB}}{ \mathbf{AX} \mathbf{AB} } = 1 \ (\rightarrow \theta = 0) \text{ or } \frac{\mathbf{AX}.\mathbf{BX}}{ \mathbf{AX} \mathbf{BX} } = -1 \ (\rightarrow \theta = 180)$ hence straight line	B1	WWW A conclusion (i.e. a straight line) is required.
		3	
(ii)	$\mathbf{CX} = \begin{pmatrix} -3 \\ 6 \\ 2 \end{pmatrix}$	B1	
	CX.AX = -18 + 12 + 6	M1	
	= 0 (hence CX is perpendicular to AX)	A1	
		3	
(iii)	$ \mathbf{CX} = \sqrt{3^2 + 6^2 + 2^2}, \ \mathbf{AB} = \sqrt{18^2 + 6^2 + 9^2}$ Both attempted	M1	
	Area $\triangle ABC = \frac{1}{2} \times their \ 21 \times their \ 7 = 73 \frac{1}{2}$	M1A1	Accept answers which round to 73.5
		3	

378. 9709_m18_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$\overrightarrow{CE} = -4\mathbf{i} - \mathbf{j} + 8\mathbf{k}$	В1	
	$ \overrightarrow{CE} = \sqrt{\left(\left(their - 4\right)^2 + \left(their - 1\right)^2 + \left(their 8\right)^2} = 9$	M1A1	Could use Pythagoras' theorem on triangle CDE
		3	
(ii)	$\overrightarrow{CA} = 3\mathbf{i} - 3\mathbf{j} \text{ or } \overrightarrow{AC} = -3\mathbf{i} + 3\mathbf{j}$	B1	
	\overline{CE} . $\overline{CA} = (-4\mathbf{i} - \mathbf{j} + 8\mathbf{k}).(3\mathbf{i} - 3\mathbf{j}) = -12 + 3$ (Both vectors reversed ok)	M1	Scalar product of their \overrightarrow{CE} , \overrightarrow{CA} . One vector reversed ok for all \mathbf{M} marks
	$ \overrightarrow{CE} \times \overrightarrow{CA} = \sqrt{16 + 1 + 64} \times \sqrt{9 + 9}$	M1	Product of moduli of their \overrightarrow{CE} , \overrightarrow{CA}
	$\cos^{-1}\left(\frac{-12+3}{9\sqrt{18}}\right) = \cos^{-1}\left(\frac{-1}{\sqrt{18}}\right)$	A1A1	A1 for any correct expression, A1 for required form Equivalent answers must be in required form m/\sqrt{n} (m , n integers)
	$\left[\text{or e.g. } \cos^{-1}\left(\frac{-3}{\sqrt{162}}\right), \cos^{-1}\left(\frac{-9}{\sqrt{1458}}\right) \right] \text{ etc.}$		
		5	

379. 9709_m18_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	$dy/dx = x - 6x^{V_5} + 8$	B2,1,0	
	Set to zero and attempt to solve a quadratic for x^{y_2}	M1	Could use a substitution for x^{i_2} or rearrange and square correctly*
	$x^{1/2} = 4$ or $x^{1/2} = 2$ [$x = 2$ and $x = 4$ gets M1 A0]	A1	Implies M1. 'Correct' roots for their dy / dx also implies M1
	x = 16 or 4	A1FT	Squares of their solutions *Then A1,A1 for each answer
		5	

	Answer	Mark	Partial Marks
(ii)	$d^2y / dx^2 = 1 - 3x^{-\frac{4}{2}}$	B1FT	FT on <i>their</i> dy/dx , providing a fractional power of x is present
		1	
(iii)	(When $x = 16$) $d^2y / dx^2 = 1/4 > 0$ hence MIN	M1	Checking both of their values in their d^2y/dx^2
	(When $x = 4$) $d^2y / dx^2 = -1/2 < 0$ hence MAX	A1	All correct Alternative methods ok but must be explicit about values of x being considered
		2	

380. 9709_m18_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)(a)	f(x) > 2	B1	Accept $y > 2$, $(2, \infty)$, $(2, \infty]$, range > 2
		1	
(i)(b)	g(x) > 6	B1	Accept $y > 6$, $(6, \infty)$, $(6, \infty]$, range > 6
		1	
(i)(c)	2 < fg(x) < 4	B1	Accept 2 < y <4, (2, 4), 2 < range < 4
		1	

	Answer	Mark	Partial Marks
(ii)	The range of f is (partly) outside the domain of g	B1	
		1	
(iii)	$f'(x) = \frac{-8}{(x-2)^2}$	В1	SOI
	$y = \frac{8}{x-2} + 2 \rightarrow y - 2 = \frac{8}{x-2} \rightarrow x - 2 = \frac{8}{y-2}$	M1	Order of operations correct. Accept sign errors
	$f^{-1}(x) = \frac{8}{x-2} + 2$	A1	SOI
	$\frac{-48}{(x-2)^2} + \frac{16}{x-2} + 4 - 5 \ (<0) \ \rightarrow \ x^2 - 20x + 84 \ (<0)$	M1	Formation of 3-term quadratic in x , $(x-2)$ or $1/(x-2)$
	(x-6)(x-14) or 6, 14	A1	SOI
	2 < x < 6, x > 14	A1	CAO
		6	

381. 9709_s18_ms_11 Q: 2

Answer	Mark	Partial Marks
$y = 2x + \frac{5}{x} \rightarrow \frac{dy}{dx} = 2 - \frac{5}{x^2} = -3$ (may be implied) when $x = 1$.	M1 A1	Reasonable attempt at differentiation CAO (-3)
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \to -0.06$	M1 A1	Ignore notation, but needs to multiply $\frac{dy}{dx}$ by 0.02.
	4	

382. 9709_s18_ms_11 Q: 7

	Answer	Mark	Partial Marks
	$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \text{ and } \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$		
(i)	$\overrightarrow{AC} = \begin{pmatrix} 2 \\ 4 \\ -4 \end{pmatrix}$	В1	B1 for \overline{AC} .
		1	

	Answer	Mark	Partial Marks
(ii)	$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \text{ or } \frac{1}{2} \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + \begin{pmatrix} 3 \\ 1 \\ -2 \end{bmatrix} \end{bmatrix}$	M1	M1 for their $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM}$ oe
	Unit vector in direction of $\overrightarrow{OM} = \frac{1}{\sqrt{5}} (\overrightarrow{OM})$	M1 A1	M1 for dividing their \overline{OM} by their modulus
		3	
(iii)	$\overrightarrow{AB} = \begin{pmatrix} -2\\6\\3 \end{pmatrix}, \text{ Allow } \pm$	В1	
	$ \overrightarrow{AB} = 7, \overrightarrow{AC} = 6$ $\begin{pmatrix} -2\\6\\3 \end{pmatrix}, \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = -4 + 24 - 12 = 8$	M1 M1	Product of both moduli, Scalar product of \pm their AB and AC
	$7 \times 6 \cos \theta = 8 \rightarrow \theta = 79.(0)^{\circ}$	A1	1.38 radians ok
		4	

383. 9709_s18_ms_12 Q: 5

	Answer	Mark	Partial Marks
(i)	$\overline{DA} = 6\mathbf{i} - 4\mathbf{k}$	B1	
	$\overrightarrow{CA} = 6\mathbf{i} - 5\mathbf{j} - 4\mathbf{k}$	B1	
		2	
(ii)	Method marks awarded only for <i>their</i> vectors $\pm \overrightarrow{CA} \& \pm \overrightarrow{DA}$		Full marks can be obtained using \overrightarrow{AC} & \overrightarrow{AD}
	$\overrightarrow{CA} \cdot \overrightarrow{DA} = 36 + 16 \ (= 52)$	M1	Using $x_1x_2+y_1y_2+z_1z_2$
	$\left \overline{DA} \right = \sqrt{52}$, $\left \overline{CA} \right = \sqrt{77}$	M1	Uses modulus twice
	$52 = \sqrt{77}\sqrt{52\cos \hat{CAD}} \text{ oe}$	M1	All linked correctly
	\hat{C} Cos $\hat{CAD} = 0.82178 \rightarrow \hat{CAD} = 34.7^{\circ}$ or 0.606° awrt	A1	Answer must come from +ve cosine ratio
		4	

384. 9709_s18_ms_13 Q: 8

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 18x + 24$	M1A1	Attempt to differentiate. All correct for A mark
	$3x^2 - 18x + 24 = -3$	M1	Equate their $\frac{dy}{dx}$ to -3
	x = 3	A1	
	<i>y</i> = 6	A1	
	y-6=-3(x-3)	A1FT	FT on their A. Expect $y = -3x + 15$
		6	
(ii)	(3)(x-2)(x-4) SOI or $x=2$, 4 Allow $(3)(x+2)(x+4)$	M1	Attempt to factorise or solve. Ignore a RHS, e.g. = 0 or > 0, etc.
	Smallest value of k is 4	A1	Allow $k \ge 4$. Allow $k = 4$. Must be in terms of k
		2	

$385.\ 9709_s18_ms_13\ Q:\ 9$

	Answer	Mark	Partial Marks
(i)	$OE = \frac{2}{10} (8i + 6j) = 1.6i + 1.2j$ AG	M1A1	Evidence of $OB = 10$ or other valid method (e.g. trigonometry) is required
		2	
(ii)	$\mathbf{OD} = 1.6\mathbf{i} + 1.2\mathbf{j} + 7\mathbf{k}$	B1	Allow reversal of one or both of OD, BD.
	$\mathbf{BD} = -8\mathbf{i} - 6\mathbf{j} + 1.6\mathbf{i} + 1.2\mathbf{j} + 7\mathbf{k} \text{ OE} = -6.4\mathbf{i} - 4.8\mathbf{j} + 7\mathbf{k}$	M1A1	For M mark allow sign errors. Also if 2 out of 3 components correct
	Correct method for ±OD.±BD (using <i>their</i> answers)	M1	Expect $1.6 \times -6.4 + 1.2 \times -4.8 + 49 = 33$ or $\frac{825}{25}$ 825 / 25.
	Correct method for OD or BD (using their answers)	М1	Expect $\sqrt{1.6^2 + 1.2^2 + 7^2}$ or $\sqrt{6.4^2 + 4.8^2 + 7^2} = \sqrt{53}$ or $\sqrt{113}$
	$\cos BDO = their \frac{\mathbf{OD.BD}}{ \mathbf{OD} \times \mathbf{BD} }$	DM1	Expect $\frac{33}{77.4}$. Dep. on all previous M marks and either B1 or A1
	64.8° Allow 1.13(rad)	A1	Can't score A1 if 1 vector only is reversed unless explained well
		7	

386. 9709_w18_ms_11 Q: 8

	Answer	Mark	Partial Marks
(i)	$\overrightarrow{DF} = -6\mathbf{i} + 2\mathbf{k}$	B1	
		1	
(ii)	$\overline{EF} = -6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$	B1	
	$ \overrightarrow{EF} = \sqrt{\left(-6\right)^2 + \left(-3\right)^2 + 2^2}$	M1	Must use their \overrightarrow{EF}
	Unit vector = $\frac{1}{7} \left(-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} \right)$	A1	
		3	
(iii)	\overline{DF} . \overline{EF} = $(-6\mathbf{i} + 2\mathbf{k})$. $(-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$ = $36 + 4 = 40$	M1	
	$ \overrightarrow{DF} = \sqrt{40}, \overrightarrow{EF} = 7$	M1	
	$\cos EFD = \frac{40}{7\sqrt{40}} \text{ oe}$	M1	
	EFD = 25.4°	A1	Special case: use of cosine rule M1(must evaluate lengths using correct method) A1 only
		4	

$387.\ 9709_w18_ms_11\ Q:\ 10$

	Answer	Mark	Partial Marks
(i)(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[-\frac{1}{2} (4x - 3)^{-2} \right] \times \left[4 \right]$	B1B1	Can gain this in part (b)(ii)
	When $x = 1$, $m = -2$	B1FT	Ft from their $\frac{dy}{dx}$
	Normal is $y - \frac{1}{2} = \frac{1}{2}(x - 1)$	M1	Line with gradient $-1/m$ and through A
	$y = \frac{1}{2}x$ soi	A1	Can score in part (b)
		5	
(i)(b)	$\frac{1}{2(4x-3)} = \frac{x}{2} \rightarrow 2x(4x-3) = 2 \rightarrow (2)(4x^2 - 3x - 1) (= 0)$	M1A1	x/2 seen on RHS of equation can score <i>previous</i> A1
	x = -1/4	A1	Ignore $x = 1$ seen in addition
		3	
(ii)	Use of chain rule: $\frac{dy}{dt} = (their - 2) \times (\pm) 0.3 = 0.6$	M1A1	Allow +0.3 or -0.3 for M1
		2	

388. 9709_w18_ms_12 Q: 3

	Answer	Mark	Partial Marks
(i)	$P \text{ is } (t, 5t) \ Q \text{ is } (t, t(9 - t^2)) \to 4t - t^2$	B1 B1	B1 for both y coordinates which can be implied by subsequent working. B1 for PQ allow $ 4t - t^3 $ or $ t^3 - 4t $. Note: $4x - x^3$ from equating line and curve $0/2$ even if x then replaced by t .
		[2]	

	Answer	Mark	Partial Marks
(ii)	$\frac{\mathrm{d}(PQ)}{\mathrm{d}t} = 4 - 3t^2$	B1FT	B1FT for differentiation of their PQ , which MUST be a cubic expression, but can be $\frac{d}{dx}f(x)$ from (i) but not the equation of the curve.
	$=0 \to t = +\frac{2}{\sqrt{3}}$	M1	Setting their differential of PQ to 0 and attempt to solve for t or x .
	$\rightarrow \mathbf{Maximum} PQ = \frac{16}{3\sqrt{3}} \text{ or } \frac{16\sqrt{3}}{9}$	A1	Allow 3.08 awrt. If answer comes from wrong method in (i) award A0. Correct answer from correct expression by T&I scores 3/3.
		3	

389. 9709_w18_ms_12 Q: 7

Answer	Mark	Partial Marks
$\overrightarrow{PN} = 8\mathbf{i} - 8\mathbf{k}$	B1	
$\overline{PM} = 4\mathbf{i} + 4\mathbf{j} - 6\mathbf{k}$	B2,1,0	Loses 1 mark for each component incorrect
		SC: $\overrightarrow{PN} = -8\mathbf{i} + 8\mathbf{k} \text{ and } \overrightarrow{PM} = -4\mathbf{i} - 4\mathbf{j} + 6\mathbf{k} \text{ scores } 2/3.$
$\overrightarrow{PN.PM} = 32 + 0 + 48 = 80$	M1	Evaluates $x_1x_2+y_1y_2+z_1z_2$ for correct vectors or one or both reversed.
$ PN \times PM = \sqrt{128} \times \sqrt{68} \ (= 16\sqrt{34})$	M1	Product of their moduli – may be seen in cosine rule
$\sqrt{128} \times \sqrt{68} \cos M \hat{P} N = 80$	M1	All linked correctly.
Angle $M\hat{P} N = 31.0^{\circ}$ awrt	A1	Answer must come directly from +ve cosine ratio. Cosine rule not accepted as a complete method. Allow 0.540° awrt. Note: Correct answer from incorrect vectors scores A0 (XP)
	7	

390. 9709 $_{\rm w}18_{\rm ms}_{\rm 13}$ Q: 2

Answer	Mark	Partial Marks
$f'(x) = 3x^2 + 4x - 4$	B1	
Factors or crit. values or sub any 2 values $(x \neq -2)$ into $f'(x)$ soi	M1	Expect $(x+2)(3x-2)$ or -2 , $\frac{1}{2}$ or any 2 subs (excluding $x=-2$).
For $-2 < x < \frac{3}{3}$, $f'(x) < 0$; for $x > \frac{3}{3}$, $f'(x) > 0$ soi Allow \leq , \geq	М1	Or at least 1 specific value $(\neq -2)$ in each interval giving opp signs Or $\mathbf{f}(\frac{1}{2})=0$ and $\mathbf{f}''(\frac{1}{2})\neq 0$ (i.e. gradient changes sign at $x=\frac{1}{2}$)
Neither www	A1	Must have 'Neither'
ALT 1 At least 3 values of f(x)	M1	e.g. f(0) = 7, f(1) = 6, f(2) = 15
At least 3 correct values of $f(x)$	A1	
At least 3 <u>correct</u> values of $f(x)$ spanning $x = \frac{2}{3}$	A1	
Shows a decreasing and then increasing pattern. Neither www	A1	Or similar wording. Must have 'Neither'
ALT 2 f'(x) = $3x^2 + 4x - 4 = 3(x + \frac{1}{2})^2 - \frac{16}{3}$	B1B1	Do not condone sign errors
$f'(x) \geqslant -\frac{16}{3}$	M1	
f'(x) < 0 for some values and > 0 for other values. Neither www	A1	Or similar wording. Must have 'Neither'
	4	

$391.\ 9709_w18_ms_13\ Q:\ 6$

Answer	Mark	Partial Marks
$(\mathbf{BO}) = -8\mathbf{i} - 6\mathbf{j}$	B1	OR (OB) = 8i + 6j
$(\mathbf{BF}) = -6\mathbf{j} - 8\mathbf{i} + 7\mathbf{k} + 4\mathbf{i} + 2\mathbf{j} = -4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$	B1	OR (FB) = 4i + 4j - 7k
(BF.BO) = (-4)(-8) + (-4)(-6)	M1	OR (FB.OB) Expect 56. Accept one reversed but award final A0
$ \mathbf{BF} \times \mathbf{BO} = \sqrt{4^2 + 4^2 + 7^2} \times \sqrt{8^2 + 6^2}$	M1	Expect 90. At least one magnitude methodically correct
Angle $OBF = \cos^{-1}\left(\frac{their 56}{their 90}\right) = \cos^{-1}\left(\frac{56}{90}\right) \text{or} \cos^{-1}\left(\frac{28}{45}\right)$	DM1A1	Or equivalent 'integer' fractions. All M marks dependent on use of $(\pm)BO$ and $(\pm)BF$. 3rd M mark dep on both preceding M marks
	6	

392. 9709_m17_ms_12 Q: 3

	Answer	Mark	Partial Marks
(i)	$V = \frac{1}{12}h^3 \text{ oe}$	B1	
	Total:	1	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{4}h^2 \text{ or } \frac{\mathrm{d}h}{\mathrm{d}V} = 4(12v)^{-2/3}$	M1A1	Attempt differentiation. Allow incorrect notation for M. For A mark accept $their$ letter for volume - but otherwise correct notation. Allow V'
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{4}{h^2} \times 20 \text{ soi}$	DM1	Use chain rule correctly with $\frac{d(V)}{dt} = 20$. Any equivalent formulation. Accept non-explicit chain rule (or nothing at all)
	$\left(\frac{dh}{dt}\right) = \frac{4}{10^2} \times 20 = 0.8$ or equivalent fraction	A1	
	Total:	4	

393. 9709_m17_ms_12 Q: 6

	Answer	Mark	Partial Marks
(i)	$\mathbf{BA} = \mathbf{OA} - \mathbf{OB} = -5\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	B1	Allow vector reversed. Ignore label BA or AB
	$\mathbf{OA.BA} = -10 - 3 + 10 = -3$	M1	soi by ±3
	$ \mathbf{OA} \times \mathbf{BA} = \sqrt{2^2 + 3^2 + 5^2} \times \sqrt{5^2 + 1^2 + 2^2}$	M1	Prod. of mods for at least 1 correct vector or reverse.
	$\cos OAB = \frac{+/-3}{\sqrt{38} \times \sqrt{30}}$	M1	
	<i>OAB</i> = 95.1° (or 1.66°)	A1	
	Total:	5	
(ii)	$\triangle OAB = \frac{1}{2}\sqrt{38} \times \sqrt{30} \sin 95.1$. Allow $\frac{1}{2}\sqrt{38} \times \sqrt{74} \sin 39.4$	M1	Allow their moduli product from (i)
	= 16.8	A1	cao but <u>NOT</u> from sin 84.9 (1.482°)
	Total:	2	

394. 9709_m17_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$f'(x) = \left[\frac{3}{2}(4x+1)^{1/2}\right] [4]$	B1B1	Expect $6(4x+1)^{1/2}$ but can be unsimplified.
	$f''(x) = 6 \times 1/2 \times (4x+1)^{-1/2} \times 4$	B1√	Expect $12(4x+1)^{-1/2}$ but can be unsimplified. Ft from <i>their</i> f'(x).
	Total:	3	
(ii)	f(2), f'(2), kf"(2) = 27, 18, 4k OR 12	B1B1√B1√	Ft dependent on attempt at differentiation
	$27/18 = 18/4k$ oe OR k f "(2) = $12 \implies k = 3$	M1A1	
	Total:	5	

$395.\ 9709_m17_ms_12\ Q:\ 9$

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2 \cdot \text{At } x = 2, m = 2$	B1B1	Numerical m
	Equation of tangent is $y-2=2(x-2)$	B1	Expect $y = 2x - 2$
	Total:	3	
(ii)	Equation of normal $y-2=-\frac{1}{2}(x-2)$	M1	Through (2, 2) with gradient = $-1/m$. Expect $y = -\frac{1}{2}x + 3$
	$x^2 - 2x + 2 = -\frac{1}{2}x + 3 \rightarrow 2x^2 - 3x - 2 = 0$	M1	Equate and simplify to 3-term quadratic
	$x = -\frac{1}{2}, y = 3\frac{1}{4}$	A1A1	Ignore answer of (2, 2)
	Total:	4	

-	Answer	Mark	Partial Marks
(iii)	At $x = -\frac{1}{2}$, grad = $2(-\frac{1}{2}) - 2 = -3$	B1√	Ft their -½.
	Equation of tangent is $y-3\frac{1}{4}=-3(x+\frac{1}{2})$	*M1	Through their B with grad their -3 (not m_1 or m_2). Expect $y = -3x + 7/4$
	2x-2=-3x+7/4	DM1	Equate their tangents or attempt to solve simultaneous equations
	$x = 3/4, y = -\frac{1}{2}$	A1	Both required.
	Total:	4	

396. 9709_s17_ms_11 Q: 2

	Answer	Mark	Partial Marks
	$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$		
(i)	Angle $AOB = 90^{\circ} \to 6 + 36 - 7p = 0$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2 = 0$ or Pythagoras
	$\rightarrow p = 6$	A1	
	Total:	2	

	Answer	Mark	Partial Marks
(ii)	$\overrightarrow{OC} = \frac{2}{3} \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}$	B1 FT	CAO FT on their value of p
	$\overline{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 0 \\ 2 \\ 11 \end{pmatrix}; \text{ magnitude} = \sqrt{125}$	M1 M1	Use of $\mathbf{c} - \mathbf{b}$. Allow magnitude of $\mathbf{b} + \mathbf{c}$ or $\mathbf{b} - \mathbf{c}$ Allow first M1 in terms of p
	Unit vector = $\frac{1}{\sqrt{125}} \begin{pmatrix} 0\\2\\11 \end{pmatrix}$	A1	OE Allow ± and decimal equivalent

397. 9709_s17_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	Volume = $\left(\frac{1}{2}\right) x^2 \frac{\sqrt{3}}{2} h = 2000 \rightarrow h = \frac{8000}{\sqrt{3}x^2}$	M1	Use of (area of triangle, with attempt at ht) \times h =2000, h = f (x)
	$A = 3xh + (2) \times \left(\frac{1}{2}\right) \times x^2 \times \frac{\sqrt{3}}{2}$	M1	Uses 3 rectangles and at least one triangle
	Sub for $h \to A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}$	A1	AG
	Total:	3	
(ii)	$\frac{\mathrm{d}4}{\mathrm{d}x} = \frac{\sqrt{3}}{2} 2x - \frac{24000}{\sqrt{3}} x^{-2}$	B1	CAO, allow decimal equivalent
	$= 0 \text{ when } x^3 = 8000 \rightarrow x = 20$	M1 A1	Sets their $\frac{dA}{dx}$ to 0 and attempt to solve for x
	Total:	3	

	Answer	Mark	Partial Marks
(iii)	$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{\sqrt{3}}{2} 2 + \frac{48000}{\sqrt{3}} x^{-3} > 0$	M1	Any valid method, ignore value of $\frac{d^2A}{dx^2}$ providing it is positive
	→ Minimum	A1 FT	FT on their x providing it is positive
	Total:	2	

398. 9709_s17_ms_12 Q: 5

	Answer	Mark	Partial Marks
(i)	Crosses x-axis at (6, 0)	В1	x = 6 is sufficient.
	$\frac{dy}{dx} = (0 +) -12 (2 - x)^{-2} \times (-1)$	B2,1,0	-1 for each incorrect term of the three or addition of + C.
	Tangent $y = \%(x-6)$ or $4y = 3x - 18$	M1 A1	Must use dy/dx , $x =$ their 6 but not $x = 0$ (which gives $m = 3$), and correct form of line equation.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	5	
(ii)	If x = 4, dy/dx = 3		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3 \times 0.04 = 0.12$	M1 A1FT	M1 for ("their m" from $\frac{dy}{dx}$ and $x = 4$) × 0.04. Be aware: use of $x = 0$ gives the correct answer but gets M0.
	Total:	2	

$399.\ 9709_s17_ms_12\ Q:\ 8$

	Answer	Mark	Partial Marks
(i)	Uses scalar product correctly: $3 \times 6 + 2 \times 6 + (-4) \times 3 = 18$	M1	Use of dot product with \overrightarrow{OA} or \overrightarrow{AO} & \overrightarrow{OB} or \overrightarrow{BO} only.
	$ \overrightarrow{OA} = \sqrt{29}$, $ \overrightarrow{OB} = 9$	М1	Correct method for any one of $ \overrightarrow{OA} $, $ \overrightarrow{AO} $, $ \overrightarrow{OB} $ or $ \overrightarrow{BO} $.
	$\sqrt{29} \times 9 \times \cos AOB = 18$	M1	All linked correctly.
	$\rightarrow AOB = 68.2^{\circ} \text{ or } 1.19^{\circ}$	A1	Multiples of π are acceptable (e.g. $0.379\pi^c$)
	Total:	4	
(ii)	$\overline{AB} = 3\mathbf{i} + 4\mathbf{j} + (3+2p)\mathbf{k}$	*M1	For use of $\overrightarrow{OB} - \overrightarrow{OA}$, allow with $p = 2$
	Comparing "j"	DM1	For comparing, \overrightarrow{OC} must contain $p \& q$. Can be implied by $\overrightarrow{AB} = 2 \overrightarrow{OC}$.
	$\rightarrow p = 2\frac{1}{2} \text{ and } q = 4$	A1 A1	Accuracy marks only available if \overline{AB} is correct.
	Total:	4	

$400.\ 9709_s17_ms_12\ Q:\ 9$

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} - 2$	B1	Accept unsimplified.
	$= 0 \text{ when } \sqrt{x} = 2$		
	x = 4, y = 8	B1B1	
	Total:	3	
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = -2x^{-\frac{3}{2}}$	B1FT	FT providing –ve power of x
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = -\frac{1}{4}\right) \to \text{Maximum}$	В1	Correct $\frac{y}{dx^2}$ and $x=4$ in (1) are required.
			Followed by "< 0 or negative" is sufficient" but $\frac{d^2y}{dx^2}$ must be correct if
			evaluated.
	Total:	2	
(iii)	EITHER: Recognises a quadratic in \sqrt{x}	(M1	Eg $\sqrt{x} = u \to 2u^2 - 8u + 6 = 0$
	1 and 3 as solutions to this equation	A1	
	$\rightarrow x = 9, x = 1.$	A1)	

	Answer	Mark	Partial Marks
	OR: Rearranges then squares	(M1	\sqrt{x} needs to be isolated before squaring both sides.
	$\rightarrow x^2 - 10x + 9 = 0$ oe	A1	
	$\rightarrow x = 9, x = 1.$	A1)	Both correct by trial and improvement gets 3/3
	Total:	3	
(iv)	k > 8	B1	
	Total:	1	

401. 9709_s17_ms_13 Q: 4

	Answer	Mark	Partial Marks
(i)	$\overline{OB} - \overline{OA} \left(= \overline{AB} \right) = \begin{pmatrix} 5 \\ 4 \\ -3 \end{pmatrix} - \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}$	B1	
	$\overrightarrow{OP} = \begin{pmatrix} 5\\1\\3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0\\3\\-6 \end{pmatrix} = \begin{pmatrix} 5\\2\\1 \end{pmatrix}$	M1 A1	If \overline{OP} not scored in (i) can score SR B1 if seen correct in (ii). Other equivalent methods possible
	Total:	3	
(ii)	Distance $OP = \sqrt{5^2 + 2^2 + 1^2} = \sqrt{30} \text{ or } 5.48$	B1 FT	FT on their \overrightarrow{OP} from (i)
	Total:	1	
(iii)	Attempt $\overline{AB}.\overline{OP}$. Can score as part of $\overline{AB}.\overline{OP} = (AB)(OP)\cos\theta$ Rare ALT: Pythagoras $ \overline{OP} ^2 + \overline{AP} ^2 = 5 + 30 = \overline{OA} ^2$	M1	Allow any combination of $\overline{AB}.\overline{PO}$ etc. and also if \overline{AP} or \overline{PB} used instead of \overline{AB} giving $2-2=0$ & $4-4=0$ respectively. Allow notation \times instead of .
	(0+6-6)=0 hence perpendicular. (Accept 90°)	A1 FT	If result not zero then 'Not perpendicular' can score A1FT if value is 'correct' for <i>their</i> values of $\overline{AB}, \overline{OP}$ etc. from (i).
	Total:	2	

402. 9709_s17_ms_13 Q: 6

Answer	Mark	Partial Marks
Gradient of normal is $-1/3 \rightarrow$ gradient of tangent is 3 SOI	B1 B1 FT	FT from their gradient of normal.
dy/dx = 2x - 5 = 3	M1	Differentiate and set = $their$ 3 (numerical).
x = 4	*A1	
Sub $x = 4$ into line $\rightarrow y = 7$ & sub <i>their</i> (4, 7) into curve	DM1	OR sub $x = 4$ into curve $\rightarrow y = k - 4$ and sub <i>their</i> (4, $k - 4$) into line OR other valid methods deriving a linear equation in k (e.g. equating curve with either normal or tangent and sub $x = 4$).
k = 11	A1	
Total:	6	

403. 9709_w17_ms_11 Q: 1

Answer	Mark	Partial Marks
$\frac{dy}{dx} = 3x^{1/2} - 3 - 2x^{-1/2}$	B2,1,0	
at $x = 4$, $\frac{dy}{dx} = 6 - 3 - 1 = 2$	M1	
Equation of tangent is $y = 2(x-4)$ OE	A1FT	Equation through (4, 0) with their gradient
	4	

404. 9709_w17_ms_11 Q: 2

Answer	Mark	Partial Marks
$f'(x) = 3x^2 - 2x - 8$	M1	Attempt differentiation
$-\frac{4}{3}$, 2 SOI	A1	
$\mathbf{f}'(x) > 0 \Rightarrow x < -\frac{4}{3} \text{ SOI}$	M1	Accept $x > 2$ in addition. FT <i>their</i> solutions
Largest value of a is $-\frac{4}{3}$	A1	Statement in terms of a. Accept $a \le -\frac{4}{3}$ or $a < -\frac{4}{3}$. Penalise extra solutions
	4	

405. 9709_w17_ms_11 Q: 4

	Answer	Mark	Partial Marks
(i)	$V = \frac{1}{3}\pi r^2 (18 - r) = 6\pi r^2 - \frac{1}{3}\pi r^3$	В1	AG
		1	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 12\pi r - \pi r^2 = 0$	M1	Differentiate and set = 0
	$\pi r (12 - r) = 0 \rightarrow r = 12$	A1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 12\pi - 2\pi r$	M1	
	Sub $r = 12 \to 12\pi - 24\pi = -12\pi \to MAX$	A1	AG
		4	
(iii)	Sub $r = 12$, $h = 6 \to \text{Max } V = 288\pi$ or 905	B1	
		1	

$406.\ 9709_w17_ms_11\ \ Q:\ 8$

	Answer	Mark	Partial Marks
(a)	$EITHER: \overrightarrow{PR} = 2\overrightarrow{PQ} = 2(\mathbf{q} - \mathbf{p})$	(B1	
	$\overrightarrow{OR} = \mathbf{p} + 2\mathbf{q} - 2\mathbf{p} = 2\mathbf{q} - \mathbf{p}$	M1A1)	
	$\overline{QR}: \overline{QR} = \overline{PQ} = \mathbf{q} - \mathbf{p}$	(B1	
	$\overrightarrow{OR} = \overrightarrow{OQ} + \overrightarrow{QR} = \mathbf{q} + \mathbf{q} - \mathbf{p} = 2\mathbf{q} - \mathbf{p}$	M1A1)	Or other valid method
		3	
(b)	$6^2 + a^2 + b^2 = 21^2$ SOI	B1	
	18 + 2a + 2b = 0	B1	
	$a^2 + (-a - 9)^2 = 405$	M1	Correct method for elimination of a variable. (Or same equation in b)
	$(2)(a^2+9a-162)(=0)$	A1	Or same equation in b
	a = 9 or -18	A1	
	b = -18 or 9	A1	
		6	

407. 9709_w17_ms_12 Q: 7

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4 = 0$		Can use completing the square.
	$\rightarrow x = 2, y = 3$	B1 B1	
	Midpoint of AB is (3, 5)	B1 FT	FT on (their 2, their 3) with (4,7)
	$\rightarrow m = \frac{7}{3} (\text{or } 2.33)$	B1	
		4	
(ii)	Simultaneous equations $\rightarrow x^2 - 4x - mx + 9 (= 0)$	*M1	Equates and sets to 0 must contain m
	Use of $b^2 - 4ac \rightarrow (m+4)^2 - 36$	DM1	Any use of b^2 –4ac on equation set to 0 must contain m
	Solves = $0 \rightarrow -10$ or 2	A1	Correct end-points.
	-10 < m < 2	A1	Don't condone \leq at either or both end(s). Accept $-10 \leq m, m \leq 2$.
		4	

408. 9709_w17_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i)	$\overline{AB} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} \text{ or } \overline{BA} = \begin{pmatrix} -4 \\ -3 \\ -2 \end{pmatrix}$	M1	Use of $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$
	e.g. \overrightarrow{AO} . $\overrightarrow{AB} = -8 + 6 + 2 = 0 \rightarrow O\widehat{AB} = 90^{\circ} \text{ AG}$	M1 A1	Use of dot product with either \overrightarrow{AO} or \overrightarrow{OA} & either \overrightarrow{AB} or \overrightarrow{BA} . Must see 3 component products
	OR		
	$ \overrightarrow{OA} = 3, \overrightarrow{OB} = \sqrt{38}, \overrightarrow{AB} = \sqrt{29}$ $OA^2 + AB^2 = OB^2 \rightarrow O\widehat{A}B = 90^{\circ} \text{ AG}$		OR Correct use of Pythagoras. In both methods must state angle or $\theta = 90^{\circ}$ or similar for A1
		3	
(ii)	$\overrightarrow{CB} = \begin{pmatrix} 6 \\ -6 \\ -3 \end{pmatrix} \text{ or } \overrightarrow{BC} = \begin{pmatrix} -6 \\ 6 \\ 3 \end{pmatrix}$	B1	Must correctly identify the vector.
	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} \text{ (or } -\overrightarrow{CB}) = \begin{pmatrix} 0 \\ 7 \\ 4 \end{pmatrix}$	M1 A1	Correct link leading to \overrightarrow{OC}
		3	

	Answer	Mark	Partial Marks
(iii)	$\left \overrightarrow{OA} \right = 3, \left \overrightarrow{BC} \right = 9, \left \overrightarrow{AB} \right = \sqrt{29} (5.39)$	B1	For any one of these
	Area = $\frac{1}{2}(3+9)\sqrt{29}$ or $3\sqrt{29} + 3\sqrt{29}$	M1	Correct formula(e) used for trapezium or (rectangle + triangle) or two triangles using their lengths.
	$= 6\sqrt{29} $ (1 $\sqrt{1044}$, 2 $\sqrt{261}$ or 3 $\sqrt{116}$)	A1	Exact answer in correct form.
		3	

 $409.\ 9709_w17_ms_13\ Q:\ 4$

Answer	Mark	Partial Marks
$f'(x) = \left[\left(\frac{3}{2} \right) (2x - 1)^{1/2} \right] \times [2] - [6]$	B2, 1, 0	Deduct 1 mark for each [] incorrect.
$f'(x) < 0 \text{ or } \leq 0 \text{ or } = 0$ SOI	M1	
$(2x-1)^{1/2}$ < 2 or ≤ 2 or = 2 OE	A1	Allow with k used instead of x
Largest value of k is $\frac{5}{2}$	A1	Allow $k \le \frac{5}{2}$ or $k = \frac{5}{2}$ Answer must be in terms of k (not x)
	5	

410. 9709_w17_ms_13 Q: 9

	Answer	Mark	Partial Marks
(i)	$\overrightarrow{AB} = +/-\begin{pmatrix} -18\\9\\-18 \end{pmatrix}, \overrightarrow{BC} = +/-\begin{pmatrix} 12\\-6\\12 \end{pmatrix},$	B1 B1	Allow i, j, k form throughout.
	$\left \overrightarrow{AB} \right = 27, \qquad \left \overrightarrow{BC} \right = 18$	B1 FT B1 FT	FT on their \overline{AB} , their \overline{OD} .
	$\left \overline{CD} \right = \left(\frac{18}{27} \right) \times 18$ OR $\left(\frac{18}{27} \right)^2 \times 27 = 12$	B1	
		5	
(ii)	$\overrightarrow{CD} = (\pm) their \frac{18}{27} \times their \ \overrightarrow{BC}$ SOI	M1	Expect (\pm) $\begin{pmatrix} 8 \\ -4 \\ 8 \end{pmatrix}$.
	$\overrightarrow{OD} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} (\pm) \text{ their } \frac{18}{27} \begin{pmatrix} 12 \\ -6 \\ 12 \end{pmatrix} = \begin{pmatrix} 10 \\ -7 \\ 7 \end{pmatrix}, \begin{pmatrix} -6 \\ 1 \\ -9 \end{pmatrix}$	M1 A1 A1	Other methods possible for \overrightarrow{OD} , e.g. $\overrightarrow{OB} + \frac{5}{2} \overrightarrow{CD}$, $\overrightarrow{OB} + \frac{1}{2} \overrightarrow{CD}$ (One soln M2A1, 2nd soln A1) OR $\overrightarrow{OB} + \frac{5}{3} \overrightarrow{BC}$, $\overrightarrow{OB} + \frac{1}{3} \overrightarrow{BC}$ (One soln M2A1, 2nd soln A1)
		4	

411. 9709_w17_ms_13 Q: 11

	Answer	Mark	Partial Marks
(i)	Gradient of $AB = \frac{1}{2}$	B1	
	Equation of AB is $y = \frac{1}{2}x - \frac{1}{2}$	B1	
		2	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}(x-1)^{-\frac{1}{2}}$	B1	
	$\frac{1}{2}(x-1)^{-\frac{1}{2}} = \frac{1}{2}$. Equate their $\frac{dy}{dx}$ to their $\frac{dy}{dx}$	*M1	
	x=2, y=1	A1	
	$y-1 = \frac{1}{2}(x-2)$ (thro' their(2,1) & their \(\frac{1}{2} \) \rightarrow y = \(\frac{1}{2}x \)	DM1 A1	
		5	

	Answer	Mark	Partial Marks
(iii)	$ \begin{array}{ccc} EITHER: \\ \sin \theta = \frac{d}{1} & \rightarrow & d = \sin \theta \end{array} $	(M1	Where θ is angle between AB and the x -axis
	gradient of $AB = \frac{1}{2} \Rightarrow \tan \theta = \frac{1}{2} \Rightarrow \theta = 26.5(7)^{\circ}$	B1	
	$d = \sin 26.5(7)^{\circ} = 0.45$ (or $\frac{1}{\sqrt{5}}$)	A1)	
	<i>OR1:</i> Perpendicular through <i>O</i> has equation $y = -2x$	(M1	
	Intersection with AB: $-2x = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } \frac{1}{\sqrt{5}}\text{)}$	A1)	
	OR2: Perpendicular through (2, 1) has equation $y = -2x + 5$	(M1	
	Intersection with AB: $-2x + 5 = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{11}{5}, \frac{3}{5}\right)$	A1	
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } 1/\sqrt{5}\text{)}$	A1)	
	Answer	Mark	Partial Marks
(iii)	OR3: $\triangle OAC$ has area $\frac{1}{4}$ [where $C = (0, -\frac{1}{2})$]	(B1	
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d = \frac{1}{4} \longrightarrow d = \frac{1}{\sqrt{5}}$	M1 A1)	
		3	

412. 9709_m16_ms_12 Q: 6

	Answer	Mark	Partial Marks
(i)	$A = 2\pi r^2 + 2\pi rh$	B1	
	$\pi r^2 h = 1000 \rightarrow h = \frac{1000}{\pi r^2}$	M1	
	Sub for h into $A \rightarrow A = 2\pi r^2 + \frac{2000}{r}$ AG	A1 [3]	
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r} = 0 \Rightarrow \ 4\pi r - \frac{2000}{r^2} = 0$	M1A1	Attempt differentiation & set = 0
	r = 5.4	DM1 A1	Reasonable attempt to solve to $r^3 =$
	$\frac{d^2 A}{dr^2} = 4\pi + \frac{4000}{r^3}$		
	>0 hence MIN hence MOST EFFICIENT AG	B1 [5]	Or convincing alternative method

413. 9709_m16_ms_12 Q: 7

	Answer	Ma	ark	Partial Marks
(i)	$CP = \frac{3}{5}CA$ soi $CP = \frac{3}{5}(4\mathbf{i} - 3\mathbf{k}) = 2.4\mathbf{i} - 1.8\mathbf{k} \text{ AG}$	M1 A1	[2]	
(ii)	$OP = 2.4\mathbf{i} + 1.2\mathbf{k}$ $BP = 2.4\mathbf{i} - 2.4\mathbf{j} + 1.2\mathbf{k}$	B1 B1	[2]	
(iii)	$BP.CP = 5.76 - 2.16 = 3.6$ $ BP CP = \sqrt{2.4^2 + 2.4^2 + 1.2^2} \sqrt{2.4^2 + 1.8^2}$ $\cos BPC = \frac{3.6}{\sqrt{12.96}\sqrt{9}} \left(= \frac{1}{3} \right)$ Angle $BPC = 70.5^{\circ}$ (or 1.23 rads) cao	M1 M1 M1 A1	[4]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Product of moduli All linked correctly

414. 9709_s16_ms_11 Q: 5

	Answer	Mark	Partial Marks
(i)	$A = 2y \times 4x (= 8xy)$ $10y + 12x = 480$ $\rightarrow A = 384x - 9.6x^{2}$	B1 B1 B1 [3]	answer given
(ii)	$\frac{dA}{dx} = 384 - 19.2x$ $= 0 \text{ when } x = 20$	B1 M1	Sets to 0 and attempt to solve oe Might see completion of square
	$\rightarrow x = 20, y = 24.$	A1	Needs both x and y
	Uses $x = -\frac{b}{2a} = \frac{-384}{-19.2} = 20$, M1, A1 y = 24, A1 From graph: B1 for $x = 20$, M1, A1 for $y = 24$	[3]	Trial and improvement B3 .

415. 9709_s16_ms_11 Q: 8

Answer	Mark	Partial Marks
$y = 3x - \frac{4}{x}$ $\frac{dy}{dx} = 3 + \frac{4}{x^2}$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 + \frac{4}{x^2}$	В1	
m of AB = 4	B1	
Equate $\rightarrow x = \pm 2$		
$\rightarrow C(2, 4) \text{ and } D(-2, -4)$	M1 A1	Equating + solution.
$\rightarrow M(0, 0)$ or stating M is the origin m of $CD = 2$	B1√	$ ^{\wedge} $ on their C and D
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/1	I I I I I I I I I I I I I I I I I I I
Perpendicular gradient $(=-\frac{1}{2})$	M1	Use of $m_1m_2 = -1$, must use m_{CD}
1	A1	(not m = 4)
$\rightarrow y = -\frac{1}{2}x$	[7]	
2		

416. 9709_s16_ms_11 Q: 10

	Answer	Mark	Partial Marks
(i)	$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ k \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$		
	$10 - 1 - 2k = 0 \longrightarrow k = 4\frac{1}{2}$	M1 A1 [2]	Use of scalar product = 0.
(ii)	$\overline{AB} = \begin{pmatrix} 3 \\ -2 \\ k+2 \end{pmatrix},$	B1	
	$ \overrightarrow{OC} = 7 \text{ (seen or implied)}$ $3^2 + (-2)^2 + (k+2)^2 = 49$ $\rightarrow k = 4 \text{ or } -8$	B1 M1 A1 [4]	Correct method. Both correct. Condone sign error in \overline{AB}
(iii)	OA = 3		
	$\overrightarrow{OD} = 3 \overrightarrow{OA} = \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix}$ and $\overrightarrow{OE} = 2$	M1 A1	Scaling from magnitudes/unit vector – oe.
	$\overrightarrow{OC} = \begin{pmatrix} 4\\12\\-6 \end{pmatrix}$		
	$\overrightarrow{DE} = \overrightarrow{OE} - \overrightarrow{OD} = \begin{pmatrix} -2\\9\\0 \end{pmatrix},$	M1	Correct vector subtraction.
	→ Magnitude of √85.	A1	
		[4]	

417. 9709_s16_ms_12 Q: 3

 Answer	Mark	Partial Marks
$\overrightarrow{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$ and $\overrightarrow{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.		
$\overrightarrow{AB} = 2\mathbf{i} + \mathbf{j} + 4\mathbf{k} \text{ or } \overrightarrow{AC} = 4\mathbf{i} + 2\mathbf{j} + 8\mathbf{k}$	B1	
$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = 6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$	M1	correct method for \overrightarrow{OC}
OR		
$ \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} x - 4 \\ y + 4 \\ z - 2 \end{pmatrix}, $	B1	
$\overrightarrow{OC} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix}$	M1	
OR		
$\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{OC} - \overrightarrow{OB}$ $\therefore \overrightarrow{OC} = 2\overrightarrow{OB} - \overrightarrow{OA}$	B1	
$= \begin{pmatrix} 8 \\ -8 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ -5 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix}$	M1	
Unit vector = (Their \overrightarrow{OC}) ÷ (Mod their \overrightarrow{OC})	M1	Divides by their mod of their \overrightarrow{OC}
$= (6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}) \div 9$	A1 [4]	Correct unsimplified expression

418. 9709_s16_ms_13 Q: 5

	Answer	Mark	Partial Marks
	$\frac{dy}{dx} = [8] + [-2][(2x-1)^{-2}]$	B2,1,0	
	$= 0 \rightarrow 4(2x-1)^2 = 1$ oe eg $16x^2 - 16x + 3 = 0$	M1	Set to zero, simplify and attempt to solve soi
1	$x = \frac{1}{4} \text{ and } \frac{3}{4}$	A1	Needs both <i>x</i> values. Ignore <i>y</i> values
1	$\frac{d^2 y}{dx^2} = 8(2x - 1)^{-3}$	B1√*	ft to $k(2x-1)^{-3}$ where $k > 0$
	When $x = \frac{1}{4}$, $\frac{d^2 y}{dx^2} (= -64)$ and/or < 0 MAX	DB1	Alt. methods for last 3 marks (values either side of 1/4 & 3/4)
	When $x = \frac{3}{4}$, $\frac{d^2y}{dx^2} (= 64)$ and/or > 0 MIN	DB1 [7]	must indicate which x-values and cannot use $x = 1/2$. (M1A1A1)

 $419.\ 9709_s16_ms_13\ Q{:}\ 7$

 Answer	Mark	Partial Marks
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 5x^{1/2} + 5$	B1	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$	B1	
$2x - 5x^{1/2} + 5 = 2$	M1	Equate their dy/dx to their 2 or ½.
$2x - 5x^{1/2} + 3(=0)$ or equivalent 3-term		
quadratic	A1	
Attempt to solve for $x^{1/2}$ e.g.		
$(2x^{1/2}-3)(x^{1/2}-1)=0$	DM1	Dep. on 3-term quadratic
$x^{1/2} = 3/2$ and 1	A1	ALT
x = 9/4 and 1	A1	$5x^{\frac{1}{2}} = 2x + 3 \rightarrow 25x = (2x + 3)^2$
	[7]	$5x^{\frac{1}{2}} = 2x + 3 \rightarrow 25x = (2x + 3)^{2}$ $4x^{2} - 13x + 9(=0)$
		x = 9/4 and 1
		x = 9/4 and 1

420. 9709_s16_ms_13 Q: 9

	Answer	Mark	Partial Marks
(i)	$\mathbf{AB} = \mathbf{OB} - \mathbf{OA} = \begin{pmatrix} -1 \\ 2 \\ p+4 \end{pmatrix}$	B1	Ignore labels. Allow BA or BC
	$\mathbf{CB} = \mathbf{OB} - \mathbf{OC} = \begin{pmatrix} -4 \\ 5 \\ p - 2 \end{pmatrix}$	B1	
	$1+4+(p+4)^2=16+25+(p-2)^2$	M1	
	p=2	A1	
		[4]	
(ii)	AB.CB = 4+10-5 = 9	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$
	$ \mathbf{AB} = \sqrt{1+4+25} = \sqrt{30}, \mathbf{CB} = \sqrt{16+25+1}$		
	$=\sqrt{42}$	M1	Product of moduli
	$\cos ABC = \frac{9}{\sqrt{30}\sqrt{42}} \text{or} \frac{9}{6\sqrt{35}}$	M1	Allow one of AB , CB reversed - but award A0
	$ABC = 75.3^{\circ}$ or 1.31rads (ignore reflex angle		
	[285°)	A1 [4]	
	263)		

421. 9709_w16_ms_11 Q: 9

	Answer	Mark		Partial Marks
(i)	$\mathbf{XP} = -4\mathbf{i} + (p-5)\mathbf{j} + 2\mathbf{k}$ $[-4\mathbf{i} + (p-5)\mathbf{j} + 2\mathbf{k}].(p\mathbf{j} + 2\mathbf{k}) = 0$	B1 M1		Or PX Attempt scalar prod with OP/PO and set = 0
	$p^2 - 5p + 4 = 0$ p = 1 or 4	A1		(=0 could be implied)
	p=1 or 4	A1	[4]	
(ii)	$\mathbf{XP} = -4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} \rightarrow \mathbf{XP} = \sqrt{16 + 16 + 4}$ Unit vector = 1/6 (-4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) oe	M1 A1	[2]	Expect 6
(iii)	$\mathbf{AG} = -4\mathbf{i} + 15\mathbf{j} + 2\mathbf{k}$ $\mathbf{XQ} = \lambda \mathbf{AG} \text{soi}$ $\lambda = 2/3 \rightarrow \mathbf{XQ} = -\frac{8}{3}\mathbf{i} + 10\mathbf{j} + \frac{4}{3}\mathbf{k}$	B1 M1 A1	[3]	

422. 9709_w16_ms_11 Q: 11

	Answer	Mark		Partial Marks
(i)	$\frac{dy}{dx} = -(x-1)^{-2} + 9(x-5)^{-2}$	M1A1		May be seen in part (ii)
	$m_{\text{tangent}} = -\frac{1}{4} + \frac{9}{4} = 2$	B1		
	Equation of normal is $y-5=-\frac{1}{2}(x-3)$	M1		Through (3, 5) and with
	x = 13	A1	[5]	$m = -1 / m_{tangent}$
(ii)	$(x-5)^2 = 9(x-1)^2$	B1		Set $\frac{dy}{dx} = 0$ and simplify
	$(x-5)^2 = 9(x-1)^2$ $x-5 = (\pm)3(x-1)$ or $(8)(x^2 - x - 2) = 0$	M1		Simplify further and attempt solution
	x = -1 or 2	A1		
	$\frac{d^2 y}{dx^2} = 2(x-1)^{-3} - 18(x-5)^{-3}$	B1		If change of sign used, x values close to the roots must be used and all must be correct
	When $x = -1$, $\frac{d^2y}{dx^2} = -\frac{1}{6} < 0$ MAX	B1		
	When $x = 2$, $\frac{d^2y}{dx^2} = \frac{8}{3} > 0$ MIN	B1	[6]	

423. 9709_w16_ms_12 Q: 7

	Answer	Mark		Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3}{\left(2x-1\right)^2} \times 2$	B1 B1	[2]	B1 for a single correct term (unsimplified) without ×2.
(ii)	e.g. Solve for $\frac{dy}{dx} = 0$ is impossible.	B1√^	[1]	Satisfactory explanation.
(iii)	If $x = 2$, $\frac{dy}{dx} = \frac{-6}{9}$ and $y = 3$	M1*		Attempt at both needed.
	Perpendicular has $m = \frac{9}{6}$	M1*		Use of $m_1m_2 = -1$ numerically.
	$\rightarrow y-3=\frac{3}{2}(x-2)$	DM1		Line equation using $(2, \text{ their } 3)$ and their m .
	Shows when $x=0$ then $y=0$ AG	A1	[4]	
(iv)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -0.06$			
	$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow -\frac{2}{3} \times -0.06 = 0.04$	M1 A1	[2]	

424. 9709_w16_ms_12 Q: 9

	Answer	Mark		Partial Marks
(i)	-4-6-6=-16	M1		Use of $x_1x_2 + y_1y_2 + z_1z_2$ on their $\overrightarrow{OA} \& \overrightarrow{OB}$
	$\sqrt{x_1^2 + y_1^2 + z_1^2}$ or $\sqrt{x_2^2 + y_2^2 + z_2^2}$	M1		Modulus once on either their \overrightarrow{OA} or \overrightarrow{OB}
	$3 \times 7 \times \cos \theta = -16$ → θ = 139.6° or 2.44° or 0.776π	M1 A1	[4]	All linked using their $\overrightarrow{OA} \& \overrightarrow{OB}$
(ii)	$\overrightarrow{AC} = \mathbf{c} - \mathbf{a} = \begin{pmatrix} 0 \\ 8 \\ 6 \end{pmatrix}$	B1		
	Magnitude = 10 Scaling $\rightarrow \frac{15}{their10} \times \begin{pmatrix} 0 \\ 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 12 \\ 9 \end{pmatrix}$	M1 A1	[3]	For $15 \times their$ unit vector.
(iii)	$ \begin{pmatrix} 2+2p \\ 6-2p \\ 5-p \end{pmatrix} $	B1		Single vector soi by scalar product.
	$\rightarrow -2(2+2p) + 3(6-2p) + 6(5-p) = 0$ \to p = 2\frac{3}{4}	M1 A1	[3]	Dot product of $(p \overrightarrow{OA} + \overrightarrow{OC})$ and $\overrightarrow{OB} = 0$.

 $425.\ 9709_w16_ms_13\ Q:\ 4$

Answer	Mark		Partial Marks
$f'(x) = 3x^2 - 6x - 9$ soi	B1		
Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$ soi	M1		
(3)(x-3)(x+1) or 3,-1 seen or 3 only seen	A1		With or without
Least possible value of n is 3. Accept $n = 3$. Accept $n \ge 3$	A1	[4]	equality/inequality signs Must be in terms of <i>n</i>
		[.,]	

426. 9709_w16_ms_13 Q: 7

	Answer	Mark		Partial Marks
(i)	AB.AC = $3-2-1=0$ hence perpendicular or 90° AB.AD = $3+4-7=0$ hence perpendicular or 90° AC.AD = $1-8+7=0$ hence perpendicular or 90° AG	B1 B1 B1	[3]	3 - 2 - 1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at least once.
(ii)	Area $ABC = (\frac{1}{2})\sqrt{3^2 + 1^2 + 1^2} \times \sqrt{1^2 + (-2)^2 + (-1)^2}$ $= \frac{1}{2}\sqrt{11} \times \sqrt{6}$ Vol. $= \frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $= \frac{1}{6}\sqrt{66} \times \sqrt{66} = 11$	M1 A1 M1 A1	[4]	Expect $\frac{1}{2}\sqrt{66}$ Not 11.0

427. 9709_s15_ms_11 Q: 2

	Answer	Mark	Partial Marks
(i)	$y = 2x^2$, $X(-2, 0)$ and $P(p, 0)$ $A = \frac{1}{2} \times (2 + p) \times 2p^2 (= 2p^2 + p^3)$	M1 A1 [2]	Attempt at base and height in terms of p and use of $\frac{bh}{2}$
(ii)	$\frac{dA}{dp} = 4p + 3p^{2}$ $\frac{dA}{dt} = \frac{dA}{dp} \times \frac{dp}{dt} = 0.02 \times 20 = 0.4$	B1	cao any correct method, cao
	or $\frac{dA}{dt} = 4p \frac{dp}{dt} + 3p^2 \frac{dp}{dt}$	[3]	

428. 9709_s15_ms_11 Q: 4

	Answer	Mark	Partial Marks
	$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 6 \\ -3 \\ 2 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} k \\ -2k \\ 2k-3 \end{pmatrix}$		
(i)	$OA \cdot OB = 18 - 8 = 10$ Modulus of $OA = 5$, of $OB = 7$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$
	Angle $AOB = \cos^{-1}\left(\frac{10}{35}\right)$ aef	M1	All linked with modulus cao, (if angle given, no penalty),
	$\rightarrow \frac{10}{35} \text{ or } \frac{2}{7}$	A1 [3]	correct angle implies correct cosine
	(3)		
(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$	В1	allow for $\mathbf{a} - \mathbf{b}$
	$k^2 + 4k^2 + (2k - 3)^2 = 9 + 9 + 36$	M1	Correct use of moduli using their AB
	$\rightarrow 9k^2 - 12k - 45(=0)$	DM1	obtains 3 term quadratic.
	$ → 9k^2 - 12k - 45(=0) → k= 3 or k = -\frac{5}{3} $	A1 [4]	cao

429. 9709_s15_ms_11 Q: 9

	Answer	Mark	Partial Marks
	$y = x^3 + px^2$		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2px$	В1	cao
	Sets to $0 \to x = 0$ or $-\frac{2p}{3}$	M1	Sets differential to 0
	\rightarrow (0, 0) or $\left(-\frac{2p}{3}, \frac{4p^3}{27}\right)$	A1 A1 [4]	cao cao, first A1 for any correct turning point or any correct pair of <i>x</i> values. 2nd A1 for 2 complete TPs
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 2p$	M1	Other methods include; clear demonstration of sign change of gradient, clear reference to the shape of the curve
	At $(0, 0) \rightarrow 2p$ +ve Minimum	A1	www
	$At\left(-\frac{2p}{3}, \frac{4p^3}{27}\right) \rightarrow -2p - ve \text{ Maximum}$	A1 [3]	
(iii)	$y = x^3 + px^2 + px \rightarrow 3x^2 + 2px + p (= 0)$	В1	
	Uses $b^2 - 4ac$	M1	Any correct use of discriminant
	$\begin{array}{l} \rightarrow 4p^2 - 12p < 0 \\ \rightarrow 0 < p < 3 \text{ aef} \end{array}$	A1	cao (condone ≤)
	-	[3]	,

 $430.\ 9709_s15_ms_12\ Q:\ 2$

 Answer	Mark	Partial Marks
Radius of semicircle = $\frac{1}{2}AB = r\sin\theta$ Area of semicircle = $\frac{1}{2}\pi r^2 \sin^2\theta = A_1$	B1 B1√	aef Uses $\frac{1}{2}\pi r^2$ with $r = f(\theta)$
Shaded area = semicircle – segment = $A_1 - \frac{1}{2}r^22\theta + \frac{1}{2}r^2\sin 2\theta$	B1B1 [4]	B1 (–sector), B1 for + (triangle)

 $431.\ 9709_s15_ms_12\ Q:\ 4$

 Answer	Mark	Partial Marks
$u = 2x(y - x) \text{ and } x + 3y = 12,$ $u = 2x \left(\frac{12 - x}{3} - x\right)$ $= 8x - \frac{8x^2}{3}$	M1 A1	Expresses u in terms of x
$= 8x - \frac{8x^2}{3}$ $\frac{du}{dx} = 8 - \frac{16x}{3}$ $= 0 \text{ when } x = 1\frac{1}{2}$ $\rightarrow (y = 3\frac{1}{2})$ $\rightarrow u = 6$	M1 A1 A1 [5]	Differentiate candidate's quadratic, sets to $0 + $ attempt to find x , or other valid method Complete method that leads to u

432. 9709_s15_ms_12 Q: 9

	Answer	Mark	Partial Marks
	$\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$		
(i)	\overrightarrow{OA} . $\overrightarrow{OB} = 6 + 4 + 16 = 26$	M1	Must be numerical at some stage
	$\left \overrightarrow{OA} \right = \sqrt{36} \;, \; \left \overrightarrow{OB} \right = \sqrt{26}$	M1	Product of 2 moduli
	$\cos AOB = \frac{26}{6\sqrt{26}}$	M1	All linked correctly
	→ 31.8°	A1 [4]	со
(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$	B1	
	$\overrightarrow{OC} = \begin{pmatrix} 2\\4\\4 \end{pmatrix} + 2\overrightarrow{AB} \text{ or } \begin{pmatrix} 3\\1\\4 \end{pmatrix} + \overrightarrow{AB}$	M1	Correct link
	$\overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$		
	Unit vector \div modulus $\rightarrow \frac{1}{6} \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$	M1 A1 [4]	÷ by modulus. co
(iii)	$\left \overrightarrow{OC} \right = 6, \left \overrightarrow{OA} \right = 6$	B1 [1]	со

433. 9709_s15_ms_13 Q: 5

	Answer	Mark	Partial Marks
(i)	$\overrightarrow{AB} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$	B1	Or \overrightarrow{BA} , \overrightarrow{CB} . Allow any combination. Ignore labels.
	$\overrightarrow{BC} = \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$	B1	
	$\overrightarrow{AB} \cdot \overrightarrow{BC} = 2 - 6 + 4$ oe must be seen = 0 hence $ABC = 90^{\circ}$	M1 A1 [4]	Could be part of calculation for angle ABC AG Alt methods Pythag, Cosine Rule
(ii)	$ \overrightarrow{AB} = \sqrt{14}$, $ \overrightarrow{BC} = \sqrt{21}$ oe Area $= \frac{1}{2}\sqrt{14}\sqrt{21}$	B1	At least one correct
	_	M1	Reasonable attempt at vectors and their magnitudes
	8.6 oe	A1 [3]	Allow $\frac{7\sqrt{6}}{2}$

434. 9709_s15_ms_13 Q: 8

	Answer	Mark	Partial Marks
(i)	$-(x+1)^{-2}-2(x+1)^{-3}$	M1A1 A1 [3]	M1 for recognisable attempt at differentn. Allow $\frac{-x^2 - 4x - 3}{(x+1)^4}$ from Q rule. (A2,1,0)
(ii)	f'(x) < 0 hence decreasing	B1 [1]	Dep. on their (i) < 0 for $x > 1$
(iii)	$\frac{-1}{(x+1)^2} - \frac{2}{(x+1)^3} = 0 \text{ or } \frac{-x^2 - 4x - 3}{(x+1)^4} = 0$	M1*	Set $\frac{dy}{dx}$ to 0
	$\frac{-1}{(x+1)^2} - \frac{2}{(x+1)^3} = 0 \text{ or } \frac{-x^2 - 4x - 3}{(x+1)^4} = 0$ $\frac{-(x+1) - 2}{(x+1)^3} = 0 \to -x - 1 - 2 = 0 \text{ or }$ $-x^2 - 4x - 3 = 0$	M1 Dep*	OR mult by $(x+1)^3$ or $(x+1)^5$ (i.e.×mult) × multn $\rightarrow -(x+1)^3 - 2(x+1)^2 = 0$
	$x = -3, \ y = -1/4$	A1A1 [4]	(-3, -1/4) www scores 4/4

 $435.\ 9709_w15_ms_11\ Q\!:\, 5$

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = -\frac{8}{x^2} + 2 \text{cao}$ $\frac{d^2y}{dx} = \frac{16}{x^2} \qquad \text{cao}$	B1B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{16}{x^3}$ cao	B1	
		[3]	
(ii)	$-\frac{8}{x^2} + 2 = 0 \to 2x^2 - 8 = 0$ $x = \pm 2$	M1	Set = 0 and rearrange to quadratic form
	$x = \pm 2$ $y = \pm 8$	A1 A1	If A0A0 scored, SCA1 for just (2, 8)
	$\frac{d^2 y}{dx^2} > 0 \text{ when } x = 2 \text{ hence MINIMUM}$	B1√	$ \left\{ $
	$\frac{d^2 y}{dx^2} < 0 \text{ when } x = -2 \text{ hence MAXIMUM}$	B1 √ [5]	$\begin{bmatrix} dx^2 \\ any \text{ valid method inc. a good sketch} \end{bmatrix}$

436. 9709_w15_ms_11 Q: 10

	Answer	Mark	Partial Marks
(i)	$PM = 2i - 10k + \frac{1}{2}(6j + 8k)$ oe	M1	Any valid method
	$PM = 2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$	A1	
	$\div\sqrt{4+9+36}$	M1	
	Unit vector = $\frac{1}{7}(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$	A1	
	/	[4]	
(ii)	$AT = 6\mathbf{j} + 8\mathbf{k}$, $PT = a\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$ soi	B1	Allow 1 vector reversed at this stage.
	(or TA and TP)		(AM or MT could be used for AT)
	$(\cos ATP) = \frac{(6\mathbf{j} + 8\mathbf{k}).(a\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})}{\sqrt{36 + 64}\sqrt{a^2 + 36 + 4}}$	M1	
	$=\frac{36-16}{\sqrt{36+64}\sqrt{a^2+36+4}}$		
	$\frac{20}{10\sqrt{a^2+40}}$	A1 [↑]	Ft from their AT and PT
	$\frac{2}{\sqrt{a^2 + 40}} = \frac{2}{7}$ oe and attempt to solve	M1	
	a=3	A1 [5]	Withheld if only 1 vector reversed
	ALT Alt (Cosine Rule) Vectors (AT, PT etc.)	B1	
		וטו	
	$\cos ATP = \frac{a^2 + 36 + 4 + 36 + 64 - (100 + a^2)}{2\sqrt{(a^2 + 40)}\sqrt{100}}$	M1A1	
	then as above		

437. 9709_w15_ms_12 Q: 3

	Answer	Mark	Partial Marks
(i)	$\tan 60 = \frac{x}{h} \rightarrow x = h \tan 60$ $A = h \times x$ $V = 40\sqrt{(3h^2)}$	B1 M1 A1 [3]	Any correct unsimplified length Correct method for area ag
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = 80\sqrt{(3h)}$ If $h = 5$, $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{2\sqrt{(3)}}$ or 0.289	B1 M1A1 [3]	B1 M1 (must be ÷, not ×).

438. 9709_w15_ms_12 Q: 7

	Answer	Mark	Partial Marks
	$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 3 \\ p \\ q \end{pmatrix}.$		
(i)	$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \overrightarrow{AC} \begin{pmatrix} 3 \\ p-2 \\ q+3 \end{pmatrix} \overrightarrow{BC} \begin{pmatrix} 1 \\ p-5 \\ q+2 \end{pmatrix}$ $\rightarrow p = 6\frac{1}{2} \text{ and } q = -1\frac{1}{2}$	B1B1 B1 B1 [4]	Any 2 of 3 relevant vectors
(ii)	$6 + 3p - 6 + q + 3 = 0$ $\rightarrow q = -3p - 3$	M1 A1 [2]	Use of $x_1x_2 + y_1y_2 + z_1z_2 = 0$
(iii)	$AB^2 = 4 + 9 + 1$ $AC^2 = 9 + 1 + (q + 3)^2$ $\rightarrow (q + 3)^2 = 4$ $\rightarrow q = -1 \text{ or } -5$	M1 A1 A1 [3]	For attempt at either

439. 9709_w15_ms_12 Q: 9

	Answer	Mark	Partial Marks
	$f''(x) = \frac{12}{x^3}$		
(i)	$f'(x) = -\frac{6}{x^2} (+c)$	B1	Correct integration
	$= 0 \text{ when } x = 2 \rightarrow c = \frac{3}{2}$	M1 A1	Uses $x = 2$, f'($x = 0$)
	$f(x) = \frac{6}{x} + \frac{3x}{2} (+A)$	B1 √ B1√	For each integral
	$= 10 \text{ when } x = 2 \rightarrow A = 4$	A1 [6]	
(ii)	$-\frac{6}{x^2} + \frac{3}{2} = 0 \rightarrow x = \pm 2$	M1	Sets their 2 term $f'(x)$ to 0.
	Other point is $(-2, -2)$	A1 [2]	
(iii)	At $x = 2$, f''(x) = 1.5 Min At $x = -2$, f''(x) = -1.5 Max	B1 B1	
	110 2,1 (a) 1.5 17tdA	[2]	

 $440.\ 9709_w15_ms_13\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(i)	$-2p^{2} + 16p - 24 + 2p^{2} - 6p + 2$ Set scalar product = 0 and attempt solution $p = 2.2$	M1 DM1 A1 [3]	Good attempt at scalar product
(ii)	$4 - 2p = 2(p - 6) \text{ or } p = 2(2p - 6)$ $(-2) \qquad (-4)$	M1	
	$p = 4 \rightarrow \overrightarrow{OA} = \begin{pmatrix} -2\\2\\1 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} -4\\4\\2 \end{pmatrix}$	A1	At least one of OA and OB correct
	$\left \overrightarrow{OA} \right = \sqrt{(-2)^2 + 2^2 + 1}^2 = 3$	M1A1 [4]	For M1 accept a numerical p
	ALT 1 Compare AB with $OA \rightarrow 10 - 3p = p - 6$ or $6 - p = 2p - 6$. Similarly cf AB with OB	M1	
	ALT 2 $(OA.OB)/(OA \times OB) = 1 \text{ or } -1 \rightarrow$		
	$10p - 22 = \sqrt{5p^2 - 36p} + 73\sqrt{5p^2 - 16p + 20}$	M1	
	⇒ $125p^4 - 260p^3 + 941p^2 - 1448p +$ $976 = 0 \rightarrow p = 4$ with $OA.AB$ or $OB.AB$.		
	ALT 3 OA & OB have equal unit vectors. (Similarly with OA & AB or OB & AB.) Hence		
	$\frac{1}{\sqrt{5p^2 - 36p + 73}} \binom{p - 6}{2p - 6}$		
	$= \frac{1}{\sqrt{5p^2 - 16p + 20}} \begin{pmatrix} 4 - 2p \\ p \\ 2 \end{pmatrix}$	M1	
	$\rightarrow \frac{1}{\sqrt{5p^2 - 36p + 73}} = \frac{2}{\sqrt{5p^2 - 16p + 20}}$		
	$\to 15p^2 - 128p + 272 = 0$		

441. 9709_m22_ms_12 Q: 1

Question	Answer	Marks	Guidance
	$[f(x)] = \frac{2x^{\frac{2}{3}}}{\frac{2}{3}} - \frac{x^{\frac{4}{3}}}{\frac{4}{3}} [+c]$	B1 B1	$\frac{2}{3}$ and $\frac{4}{3}$ may be seen as sums of 1 and a fraction.
	5 = 12 - 12 + c	M1	Substituting (8,5) into an integral.
	$[f(x)] = 3x^{\frac{2}{3}} - \frac{3}{4}x^{\frac{4}{3}} + 5$	A1	Fractions in the denominators scores A0.
		4	

442. 9709_m21_ms_12 Q: 6

Question	Answer	Marks	Guidance
(a)	$At x = 1, \frac{dy}{dx} = 6$	B1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(\frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{1}{6} \times 3 = \frac{1}{2}$	M1 A1	Chain rule used correctly. Allow alternative and minimal notation.
		3	

Question	Answer	Marks	Guidance
(b)	$[y=]$ $\left(\frac{6(3x-2)^{-2}}{-2}\right)+(3)[+c]$	B1 B1	
	-3 = -1 + c	M1	Substitute $x = 1$, $y = -3$. c must be present.
	$y = -(3x-2)^{-2} - 2$	A1	OE. Allow f(x)=
		4	

$443.\ 9709_m21_ms_12\ Q:\ 11$

Question	Answer	Marks	Guidance
(a)	$9\left(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}\right) = 0 \text{leading to} 9x^{-\frac{3}{2}}(x - 4) = 0$	M1	OE. Set y to zero and attempt to solve.
	x = 4 only	A1	From use of a correct method.
		2	
(b)	$\frac{dy}{dx} = 9\left(-\frac{1}{2}x^{-\frac{3}{2}} + 6x^{-\frac{5}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: 9, $-\frac{1}{2}x^{\frac{3}{2}}$ and $6x^{\frac{5}{2}}$ B1; 2 of the 3 terms correct
	At $x = 4$ gradient = $9\left(-\frac{1}{16} + \frac{6}{32}\right) = \frac{9}{8}$	M1	Using their $x = 4$ in their differentiated expression and attempt to find equation of the tangent.
	Equation is $y = \frac{9}{8}(x-4)$	A1	or $y = \frac{9x}{8} - \frac{9}{2}$ OE
		4	
(c)	$9x^{-\frac{5}{2}}\left(-\frac{1}{2}x+6\right) = 0$	M1	Set <i>their</i> $\frac{dy}{dx}$ to zero and an attempt to solve.
	x = 12	A1	Condone (±)12 from use of a correct method.
		2	

Question	Answer	Marks	Guidance
(d)	$\int 9\left(x^{\frac{1}{2}} - 4x^{\frac{3}{2}}\right) dx = 9\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{4x^{\frac{1}{2}}}{-\frac{1}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: 9, $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$, $\frac{-4x^{-\frac{1}{2}}}{-\frac{1}{2}}$ B1; 2 of the 3 terms correct
	$9\left[\left(6+\frac{8}{3}\right)-\left(4+4\right)\right]$	M1	Apply limits their $4 \rightarrow 9$ to an integrated expression with no consideration of other areas.
	6	A1	Use of π scores A0
		4	

444. 9709_s21_ms_11 Q: 1

Question	Answer	Marks	Guidance
	$[y =] -\frac{1}{x^3} + 8x^4 [+c]$	B1 B1	OE. Accept unsimplified.
	$4 = -8 + \frac{1}{2} + c$	M1	Substituting $\left(\frac{1}{2},4\right)$ into an integrated expression
	$y = -\frac{1}{x^3} + 8x^4 + \frac{23}{2}$	A1	OE. Accept $-x^{-3}$; must be 8; $y =$ must be seen in working.
		4	

445. 9709_s21_ms_11 Q: 11

Question	Answer	Marks	Guidance
(a)	$\frac{dy}{dx} = 3(3x+4)^{-0.5} - 1$	B1 B1	B1 All correct with 1 error, B2 if all correct
	Gradient of tangent = $-\frac{1}{4}$ and Gradient of normal = 4	*M1	Substituting $x = 4$ into a differentiated expression and using $m_1 m_2 = -1$
	Equation of line is $(y-4) = 4(x-4)$ or evaluate c	DM1	With (4, 4) and their gradient of normal
	So y = 4x - 12	A1	
		5	
(b)	$3(3x+4)^{-0.5}-1=0$	M1	Setting their $\frac{dy}{dx} = 0$
	Solving as far as $x =$	M1	Where $\frac{dy}{dx}$ contains $a(bx+c)^{-0.5}$ a, b, c any values
	$x = \frac{5}{3}$, $y = 2\left(3 \times \frac{5}{3} + 4\right)^{0.5} - \frac{5}{3} = \frac{13}{3}$	A1	
		3	
(c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{9}{2} (3x+4)^{-1.5}$	M1	Differentiating their $\frac{dy}{dx}$ OR checking $\frac{dy}{dx}$ to find +ve and -ve either side of their $x = \frac{5}{3}$
	At $x = \frac{5}{3} \frac{d^2y}{dx^2}$ is negative so the point is a maximum	A1	
		2	

Question	Answer	Marks	Guidance
(d)	Area = $\left[\int 2(3x+4)^{0.5} - x dx = \right] \frac{4}{9}(3x+4)^{1.5} - \frac{1}{2}x^2$	B1 B1	B1 for each correct term (unsimplified)
	$\left(\frac{4}{9}(16)^{1.5} - \frac{1}{2}(4)^2\right) - \frac{4}{9}(4)^{1.5} = \frac{256}{9} - 8 - \frac{32}{9}$	М1	Substituting limits 0 and 4 into an expression obtained by integrating y
	$16\frac{8}{9}$	A1	Or $\frac{152}{9}$
		4	

446. 9709_s21_ms_12 Q: 9

Question	Answer	Marks	Guidance
	Curve intersects $y = 1$ at $(3, 1)$	B1	Throughout Question 9: 1 < their 3 < 5 Sight of x = 3
	Volume = $[\pi] \int (x-2) [dx]$	M1	M1 for showing the intention to integrate $(x-2)$. Condone missing π or using 2π .
	$\left[\pi\right]\left[\frac{1}{2}x^2-2x\right]$ or $\left[\pi\right]\left[\frac{1}{2}(x-2)^2\right]$	A1	Correct integral. Condone missing π or using 2π .
	$= \left[\pi\right] \left[\left(\frac{5^2}{2} - 2 \times 5\right) - \left(\frac{their 3^2}{2} - 2 \times their 3\right) \right]$ $= \left[\pi\right] \left[\frac{5}{2} + \frac{3}{2}\right] \text{ as a minimum requirement for } their \text{ values}$	M1	Correct use of 'their' 3' and 5 in an integrated expression. Condone missing π or using 2π . Condone +c. Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
	Volume of cylinder = $\pi \times 1^2 \times (5 - their 3)[= 2\pi]$	B1 FT	Or by integrating 1 to obtain x (condone y if 5 and <i>their</i> 3 used).
	[Volume of solid = $4\pi - 2\pi =]2\pi$ or 6.28	A1	AWRT

Question	Answer	Marks	Guidance				
	Alternative method for Question 9						
	Curve intersects $y = 1$ at $(3, 1)$	B1	Sight of $x = 3$				
	Volume of solid = $\pi \int (x-2)-1[dx]$	M1 B1	M1 for showing the intention to integrate $(x-2)$ B1 for correct integration of -1. Condone missing π or 2π for M1 but not for B1.				
	$\left[\pi\right]\left[\frac{1}{2}x^2 - 3x\right] \text{ or } \left[\pi\right]\left[\frac{1}{2}(x-3)^2\right]$	A1	Correct integral, allow as two integrals. Condone missing π or using 2π .				
	$= [\pi] \left[\left(\frac{5^2}{2} - 3 \times 5 \right) - \left(\frac{their 3^2}{2} - 3 \times their 3 \right) \right]$	M1	Correct use of 'their' 3' and 5 in an integrated expression. Condone missing π or using 2π . Condone +c. Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.				
	[Volume of solid = $4\pi - 2\pi =]2\pi$ or 6.28	A1	AWRT				
		6					

447. 9709_s21_ms_12 Q: 11

Question	Answer	Marks	Guidance
(a)	At stationary point $\frac{dy}{dx} = 0$ so $6(3 \times 2 - 5)^3 - k \times 2^2 = 0$	M1	Setting given $\frac{dy}{dx} = 0$ and substituting $x = 2$ into it.
	$[k=]\frac{3}{2}$	A1	OE
		2	
(b)	$[y =] \frac{6}{4 \times 3} (3x - 5)^4 - \frac{1}{3} kx^3 [+c].$	*M1 A1FT	Integrating (increase of power by 1 in at least one term) given $\frac{dy}{dx}$
			Expect $\frac{1}{2}(3x-5)^4 - \frac{1}{2}x^3$.
			FT their non zero k.
	$-\frac{7}{2} = \frac{1}{2} (3 \times 2 - 5)^4 - \frac{1}{3} \times \frac{3}{2} \times 2^3 + c \text{ [leading to } -3.5 + c = -3.5 \text{]}$	DM1	Using (2,-3.5) in an integrated expression. + c needed. Substitution needs to be seen, simply stating $c = 0$ is DM0.
	$y = \frac{1}{2}(3x - 5)^4 - \frac{1}{2}x^3$	A1	y = or f(x) = must be seen somewhere in solution.

Question	Answer	Marks	Guidance
(b)	Alternative method for Question 11(b)		
	$[y =] \frac{81}{2}x^4 - \frac{541}{2}x^3 + 675x^2 - 750x(+c) \text{ or } -270x^3 - k\frac{x^3}{3}$	*M1 A1 FT	From $\frac{dy}{dx} = 162x^3 - 810x^2 - kx^2 - 1350x - 750$. FT their k
	$-\frac{7}{2} = \frac{81}{2} \times 2^4 - \frac{541}{2} \times 2^3 + 675 \times 2^2 - 750 \times 2 + c$	DM1	Using $(2, -3.5)$ in an integrated expression. $+c$ needed
	$y = \frac{81}{2}x^4 - \frac{541}{2}x^3 + 675x^2 - 750x + \frac{625}{2}$	A1	y = or f(x) = must be seen somewhere in solution.
		4	
(c)	$[3\times]\left[18(3x-5)^2\right]\left[-2kx\right]$	B2,1,0 FT	FT <i>their k.</i> Square brackets indicate each required component. B2 for fully correct, B1 for one error or one missing component, B0 for 2 or more errors.
	Alternative method for Question 11(c)		
	$486x^2 - 1623x + 1350 \text{ or } -1620x - 2kx$	B2,1,0 FT	FT <i>their k.</i> B2 for fully correct, B1 for one error, B0 for 2 or more errors.
		2	
(d)	[At $x = 2$] $\left[\frac{d^2y}{dx^2}\right] = 54(3 \times 2 - 5)^2 - 4k$ or 48	M1	OE. Substituting $x = 2$ into <i>their</i> second differential or other valid method.
	[> 0] Minimum	A1	www
		2	

$448.\ 9709_s21_ms_13\ Q:\ 1$

Question	Answer	Marks	Guidance
	$\left[\mathbf{f}(x)=\right] \ 2x^3 + \frac{8}{x} \ \left[+c\right]$	B1	Allow any correct form
	7 = 16 + 4 + c	M1	Substitute $f(2) = 7$ into an integral. c must be present. Expect $c = -13$
	$f(x) = 2x^3 + \frac{8}{x} - 13$	A1	Allow $y = f(x)$ or y can appear earlier in answer
		3	

449. 9709_s21_ms_13 Q: 11

Question	Answer	Marks	Guidance
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-1/2} - \frac{1}{2}k^2x^{-3/2}$	B1 B1	Allow any correct unsimplified form
	$\frac{1}{2}x^{-1/2} - \frac{1}{2}k^2x^{-3/2} = 0 \text{leading to } \frac{1}{2}x^{-1/2} = \frac{1}{2}k^2x^{-3/2}$	M1	OE. Set to zero and one correct algebraic step towards the solutions. \[\frac{dy}{dx} \] must only have 2 terms.
	$(k^2,2k)$	A1	
		4	
(b)	When $x = 4k^2$, $\frac{dy}{dx} = \left[\frac{1}{4k} - \frac{1}{16k} = \right] \frac{3}{16k}$	B1	OE
	$y = \left[2k + k^2 \times \frac{1}{2k}\right] = \frac{5k}{2}$	B1	OE. Accept $2k + \frac{k}{2}$
	Equation of tangent is $y - \frac{5k}{2} = \frac{3}{16k}(x - 4k^2)$ or $y = mx + c \rightarrow \frac{5k}{2} = \frac{3}{16k}(4k^2) + c$	M1	Use of line equation with <i>their</i> gradient and $(4k^2$, <i>their</i> $y)$,
	When $x = 0$, $y = \left[\frac{5k}{2} - \frac{3k}{4}\right] = \left[\frac{7k}{4}\right]$ or from $y = mx + c$, $c = \frac{7k}{4}$	A1	OE
		4	

Question	Answer	Marks	Guidance
(c)	$\int \left(x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}\right) dx = \frac{2x^{\frac{3}{2}}}{3} + 2k^2 x^{\frac{1}{2}}$	B1	Any unsimplified form
	$\left[\left(\frac{16k^3}{3} + 4k^3 \right) - \left(\frac{9k^3}{4} + 3k^3 \right) \right]$	M1	Apply limits $\frac{9}{4}k^2 \rightarrow 4k^2$ to an integration of y. M0 if volume attempted.
	$\frac{49k^3}{12}$	A1	OE. Accept 4.08 k ³
		3	

450. 9709_w21_ms_11 Q: 9

Question	Answer	Marks	Guidance
(a)	$f(x) = \frac{2}{3}x^3 - 7x + 4x^{-1} [+c]$	B2, 1, 0	Allow terms on different lines; allow unsimplified.
	$-\frac{1}{3} = \frac{2}{3} - 7 + 4 + c$ leading to $c = [2]$	M1	Substitute $f(1) = -\frac{1}{3}$ into an integrated expression and evaluate c .
	$f(x) = \frac{2}{3}x^3 - 7x + 4x^{-1} + 2$	A1	OE.
		4	

Question	Answer	Marks	Guidance
(b)	$2x^4 - 7x^2 - 4 [= 0]$	M1	Forms 3-term quadratic in x^2 with all terms on one side. Accept use of substitution e.g. $2y^2 - 7y - 4[=0]$.
	$(2x^2+1)(x^2-4)[=0]$	M1	Attempt factors or use formula or complete the square. Allow \pm sign errors. Factors must expand to give <i>their</i> coefficient of x^2 or e.g. y . Must be quartic equation. Accept use of substitution e.g. $(2y+1)(y-4)$.
	$x = [\pm]2$	A1	If M0 for solving quadratic, SC B1 can be awarded for $[\pm]2$.
	$\begin{bmatrix} \frac{2}{3}(2)^3 - 7(2) + \frac{4}{2} + 2 & \text{leading to } \end{bmatrix} \left(2, -\frac{14}{3} \right)$ $\left[\frac{2}{3}(-2)^3 - 7(-2) + \frac{4}{-2} + 2 & \text{leading to } \right] \left(-2, \frac{26}{3} \right)$	B1 B1	B1 B1 for correct coordinates clearly paired; B1 for each correct point; B1 B0 if additional point.
		5	
(c)	$f''(x) = 4x + 8x^{-3}$	B1	OE
		1	
Question	Answer	Marks	Guidance
(d)	f''(2) = 9 > 0 MINIMUM at $x = their 2$	B1 FT	FT on their $x = [\pm]2$ provided $f''(x)$ is correct. Must have correct value of $f''(x)$ if $x = 2$.
	f''(-2) = -9 < 0 MAXIMUM at $x = their - 2$	B1 FT	FT on their $x = [\pm]2$ provided $f''(x)$ is correct. Must have correct value of $f''(x)$ if $x = -2$. Special case: If values not shown and B0B0 scored, SC B1 for $f''(2) > 0$ MIN and $f''(-2) < 0$ MAX
	Alternative method for question 9(d)		
	Evaluate $f'(x)$ for x-values either side of 2 and -2	M1	FT on their $x = [\pm]2$
	MINIMUM at $x = their 2$, MAXIMUM at $x = their 2$	A1 FT	FT on their $x = [\pm]2$. Must have correct values of $f'(x)$ if shown. Special case: If values not shown and M0A0 scored SC B1 $f'(2)$ -/0/+ MIN and $f'(-2)$ +/0/- MAX
	Alternative method for question 9(d)	·	
	Justify maximum and minimum using correct sketch graph	B1 B1	Need correct coordinates in (b) for this method.
		2	

451. 9709_w21_ms_11 Q: 10

Question	Answer	Marks	Guidance
(a)	$\left\{ \frac{\left(3x-2\right)^{-\frac{1}{2}}}{-1/2} \right\} \div \left\{3\right\}$	B2, 1, 0	Attempt to integrate
	$-\frac{2}{3}[0-1]$	M1	M1 for applying limits $1 \to \infty$ to an integrated expression (either correct power or dividing by their power).
	$\frac{2}{3}$	A1	
		4	
(b)	$[\pi] \int y^2 dx = [\pi] \int (3x - 2)^{-3} dx = [\pi] \frac{(3x - 2)^{-2}}{-2 \times 3}$	*M1 A1	M1 for attempt to integrate y^2 (power increases); allow 1 error. A1 for correct result in any form.
	$[\pi] \left[-\frac{1}{6} \right] \left[\frac{1}{16} - 1 \right]$	DM1	Apply limits 1 and 2 to an integrated expression and subtract correctly; allow 1 error.
	$\frac{5\pi}{32}$	A1	OE
		4	

Question	Answer	Marks	Guidance
(c)	$\frac{dy}{dx} = -\frac{3}{2} \times 3(3x - 2)^{-\frac{5}{2}}$	M1	M1 for attempt to differentiate (power decreases); allow 1 error.
	$At x = 1, \frac{dy}{dx} = -\frac{9}{2}$	*M1	Substitute $x = 1$ into <i>their</i> differentiated expression; allow 1 error.
	[Equation of normal is] $y-1=\frac{2}{9}(x-1)$ OR evaluates c	DM1	Forms equation of line or evaluates c using $(1, 1)$ and gradient $\frac{-1}{their \frac{dy}{dx}}$.
	$At A, y = \frac{7}{9}$	A1	OE e.g. AWRT 0.778; must clearly identify <i>y</i> -intercept
		4	

$452.\ 9709_w21_ms_12\ Q:\ 4$

Question	Answer	Marks	Guidance
	8 3	*B1	For $(3x+2)^{-1}$
	$y = -\frac{\overline{3}}{(3x+2)}[+c]$	DB1	For $-\frac{8}{3}$
	$5\frac{2}{3} = -\frac{\frac{8}{3}}{(3 \times 2 + 2)} + c$	M1	Substituting $\left(2, 5\frac{2}{3}\right)$ into <i>their</i> integrated expression – defined by power = -1, or dividing by their power. + c needed
	$y = -\frac{8}{3(3x+2)} + 6$	A1	OE e.g. $y = -\frac{8}{3}(3x+2)^{-1} + 6$
		4	

453. 9709_w21_ms_12 Q: 11

Question	Answer	Marks	Guidance
(a)	$\frac{dy}{dx} = \frac{1}{2} + \frac{1}{3(x-2)^{\frac{4}{3}}}$	B1	OE. Allow unsimplified.
	Attempt at evaluating their $\frac{dy}{dx}$ at $x = 3 \left[\frac{1}{2} + \frac{1}{3(3-2)^{\frac{4}{3}}} = \frac{5}{6} \right]$	*M1	Substituting $x = 3$ into <i>their</i> differentiated expression – defined by one of 3 original terms with correct power of x .
	Gradient of normal = $\frac{-1}{their} \frac{dy}{dx} \left[= -\frac{6}{5} \right]$	*DM1	Negative reciprocal of <i>their</i> evaluated $\frac{dy}{dx}$.
	Equation of normal $y - \frac{6}{5} = (their \text{ normal gradient})(x-3)$ $\left[y = -\frac{6}{5}x + 4.8 \Rightarrow 5y = -6x + 24 \right]$	DM1	Using <i>their</i> normal gradient and A in the equation of a straight line. Dependent on *M1 and *DM1.
	[When $y = 0$,] $x = 4$	A1	or (4, 0)
		5	

Question	Answer	Marks	Guidance
(b)	Area under curve = $\int \left(\frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}\right) [dx]$	M1	For intention to integrate the curve (no need for limits). Condone inclusion of π for this mark.
	$\frac{1}{4}x^2 + \frac{7}{10}x - \frac{3(x-2)^{\frac{2}{3}}}{2}$	A1	For correct integral. Allow unsimplified. Condone inclusion of π for this mark.
	$\left(\frac{9}{4} + 2.1 - \frac{3}{2}\right) - \left(\frac{6.25}{4} + 1.75 - \frac{3 \times 0.5^{\frac{2}{3}}}{2}\right)$	M1	Clear substitution of 3 and 2.5 into <i>their</i> integrated expression (with at least one correct term) and subtracting.
	0.48[24]	A1	If M1A1M0 scored then SC B1 can be awarded for correct answer.
	[Area of triangle =] 0.6	B1	OE
	[Total area =] 1.08	A1	Dependent on the first M1 and WWW.
		6	

$454.\ 9709_w21_ms_13\ Q:\ 8$

Question	Answer	Marks	Guidance
(a)	$\int \left(\frac{5}{2} - x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right) \mathrm{d}x$	M1	OR as 2 separate integrals $\int \left(\frac{5}{2} - x^{1/2}\right) dx - \int \left(x^{-1/2}\right) dx$
	$\left\{\frac{5}{2}x - \frac{2}{3}x^{\frac{3}{2}}\right\} \left\{-\frac{1}{2}\left\{2x^{\frac{1}{2}}\right\}\right\}$	A1 A1 A1	If two separate integrals with no subtraction SC B1 for each correct integral.
	$\left(10 - \frac{16}{3} - 4\right) - \left(\frac{5}{8} - \frac{1}{12} - 1\right)$	DM1	Substitute limits $\frac{1}{4} \rightarrow 4$ at least once, must be seen.
	$\frac{9}{8}$ or 1.125	A1	WWW. Cannot be awarded if π appears in any integral.
		6	
(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] - \frac{1}{2}x^{-\frac{3}{2}}$	В1	
	When $x = 1$, $m = -\frac{1}{2}$	M1	Substitute $x = 1$ into a differential.
	[Equation of normal is] $y-1=2(x-1)$	M1	Through (1, 1) with gradient $-\frac{1}{m}$ or $\frac{1-p}{1} = 2$
	[When $x = 0$,] $p = -1$	A1	www
		4	

455. 9709_w21_ms_13 Q: 10

Question	Answer	Marks	Guidance
(a)	$f''(x) = -(\frac{1}{2}x + k)^{-3}$	B1	
	$f''(2) > 0 \Rightarrow -(1+k)^{-3} > 0$	М1	Allow for solving their $f''(2) > 0$
	k < -1	A1	www
		3	
(b)	$\left[f(x) = \int \left(\left(\frac{1}{2}x - 3 \right)^{-2} - (-2)^{-2} \right) dx = \right] \left\{ \frac{\left(\frac{1}{2}x - 3 \right)^{-1}}{-1 \times \frac{1}{2}} \right\} \left\{ -\frac{x}{4} \right\}$	B1 B1	Allow $-2\left(\frac{1}{2}x+k\right)^{-1}$ OE for 1st B1 and $-(1+k)^{-2}x$ OE for 2nd B1
	$3\frac{1}{2} = 1 - \frac{1}{2} + c$	M1	Substitute $x = 2$, $y = 3\frac{1}{2}$ into <i>their</i> integral with c present.
	$f(x) = \frac{-2}{(\frac{1}{2}x - 3)} - \frac{x}{4} + 3$	A1	OE
		4	
(c)	$\left(\frac{1}{2}x-3\right)^{-2}-\left(-2\right)^{-2}=0$	М1	Substitute $k = -3$ and set to zero.
	leading to $(\frac{1}{2}x-3)^2 = 4\left[\frac{1}{2}x-3=(\pm)2\right]$ leading to $x=10$	A1	
	$(10, -\frac{1}{2})$	A1	Or when $x = 10$, $y = -1 - 2\frac{1}{2} + 3 = -\frac{1}{2}$
	$f''(10) \Big[= -(5-3)^{-3} \rightarrow \Big] < 0 \rightarrow MAXIMUM$	A1	www
		4	

456. 9709_m20_ms_12 Q: 3

Answer	Mark	Partial Marks
$(\pi)\int (y-1)dy$	*M1	SOI Attempt to integrate x^2 or $(y-1)$
$\left[(\pi) \left[\frac{y^2}{2} - y \right] \right]$	A1	
$\pi \left[\left(\frac{25}{2} - 5 \right) - \left(\frac{1}{2} - 1 \right) \right]$	DM1	Apply limits $1 \rightarrow 5$ to an integrated expression
8π or AWRT 25.1	A1	
	4	

457. 9709_m20_ms_12 Q: 10

	Answer	Mark	Partial Marks
(a)	$2(a+3)^{\frac{1}{2}}-a=0$	M1	SOI. Set $\frac{dy}{dx} = 0$ when $x = a$. Can be implied by an answer in terms of a
	$4(a+3) = a^2 \to a^2 - 4a - 12 = 0$	M1	Take a to RHS and square. Form 3-term quadratic
	$(a-6)(a+2) \to a=6$	A1	Must show factors, or formula or completing square. Ignore $a = -2$ SC If a is never used maximum of M1A1 for $x = 6$, with visible solution
		3	
(b)	$\frac{d^2 y}{dx^2} = (x+3)^{\frac{1}{2}} - 1$	B1	
	Sub their $a \to \frac{d^2 y}{dx^2} = \frac{1}{3} - 1 = -\frac{2}{3} \ (or < 0) \to MAX$	M1A1	A mark only if completely correct If the second differential is not $-\frac{2}{3}$ correct conclusion must be drawn to award the M1
		3	
(c)	$(y=)\frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{1}{2}x^2 (+c)$	B1B1	
	Sub $x = their \ a \text{ and } y = 14 \rightarrow 14 = \frac{4}{3}(9)^{\frac{3}{2}} - 18 + c$	M1	Substitute into an integrated expression. c must be present. Expect $c = -4$
	$y = \frac{4}{3}(x+3)^{\frac{3}{2}} - \frac{1}{2}x^2 - 4$	A1	Allow $f(x) = \dots$
		4	

458. 9709_s20_ms_11 Q: 11

(a)	Simultaneous equations $\frac{8}{x+2} = 4 - \frac{1}{2}x$	M1
	$x = 0$ or $x = 6 \rightarrow A (0, 4)$ and $B (6, 1)$	B1A1
	At $C \frac{-8}{(x+2)^2} = -\frac{1}{2} \to C(2,2)$	B1
	$(x+2)^2 = 2$ (B1 for the differentiation. M1 for equating and solving)	M1A1
		6
(b)	Volume under line = $\pi \int \left(-\frac{1}{2}x + 4 \right)^2 dx = \pi \left[\frac{x^3}{12} - 2x^2 + 16x \right] = (42\pi)$	M1 A2,1
	(M1 for volume formula. A2,1 for integration)	
	Volume under curve = $\pi \int \left(\frac{8}{x+2}\right)^2 dx = \pi \left[\frac{-64}{x+2}\right] = (24\pi)$	A1
	Subtracts and uses 0 to 6 \rightarrow 18 π	M1A1
		6

$459.\ 9709_s20_ms_12\ Q:\ 8$

(a)	$Volume = \pi \int x^2 dy = \pi \int \frac{36}{y^2} dy$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly \rightarrow (12 π)	DM1
	Vol of cylinder = π . 12.4 or $\int 1^2 dy = [y]$ from 2 to 6	M1
	$Vol = 12\pi - 4\pi = 8\pi$	A1
		5
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6}{x^2}$	B1
	$\frac{-6}{x^2} = -2 \to x = \sqrt{3}$	M1
	$y = \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{Lies on } y = 2x$	A1
		3

$460.\ 9709_s20_ms_13\ Q:\ 2$

$(y) = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} \ (+c)$	B1 B1
7 = 16 - 12 + c (M1 for substituting $x = 4$, $y = 7$ into <i>their</i> integrated expansion)	M1
$y = 2x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 3$	A1
	4

461. 9709_s20_ms_13 Q: 11

(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	В1
	$3x^2 - 4bx + b^2 = 0 \rightarrow (3x - b)(x - b) (= 0)$	M1
	$x = \frac{b}{3}$ or b	A1
	$a = \frac{b}{3} \rightarrow b = 3a$ AG	A1
	Alternative method for question 11(a)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
	Sub $b = 3a$ & obtain $\frac{dy}{dx} = 0$ when $x = a$ and when $x = 3a$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 12a$	A1
	< 0 Max at $x = a$ and > 0 Min at $x = 3a$. Hence $b = 3a$ AG	A1
		4
(b)	Area under curve = $\int (x^3 - 6ax^2 + 9a^2x) dx$	M1
	$\frac{x^4}{4} - 2ax^3 + \frac{9a^2x^2}{2}$	B2,1,0
	$\frac{a^4}{4} - 2a^4 + \frac{9a^4}{2} \left(= \frac{11a^4}{4} \right)$ (M1 for applying limits $0 \to a$)	M1
	When $x = a$, $y = a^3 - 6a^3 + 9a^3 = 4a^3$	B1
	Area under line = $\frac{1}{2}a \times their \ 4a^3$	M1
	Shaded area = $\frac{11a^4}{4} - 2a^4 = \frac{3}{4}a^4$	A1
		7

462. 9709_w20_ms_11 Q: 2

Answer	Mark	Partial Marks
$(y=)$ $\left[-(x-3)^{-1}\right] \left[+\frac{1}{2}x^2\right] (+c)$	B1 B1	
7 = 1 + 2 + c	M1	Substitute $x = 2$, $y = 7$ into an integrated expansion (c present). Expect $c = 4$
$y = -(x-3)^{-1} + \frac{1}{2}x^2 + 4$	A1	OE
	4	

	Answer	Mark	Partial Marks
(a)	$4x^{\frac{1}{2}} - 2x = 3 - x \rightarrow x - 4x^{\frac{1}{2}} + 3(=0)$	*M1	3-term quadratic. Can be expressed as e.g. $u^2 - 4u + 3$ (=0)
	$\left[\left(x^{\frac{1}{2}} - 1 \right) \left(x^{\frac{1}{2}} - 3 \right) (=0) \text{ or } (u-1)(u-3)(=0) \right]$	DM1	Or quadratic formula or completing square
	$x^{\frac{1}{2}} = 1, 3$	A1	SOI
	x = 1, 9	A1	
	Alternative method for question 12(a)		
	$\left(4x^{\frac{1}{2}}\right)^2 = (3+x)^2$	*M1	Isolate $x^{\frac{1}{2}}$
	$16x = 9 + 6x + x^2 \rightarrow x^2 - 10x + 9 \ (= 0)$	A1	3-term quadratic
	(x-1)(x-9) (=0)	DM1	Or formula or completing square on a quadratic obtained by a correct method
	x = 1, 9	A1	
		4	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{1/2} - 2$	*B1	
	$\frac{dy}{dx}$ or $2x^{1/2} - 2 = 0$ when $x = 1$ hence B is a stationary point	DB1	
		2	
(c)	Area of correct triangle = $\frac{1}{2}$ (9 – 3) × 6	М1	or $\int_{3}^{9} (3-x)(dx) = \left[3x - \frac{1}{2}x^{2}\right] \rightarrow -18$
	$\int (4x^{\frac{1}{2}} - 2x)(dx) = \left[\frac{4x^{\frac{3}{2}}}{\frac{3}{2}} - x^2\right]$	B1 B1	
	$(72-81)-\left(\frac{64}{3}-16\right)$	M1	Apply limits $4 \rightarrow their$ 9 to an integrated expression
	$-14\frac{1}{3}$	A1	OE
	Shaded region = $18 - 14\frac{1}{3} = 3\frac{2}{3}$	A1	OE
		6	

464. 9709_w20_ms_12 Q: 7

	Answer	Mark	Partial Marks
(a)	$f'(4)\left(=\frac{5}{2}\right)$	*M1	Substituting 4 into $f'(x)$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}\right) \to \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{5}{2} \times 0.12$	DM1	Multiplies their f'(4) by 0.12
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}=\right)0.3$	A1	OE
		3	
(b)	$\frac{6x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{4x^{\frac{1}{2}}}{-\frac{1}{2}}(+c)$	B1 B1	B1 for each unsimplified integral.
	Uses (4, 7) leading to $c = (-21)$	M1	Uses (4, 7) to find a c value
	$y \text{ or } f(x) = 12x^{\frac{1}{2}} + 8x^{-\frac{1}{2}} - 21 \text{ or } 12\sqrt{x} + \frac{8}{\sqrt{x}} - 21$	A1	Need to see y or $f(x)$ = somewhere in <i>their</i> solution and 12 and 8
		4	

465. 9709_w20_ms_12 Q: 10

	Answer	Mark	Partial Marks
(a)	$\left(\frac{dy}{dx}\right) = [8] \times \left[\left(3 - 2x\right)^{-3}\right] + [-1]$ $\left(=\frac{8}{(3 - 2x)^3} - 1\right)$	B2, 1, 0	B2 for all three elements correct, B1 for two elements correct, B0 for only one or no elements correct.
	$\frac{d^2 y}{dx^2} = -3 \times 8 \times (3 - 2x)^{-4} \times (-2)$ $\left(= \frac{48}{(3 - 2x)^4} \right)$	B1 FT	FT providing <i>their</i> bracket is to a negative power
	$[ydx = [(3-2x)^{-1}][2 \div (-1 \times -2)][-\frac{1}{2}x^{2}](+c) \left(=\frac{1}{3-2x} - \frac{1}{2}x^{2} + c\right)$	B1 B1 B1	Simplification not needed, B1 for each correct element
		6	
(b)	$\frac{dy}{dx} = 0 \to (3 - 2x)^3 = 8 \to 3 - 2x = k \to x =$	M1	Setting <i>their</i> 2-term differential to 0 and attempts to solve as far as $x =$
	$\frac{1}{2}$	A1	
	Alternative method for question 10(b)		
	$y = 0 \rightarrow \frac{2}{(3-2x)^2} - x = 0 \rightarrow (x-2)(2x-1)^2 = 0 \rightarrow x =$	M1	Setting y to 0 and attempts to solve a cubic as far as $x = (3 \text{ factors needed})$
	$\frac{1}{2}$	A1	
		2	
(c)	Area under curve = their $\left[\frac{1}{3-2\times\left(\frac{1}{2}\right)} - \left(\frac{\frac{1}{2}}{2}\right)^2\right] - \left[\frac{1}{3-2\times0} - 0\right]$	M1	Using <i>their</i> integral, <i>their</i> positive <i>x</i> limit from part (b) and 0 correctly.
	1/24	A1	
		2	

466. 9709_w20_ms_13 Q: 2

	Answer	Mark	Partial Marks
(a)	$\frac{-2}{x+2}$	B1	Integrate $f(x)$. Accept $-2(x+2)^{-1}$. Can be unsimplified.
	$0 - \left(-\frac{2}{3}\right) = \frac{2}{3}$	M1 A1	Apply limit(s) to an integrated expansion. CAO for A1
		3	
(b)	-1 = -2 + c	M1	Substitute $x = -1, y = -1$ into <i>their</i> integrated expression (<i>c</i> present)
	$y = \frac{-2}{x+2} + 1$	A1	Accept $y = -2(x+2)^{-1} + 1 - 2$ must be resolved.
		2	

 $467.\ 9709_w20_ms_13\ Q:\ 10$

	Answer	Mark	Partial Marks
(a)	$\frac{\mathrm{d}y}{\mathrm{dx}} = \left[\frac{x^{-1/2}}{2k}\right] - \left[\frac{x^{-3/2}}{2}\right] + ([0])$	B2, 1, 0	([0]) implies that more than 2 terms counts as an error
	Sub $\frac{dy}{dx} = 3$ when $x = \frac{1}{4}$ Expect $3 = \frac{1}{k} - 4$	M1	
	$k = \frac{1}{7} $ (or 0.143)	A1	
		4	
(b)	$\int \frac{1}{k} x^{1/2} + x^{-1/2} + \frac{1}{k^2} = \left[\frac{2x^{3/2}}{3k} \right] + \left[2x^{1/2} \right] + \left[\frac{x}{k^2} \right]$	B2, 1, 0	OE
	$\left(\frac{2k^2}{3} + 2k + 1\right) - \left(\frac{k^2}{12} + k + \frac{1}{4}\right)$	M1	Apply limits $\frac{k^2}{4} \rightarrow k^2$ to an integrated expression. Expect $\frac{7}{12}k^2 + k + \frac{3}{4}$
			$\frac{12}{12} + \frac{1}{4}$
	$\frac{7}{12}k^2 + k + \frac{3}{4} = \frac{13}{12}$	M1	Equate to $\frac{13}{12}$ and simplify to quadratic.
			OE, expect $7k^2 + 12k - 4 (= 0)$
	$k = \frac{2}{7}$ only (or 0.286)	A1	Dependent on $(7k-2)(k+2)$ (= 0) or formula or completing square.
		5	

468. 9709_m19_ms_12 Q: 2

Answer	Mark	Partial Marks
$y = \frac{1}{2} kx^3 - x^2 \ (+c)$	M1A1	Attempt integration for M mark
Sub (0, 2)	DM1	Dep on c present. Expect $c = 2$
Sub $(3,-1) \rightarrow -1 = 9k - 9 + their c$	DM1	
k=2/3	A1	
	5	

469. 9709_m19_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i)	$V = (\pi) \int (x^3 + x^2) (dx)$	M1	Attempt $\int y^2 dx$
	$\left[\left(\pi\right)\left[\frac{x^4}{4} + \frac{x^3}{3}\right]_0^3\right]$	A1	
	$\pi \left[\frac{81}{4} + 9 (-0) \right]$	DM1	May be implied by a correct answer
	$\boxed{\frac{117\pi}{4} \text{ oe}}$	A1	Accept 91.9 If additional areas rotated about x-axis, maximum of M1A0DM1A0
		4	
(ii)	$\frac{dy}{dx} = \frac{1}{2} (x^3 + x^2)^{-1/2} \times (3x^2 + 2x)$	B2,1,0	Omission of $3x^2 + 2x$ is one error
	(At x = 3,) y = 6	B1	
	At $x = 3$, $m = \frac{1}{2} \times \frac{1}{6} \times 33 = \frac{11}{4}$ soi	DB1ft	Ft on their dy / dx providing differentiation attempted
	Equation of normal is $y-6=-\frac{4}{11}(x-3)$	DM1	Equation through (3, their 6) and with gradient $-1/their$ m
	When $x = 0, y = 7\frac{1}{11}$ oe	A1	
		6	

470. 9709_s19_ms_11 Q: 10

	Answer	Mark	Partial Marks
(i)	integrating $\rightarrow \frac{dy}{dx} = x^2 - 5x (+c)$	B1	
	= 0 when x = 3	M1	Uses the point to find c after $\int = 0$.
	c = 6	A1	
	integrating again $\rightarrow y = \frac{x^3}{3} - \frac{5x^2}{2} + 6x (+d)$	B1	FT Integration again FT if a numerical constant term is present.
	use of (3, 6)	M1	Uses the point to find d after $\int = 0$.
	$d = 1\frac{1}{2}$	A1	
		6	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 5x + 6 = 0 \longrightarrow x = 2$	B1	
		1	
(iii)	$x = 3$, $\frac{d^2y}{dx^2} = 1$ and/or +ve Minimum. $x = 2$, $\frac{d^2y}{dx^2} = -1$ and/or -ve Maximum	B1	www
	May use shape of '+ x^3 ' curve or change in sign of $\frac{dy}{dx}$	B1	www SC: $x = 3$, minimum, $x = 2$, maximum, B1
		2	

471. 9709_s19_ms_11 Q: 11

	Answer	Mark	Partial Marks
(i)	$3 \times -\frac{1}{2} \times (1 + 4x)^{-\frac{3}{2}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \times -\frac{1}{2} \times \left(1 + 4x\right)^{-\frac{3}{2}} \times 4$	B1	Must have '× 4'
	If $x = 2$, $m = -\frac{2}{9}$, Perpendicular gradient = $\frac{9}{2}$	M1	Use of $m_1.m_2 = -1$
	Equation of normal is $y-1=\frac{9}{2}(x-2)$	M1	Correct use of line eqn (could use y=0 here)
	Put $y = 0$ or on the line before $\rightarrow \frac{16}{9}$	A1	AG
		5	
(ii)	Area under the curve = $\int_0^2 \frac{3}{\sqrt{1+4x}} dx = \frac{3\sqrt{1+4x}}{\frac{1}{2}} \div 4$	B1 B1	Correct without '÷4'. For 2nd B1, ÷4'.
	Use of limits 0 to $2 \rightarrow 4\frac{1}{2} - 1\frac{1}{2}$	M1	Use of correct limits in an integral.
	3	A1	
	Area of the triangle = $\frac{1}{2} \times 1 \times \frac{2}{9} = \frac{1}{9}$ or attempt to find $\int_{16/9}^{2} \left(\frac{9}{2}x - 8\right) dx$	M1	Any correct method.
	Shaded area = $3 - \frac{1}{9} = 2\frac{8}{9}$	A1	
		6	

472. 9709_s19_ms_12 Q: 3

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 7 \times -0.05$	М1	Multiply numerical gradient at $x = 2$ by ± 0.05 .
	-0.35 (units/s) or Decreasing at a rate of (+) 0.35	A1	Ignore notation and omission of units
		2	
(ii)	$(y) = \frac{x^4}{4} + \frac{4}{x} (+c)$ oe	B1	Accept unsimplified
	Uses (2, 9) in an integral to find c.	M1	The power of at least one term increase by 1.
	$c = 3 \text{ or } (y =) \frac{x^4}{4} + \frac{4}{x} + 3 \text{ oe}$	A1	A0 if candidate continues to a final equation that is a straight line.
		3	

473. 9709_s19_ms_12 Q: 11

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = \left[\frac{1}{2}(4x+1)^{-\frac{1}{2}}\right] \left[\times 4\right] \left[-\frac{9}{2}(4x+1)^{-\frac{3}{2}}\right] \left[\times 4\right]$	B1B1B1	B1 B1 for each, without × 4. B1 for ×4 twice.
	$ \left[\frac{2}{\sqrt{4x+1}} - \frac{18}{\left(\sqrt{4x+1}\right)^3} or \frac{8x-16}{\left(4x+1\right)^{\frac{3}{2}}}\right] $		SC If no other marks awarded award B1 for both powers of $(4x + 1)$ correct.
	$\int y dx = \left[\frac{(4x+1)^{\frac{3}{2}}}{\frac{3}{2}} \right] \left[\div 4 \right] + \left[\frac{9(4x+1)^{\frac{1}{2}}}{\frac{1}{2}} \right] \left[\div 4 \right] (+C)$	B1B1B1	B1 B1 for each, without ÷ 4. B1 for ÷4 twice. + C not required.
	$\left[\left(\frac{\left(\sqrt{4x+1}\right)^3}{6} + \frac{9}{2} \left(\sqrt{4x+1}\right)(+C) \right) \right]$		SC If no other marks awarded , B1 for both powers of $(4x+1)$ correct.
		6	
(ii)	$\frac{dy}{dx} = 0 \longrightarrow \frac{2}{\sqrt{4x+1}} - \frac{18}{(4x+1)^{\frac{3}{2}}} = 0$	M1	Sets their $\frac{dy}{dx}$ to 0 (and attempts to solve
	$4x + 1 = 9 \text{ or } (4x + 1)^2 = 81$	A1	Must be from correct differential.
	x = 2, y = 6 or M is $(2, 6)$ only.	A1	Both values required. Must be from correct differential.
		3	
(iii)	Realises area is $\int y dx$ and attempt to use their 2 and sight of 0.	*M1	Needs to use their integral and to see 'their 2' substituted.
	Uses limits 0 to 2 correctly \rightarrow [4.5 + 13.5] - [$\frac{1}{6}$ + 4.5] (= 13½)	DM1	Uses both 0 and 'their 2' and subtracts. Condone wrong way round.
	(Area =) 11/3 or 1.33	A1	Must be from a correct differential and integral.
		3	13½ or 1½ with little or no working scores M1DM0A0.

474. 9709_s19_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	$\left[\frac{1}{2}(3x+4)^{-\frac{1}{2}}\right]$	B1	oe
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(3x+4)^{-\frac{1}{2}}\right] \times 3$	B1	Must have '×3'
	At $x = 4$, $\frac{dy}{dx} = \frac{3}{8}$ soi	B1	
	Line through (4, <i>their</i> 4) with gradient <i>their</i> $\frac{3}{8}$	M1	If $y \neq 4$ is used then clear evidence of substitution of $x = 4$ is needed
	Equation of tangent is $y-4=\frac{3}{8}(x-4)$ or $y=\frac{3}{8}x+\frac{5}{2}$	A1	oe
		5	
(ii)	Area under line $=\frac{1}{2}\left(4+\frac{5}{2}\right)\times 4=13$	В1	OR $\int_{0}^{4} \frac{3}{8}x + \frac{5}{2} = \left[\frac{3}{16}x^{2} + \frac{5}{2}x\right] = [3+10] = 13$
	Area under curve: $\int (3x+4)^{\frac{1}{2}} = \left[\frac{(3x+4)^{3/2}}{3/2} \right] [\div 3]$	B1B1	Allow if seen as part of the difference of 2 integrals First B1 for integral without $[\div 3]$ Second B1 must have $[\div 3]$
	100 16 110 4	M1	. ,
	$\frac{128}{9} - \frac{16}{9} = \frac{112}{9} = 12\frac{4}{9}$	WII	Apply limits $0 \rightarrow 4$ to an integrated expression
	Area = $13 - 12\frac{4}{9} = \frac{5}{9}$ (or 0.556)	A1	
	Alternative method for question 10(ii)		
	Area for line = $1/2 \times 4 \times 3/2 = 3$	B1	OR $\int_{5/2}^{4} \frac{1}{3} (8y - 20) = \frac{1}{3} \left[4y^2 - 20 \right] = \frac{1}{3} \left[-16 + 25 \right] = 3$
	Area for curve = $\int \mathcal{A}(y^2 - 4) = \left[\frac{y^3}{9}\right] - \left[\frac{4y}{3}\right]$	B1B1	
	$\left[\frac{64}{9} - \frac{16}{3} \right] - \left(\frac{8}{9} - \frac{8}{3} \right) = \frac{32}{9}$	M1	Apply limits $2 \rightarrow 4$ to an integrated expression for curve
	Area = $\frac{32}{9} - 3 = \frac{5}{9}$ (or 0.556)	A1	
		5	
(iii)	$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{2}$	B1	
	$\frac{3}{2}(3x+4)^{-\frac{1}{2}} = \frac{1}{2}$	M1	Allow M1 for $\frac{3}{2}(3x+4)^{-\frac{1}{2}} = 2$.
	$(3x+4)^{\frac{1}{2}} = 3 \rightarrow 3x+4=9 \rightarrow x=\frac{5}{3}$ oe	A1	
		3	

475. 9709_w19_ms_11 Q: 9

	Answer	Mark	Partial Marks
(i)	$y = [(5x-1)^{1/2} \div \frac{3}{2} \div 5] [-2x]$	B1 B1	
	$3 = \frac{27}{(3/2) \times 5} - 4 + c$	М1	Substitute $x = 2$, $y = 3$
	$c = 7 - \frac{18}{5} = \frac{17}{5} \longrightarrow \left(y = \frac{2(5x - 1)^{\frac{3}{2}}}{15} - 2x + \frac{17}{5} \right)$	A1	
(ii)	$d^2y/dx^2 = \left[\frac{1}{2}(5x-1)^{-1/2}\right] [\times 5]$	B1 B1	
(iii)	$(5x-1)^{1/2} - 2 = 0 \rightarrow 5x - 1 = 4$ x = 1	M1A1	Set $\frac{dy}{dx} = 0$ and attempt solution (M1)
	$y = \frac{16}{25} - 2 + \frac{17}{5} = \frac{37}{15}$	A1	Or 2.47 or $\left(1, \frac{37}{15}\right)$
	$\frac{d^2y}{dx^x} = \frac{5}{2} \times \frac{1}{2} = \frac{5}{4} \ (>0) \text{ hence minimum}$	A1	OE

476. 9709_w19_ms_11 Q: 11

	Answer	Mark	Partial Marks
(i)	$(y=)(x+2)^2-1$	B1 DB1	2nd B1 dependent on 2 in bracket
	$x+2=(\pm)(y+1)^{1/2}$	M1	
	$x = -2 + (y+1)^{1/2}$	A1	
(ii)	$x^{2} = 4 + (y+1) - / + 4(y+1)^{\frac{1}{2}}$	*M1A1	SOI. Attempt to find x^2 . The last term can be – or + at this stage
	$\pi \int x^{2} (dy) = (\pi) \left[5y + \frac{y^{2}}{2} - \frac{4(y+1)^{\frac{3}{2}}}{\frac{3}{2}} \right]$	A2,1,0	
	$\pi \left[15 + \frac{9}{2} - \frac{64}{3} - \left(-5 + \frac{1}{2} \right) \right]$	DM1	Apply y limits
	$\frac{8\pi}{3}$ or 8.38	A1	

477. 9709_w19_ms_12 Q: 3

Answer	Mark	Partial Marks
$(y =) \frac{kx^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \frac{k\sqrt{x}}{\frac{1}{2}} $ (+c)	B1	OE
Substitutes both points into an integrated expression with a $+c$ and solve as far as a value for one variable.	M1	Expect to see $-1 = 2k + c$ and $4 = 4k + c$
$k = 2\frac{1}{2}$ and $c = -6$	A1	www
$y = 5\sqrt{x} - 6$	A1	OE From correct values of both $k \& c$ and correct integral.
	4	

478. 9709_w19_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = [0] + [(2x+1)^{-3}] \times [+16]$	B2,1,0	OE. Full marks for 3 correct components. Withhold one mark for each error or omission.
	$\int y dx = [x] + [(2x+1)^{-1}] \times [+2] (+c)$	B2,1,0	OE. Full marks for 3 correct components. Withhold one mark for each error or omission.
		4	
(ii)	At $A, x = \frac{1}{2}$.	B1	Ignore extra answer $x = -1.5$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \to \text{Gradient of normal } (=-\frac{1}{2})$	*M1	With <i>their</i> positive value of x at A and <i>their</i> $\frac{dy}{dx}$, uses $m_1m_2 = -1$
	Equation of normal: $y - 0 = -\frac{1}{2}(x - \frac{1}{2})$ or $y - 0 = -\frac{1}{2}(0 - \frac{1}{2})$ or $0 = -\frac{1}{2} \times \frac{1}{2} + c$	DM1	Use of their x at A and their normal gradient.
	B (0, 1/4)	A1	
		4	
(iii)	$\int_{0}^{\frac{1}{2}} 1 - \frac{4}{(2x+1)^{2}} (dx)$	*M1	$\int y dx$ SOI with 0 and <i>their</i> positive x coordinate of A.
	[½+1]-[0+2]=(-½)	DM1	Substitutes both 0 and their ½ into their ∫ydx and subtracts.
	Area of triangle above x-axis = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \left(= \frac{1}{16} \right)$	B1	
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)
	Alternative method for question 10(iii)	'	
	$\int_{-3}^{0} \frac{1}{(1-y)^{\frac{1}{2}}} - \frac{1}{2} (dy)$	*M1	$\int x dy$ SOI. Where x is of the form $k \left(1 - y \right)^{-\frac{1}{2}} + c$ with 0 and
			their negative y intercept of curve.
	$\left[-2\right] - \left[-4 + \frac{3}{2}\right] = (\frac{1}{2})$	DM1	Substitutes both 0 and their -3 into their Jxdy and subtracts.
	Area of triangle above x-axis = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \left(= \frac{1}{16} \right)$	B1	
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)
	Alternative method for question 10(iii)		
	$\int_{0}^{\frac{1}{2}} -\frac{1}{2}x + \frac{1}{4} - y dx$	*M1	[(their normal curve) with 0 and their positive x coordinate of A.
	Curve [½ + 1] – [0 + 2] = (-½)	DM1	Substitutes both 0 and their ½ into their Jydx and subtracts.
	$\int_{0}^{\frac{1}{2}} -\frac{1}{2}x + \frac{1}{4} dx = \frac{-x^{2}}{4} + \frac{x}{4} = \left[\frac{-1}{16} + \frac{1}{8}\right] - \left[0\right] \left(=\frac{1}{16}\right)$	B1	Substitutes both 0 and ½ into the correct integral and subtracts.
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)
		4	

479. 9709_w19_ms_13 Q: 8

	Answer	Mark	Partial Marks
(i)	$(2x-1)^{\frac{1}{2}} < 2 \text{ or } 3(2x-1)^{\frac{1}{2}} < 6$	M1	SOI
	2x-1<4	A1	SOI
	$\frac{1}{2} < x < \frac{5}{2}$	A1 A1	Allow 2 separate statements
		4	
(ii)	$f(x) = [3(2x-1)^{3/2} \div (\frac{3}{2}) \div (2)] [-6x] (+c)$	B1 B1	
	Substitute $x = 1$, $y = -3$ into an integrated expression.	M1	Dependent on c being present ($c = 2$)
	$f(x) = \left(2x - 1\right)^{\frac{3}{2}} - 6x + 2$	A1	
		4	

 $480.\ 9709_w19_ms_13\ Q:\ 11$

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2(x-1)^{-3}$	B1	
	When $x = 2$, $m = -2 \rightarrow \text{gradient of normal} = -\frac{1}{m}$	M1	m must come from differentiation
	Equation of normal is $y-3=\frac{1}{2}(x-2) \rightarrow y=\frac{1}{2}x+2$	A1	AG Through (2, 3) with gradient $-\frac{1}{m}$. Simplify to AG
		3	
(ii)	$(\pi)\int y_1^2(dx), (\pi)\int y_2^2(dx)$	*M1	Attempt to integrate y^2 for at least one of the functions
	$(\pi) \int \left(\frac{1}{2}x+2\right)^2 \text{ or } \left(\frac{1}{4}x^2+2x+4\right)$ $(\pi) \int \left(\left(x-1\right)^{-4}+4\left(x-1\right)^{-2}+4\right)$	A1A1	A1 for $(\frac{1}{2}x+2)^2$ depends on an attempt to integrate this form later
	$(\pi) \left[\frac{2}{3} \left(\frac{1}{2} x + 2 \right)^3 \text{ or } \frac{1}{12} x^3 + x^2 + 4x \right]$ $(\pi) \left[\frac{(x-1)^{-3}}{-3} + \frac{4(x-1)^{-1}}{-1} + 4x \right]$	A1A1	Must have at least 2 terms correct for each integral
	$(\pi)\left\{18 - \frac{125}{12}or^{\frac{2}{3}} + 4 + 8 - \left(\frac{1}{12} + 1 + 4\right)\right\} \left\{\frac{-1}{24} - 2 + 12 - \left(\frac{-1}{3} - 4 + 8\right)\right\}$	DM1	Apply limits to at least 1 integrated expansion
	Attempt to add 2 volume integrals (or 1 volume integral + frustum) $\pi \left\{ 7 \frac{7}{12} + 6 \frac{7}{24} \right\}$	DM1	
	$13\frac{7}{8}\pi \text{ or } \frac{111}{8}\pi \text{ or } 13.9\pi \text{ or } 43.6$	A1	$\frac{2}{3} + 4 + 8 - \left(\frac{1}{12} + 1 + 4\right) - \frac{1}{24} - 2 + 12 - \left(-\frac{1}{3} - 4 + 8\right)$
		8	

481. 9709_m18_ms_12 Q: 1

Answer	Mark	Partial Marks
$(y) = \frac{x^{\frac{16}{2}}}{\frac{1}{2}} - 3x \ (+c)$	B1B1	
Sub $(4, -6)$ $-6 = 4 - 12 + c \rightarrow c = 2$	M1A1	Expect $(y) = 2x^{1/4} - 3x + 2$
	4	

482. 9709_m18_ms_12 Q: 11

	Answer	Mark	Partial Marks
(i)	$ dy/dx = [-2] - [3(1-2x)^{2}] \times [-2] (= 4-24x+24x^{2}) $	B2,1,0	Award for the accuracy within each set of square brackets
	$At x = \frac{1}{2} \frac{dy}{dx} = -2$	B1	
	Gradient of line $y = 1 - 2x$ is -2 (hence AB is a tangent) AG	B1	
		4	

	Answer	Mark	Partial Marks
(ii)	Shaded region = $\int_{0}^{\frac{1}{2}} (1 - 2x) - \int_{0}^{\frac{1}{2}} [1 - 2x - (1 - 2x)^{3}] \text{ oe}$	M1	Note: If area triangle OAB – area under the curve is used the first part of the integral for the area under the curve must be evaluated
	$=\int\limits_{0}^{\frac{\pi}{2}}\left(1-2x\right)^{3}\mathrm{d}x$ AG	A1	
		2	
(iii)	Area = $\left[\frac{\left(1-2x\right)^4}{4}\right] \left[\div -2\right]$	*B1B1	
	0 - (-1/8) = 1/8	DB1	OR $\int 1 - 6x + 12x^2 - 8x^3 = x - 3x^2 + 4x^3 - 2x^4$ (B2,1,0) Applying limits $0 \to \frac{1}{2}$
		3	

$483.\ 9709_s18_ms_11\ Q:\ 3$

Answer	Mark	Partial Marks
$\frac{dy}{dx} = \frac{12}{(2x+1)^2} \rightarrow y = \frac{-12}{2x+1} \div 2 \ (+c)$	B1 B1	Correct without " \div 2". For " \div 2". Ignore " c ".
Uses $(1, 1) \rightarrow c = 3 \ (\rightarrow y = \frac{-6}{2x+1} + 3)$	M1 A1	Finding "c" following integration. CAO
Sets y to 0 and attempts to solve for $x \to x = \frac{1}{2} \to ((\frac{1}{2}, 0))$	DM1 A1	Sets y to 0. $x = \frac{1}{2}$ is sufficient for A1.
	6	

$484.\ 9709_s18_ms_11\ \ Q:\ 10$

	Answer	Mark	Partial Marks
	$y = x^3 - 2x^2 + 5x$		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x + 5$	B1	CAO
	Using $b^2 - 4ac \rightarrow 16 - 60 \rightarrow$ negative \rightarrow some explanation or completed square and explanation	M1 A1	Uses discriminant on equation (set to 0). CAO
		3	
(ii)	$\frac{m = 3x^2 - 4x + 5}{\frac{dm}{dx}} = 6x - 4 (= 0) \text{ (must identify as } \frac{dm}{dx}\text{)}$	B1FT	FT providing differentiation is equivalent
	$\rightarrow x = \frac{2}{3}, \ m = \frac{11}{3} \text{ or } \frac{dy}{dx} = \frac{11}{3}$	M1 A1	Sets to 0 and solves. A1 for correct m.
	Alt1: $m = 3\left(x - \frac{2}{3}\right)^2 + \frac{11}{3}, \ m = \frac{11}{3}$		Alt1: B1 for completing square, M1A1 for ans
	Alt2: $3x^2 - 4x + 5 - m = 0$, $b^2 - 4ac = 0$, $m = \frac{11}{3}$		Alt2: B1 for coefficients, M1A1 for ans
	$\frac{d^2m}{dx^2} = 6 \text{ +ve } \rightarrow \text{ Minimum value or refer to sketch of curve or }$	M1 A1	M1 correct method. A1 (no errors anywhere)
	check values of m either side of $x = \frac{2}{3}$,		
		5	

	Answer	Mark	Partial Marks
(iii)	Integrate $\rightarrow \frac{x^4}{4} - \frac{2x^3}{3} + \frac{5x^2}{2}$	B2,1	Loses a mark for each incorrect term
	Uses limits 0 to 6 \rightarrow 270 (may not see use of lower limit)	M1 A1	Use of limits on an integral. CAO Answer only 0/4
		4	

485. 9709_s18_ms_12 Q: 9

	Answer	Mark	Partial Marks
(i)	$y = \frac{2}{3} (4x + 1)^{\frac{3}{2}} \div 4 (+ C) \left(= \frac{(4x + 1)^{\frac{3}{2}}}{6} \right)$	B1 B1	B1 without \div 4. B1 for \div 4 oe. Unsimplified OK
	Uses $x = 2$, $y = 5$	M1	Uses (2, 5) in an integral (indicated by an increase in power by 1).
	$\rightarrow c = \frac{1}{2}$ oe isw	A1	No isw if candidate now goes on to produce a straight line equation
		4	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		
	$\frac{dx}{dt} = 0.06 \div 3$	M1	Ignore notation. Must be 0.06÷3 for M1.
	= 0.02 oe	A1	Correct answer with no working scores 2/2
		2	
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{2} \left(4x + 1 \right)^{-\frac{1}{2}} \times 4$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{4x+1}} \times \sqrt{4x+1} (=2)$	B1FT	Must either show the algebraic product and state that it results in a constant or evaluate it as '= 2'. Must not evaluate at x =2. If to apply only if $\frac{d^2y}{dx^2}$ is of the form $k(4x+1)^{-\frac{1}{2}}$
			It to apply only if $\frac{1}{dx^2}$ is of the form $k(4x+1)$
		2	

486. 9709_s18_ms_12 Q: 11

	Answer	Mark	Partial Marks
(i)	$y = \frac{x}{2} + \frac{6}{x} = 4 \rightarrow x = 2 \text{ or } 6$	B1 B1	Inspection or guesswork OK
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} - \frac{6}{x^2}$	B1	Unsimplified OK
	When $x = 2$, $m = -1 \rightarrow x + y = 6$ When $x = 6$, $m = \frac{1}{3} \rightarrow y = \frac{1}{3}x + 2$	*M1	Correct method for either tangent
	Attempt to solve simultaneous equations	DM1	Could solve BOTH equations separately with $y = x$ and get $x = 3$ both times.
	(3,3)	A1	Statement about $y = x$ not required.
		6	

	Answer	Mark	Partial Marks
(ii)	$V = (\pi) \int \left(\frac{x^2}{4} + 6 + \frac{36}{x^2} \right) (dx)$	*M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx). Allow incorrect squaring. Not awarded for $\pi \int \left\{ 4 - \left(\frac{x}{2} + \frac{6}{x}\right) \right\}^2 dx$. Integration indicated by increase in any power by 1.
	Integration $\rightarrow \frac{x^3}{12} + 6x - \frac{36}{x}$	A2,1	3 things wanted —1 each error, allow + C. (Doesn't need π)
	Using limits 'their 2' to 'their 6' (53 $\frac{1}{3}\pi$, $\frac{160}{3}\pi$, 168 awrt)	DM1	Evidence of their values 6 and 2 from (i) substituted into their integrand and then subtracted. $48 - \left(-\frac{16}{3}\right)$ is enough.
	Vol for line: integration or cylinder (\rightarrow 64 π)	M1	Use of $\pi r^2 h$ or integration of 4^2 (could be from $\left\{4 - \left(\frac{x}{2} + \frac{6}{x}\right)\right\}^2$)
	Subtracts $\rightarrow 10\frac{2}{3}\pi$ oe $\left(\text{e.g.}\frac{32}{3}\pi,33.5 \text{ awrt}\right)$	A1	
	Answer	Mark	Partial Marks
	VIIZAACI	Mark	T di tidi Marks
(ii)	OR	Wark	Tartar Marks
(ii)	7.7.2.7.2.	M1 *M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1.
(ii)	OR	M1 'M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1.
(ii)	OR $V = (\pi) \int 4^2 - \left(\frac{x}{2} + \frac{6}{x}\right)^2 (dx)$	M1 'M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx)
(ii)	OR $V = (\pi) \int 4^{2} - \left(\frac{x}{2} + \frac{6}{x}\right)^{2} (dx)$ $= (\pi) \int 16 - \left(\frac{x^{2}}{4} + 6 + \frac{36}{x^{2}}\right) (dx)$	M1 'M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1.
(ii)	OR $V = (\pi) \int 4^{2} - \left(\frac{x}{2} + \frac{6}{x}\right)^{2} (dx)$ $= (\pi) \int 16 - \left(\frac{x^{2}}{4} + 6 + \frac{36}{x^{2}}\right) (dx)$ $= (\pi) \left[16x - \left(\frac{x^{3}}{12} + 6x - \frac{36}{x}\right)\right] (dx)$	M1 *M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1. Or $\left[10x - \frac{x^3}{12} + \frac{36}{x}\right]$

487. 9709_s18_ms_13 Q: 4

Answer	Mark	Partial Marks
$\mathbf{f}(x) = \left[\frac{(3x-1)^{\frac{2}{3}}}{\frac{2}{3}} \right] \left[\div 3 \right] (+c)$	B1B1	
$1 = \frac{8^{\frac{2}{3}}}{2} + c$	M1	Sub $y = 1, x = 3$ Dep. on attempt to integrate and c present
$c = -1 \rightarrow y = \frac{1}{2} (3x - 1)^{\frac{2}{3}} - 1$ SOI	A1	
When $x = 0$, $y = \frac{1}{2}(-1)^{\frac{2}{3}} - 1 = -\frac{1}{2}$	DM1A1	Dep. on previous M1
	6	

488. 9709_s18_ms_13 Q: 11

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(x+1) - (x+1)^{-2}$	B1	
	Set = 0 and obtain $2(x+1)^3 = 1$ convincingly www AG	B1	
	$\frac{d^2 y}{dx^2} = 2 + 2(x+1)^{-3} \text{ www}$	В1	
	Sub, e.g., $(x+1)^{-3} = 2$ OE or $x = \left(\frac{1}{2}\right)^{\frac{1}{3}} - 1$	M1	Requires <u>exact</u> method – otherwise scores M0
	$\frac{d^2y}{dx^2} = 6 CAO www$	A1	and exact answer – otherwise scores A0
		5	

	Answer	Mark	Partial Marks
(ii)	$y^2 = (x+1)^4 + (x+1)^{-2} + 2(x+1)$ SOI	B1	OR $y^2 = (x^4 + 4x^3 + 6x^2 + 4x + 1) + (2x + 2) + (x + 1)^{-2}$
	$(\pi) \int y^2 dx = (\pi) \left[\frac{(x+1)^5}{5} \right] + \left[\frac{(x+1)^{-1}}{-1} \right] + \left[\frac{2(x+1)^2}{2} \right]$ $OR (\pi) \left[\frac{x^5}{5} + x^4 + 2x^3 + 2x^2 + x \right] + \left[x^2 + 2x \right] + \left[-\frac{1}{x+1} \right]$	B1B1B1	Attempt to integrate y^2 . Last term might appear as $(x^2 + 2x)$
	$(\pi) \left[\frac{32}{5} - \frac{1}{2} + 4 - \left(\frac{1}{5} - 1 + 1 \right) \right]$	M1	Substitute limits $0 \rightarrow 1$ into an attempted integration of y^2 . Do not condone omission of value when $x = 0$
	$9.7\pi \text{ or } 30.5$	A1	Note: omission of $2(x+1)$ in first line $\rightarrow 6.7\pi$ scores 3/6 Ignore initially an extra volume, e.g. $(\pi) \int (4\frac{1}{2})^2$. Only take into account for the final answer
		6	

489. 9709_w18_ms_11 Q: 6

	Answer	Mark	Partial Marks
(i)	$0 = 9a + 3a^2$	M1	Sub $\frac{dy}{dx} = 0$ and $x = 3$
	a = -3 only	A1	
		2	
(ii)	$\frac{dy}{dx} = -3x^2 + 9x \to y = -x^3 + \frac{9x^2}{2} \ (+c)$	M1A1FT	Attempt integration. $\frac{1}{3}ax^3 + \frac{1}{2}a^2x^2$ scores M1. Ft on <i>their a</i> .
	$9\frac{1}{2} = -27 + 40\frac{1}{2} + c$	DM1	Sub $x = 3, y = 9\frac{1}{2}$. Dependent on c present
	c = -4	A1	Expect $y = -x^3 + \frac{9x^2}{2} - 4$
		4	
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6x + 9$	M1	$2ax + a^2$ scores M1
	At $x = 3$, $\frac{d^2y}{dx^2} = -9 < 0$ MAX www	A1	Requires at least one of –9 or < 0. Other methods possible.
		2	

490. 9709_w18_ms_11 Q: 7

	Answer	Mark	Partial Marks
(i)	$2 = k(8 - 28 + 24) \rightarrow k = 1/2$	B1	
		1	
(ii)	When $x = 5$, $y = [\frac{1}{2}](125 - 175 + 60) = 5$	M1	Or solve $[\frac{1}{2}](x^3 - 7x^2 + 12x) = x \Rightarrow x = 5 [x = 0, 2]$
	Which lies on $y = x$, oe	A1	
		2	
(iii)	$\int \left[\frac{1}{2} (x^3 - 7x^2 + 12x) - x \right] dx .$	M1	Expect $\int \frac{1}{2}x^3 - \frac{7}{2}x^2 + 5x$
	$\frac{1}{8}x^4 - \frac{7}{6}x^3 + \frac{5}{2}x^2$	B2,1,0FT	Ft on their k
	2 – 28/3 +10	DM1	Apply limits $0 \rightarrow 2$
	8/3	A1	
	OR $\frac{1}{8}x^4 - \frac{7}{6}x^3 + 3x^2$	B2,1,0FT	Integrate to find area under curve, Ft on their k
	2 – 28/3 +12	M1	Apply limits $0 \rightarrow 2$. Dep on integration attempted
	Area $\Delta = \frac{1}{2} \times 2 \times 2$ or $\int_{0}^{2} x dx = \left[\frac{1}{2}x^{2}\right] = 2$	M1	
	8/3	A1	
		5	

491. 9709_w18_ms_12 Q: 2

Answer	Mark	Partial Marks
Integrate $\to \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ (+C)	B1 B1	B1 for each term correct – allow unsimplified. C not required.
$\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{4} \to \frac{40}{3} - \frac{14}{3}$	M1	Evidence of 4 and 1 used correctly in their integrand ie at least one power increased by 1.
$=\frac{26}{3}$ oe	A1	Allow 8.67 awrt. No integrand implies use of integration function on calculator 0/4. Beware a correct answer from wrong working.
	4	

492. 9709_w18_ms_12 Q: 11

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = \left[\frac{3}{2} \times (4x+1)^{-\frac{1}{2}}\right] [\times 4] [-2] \left(\frac{6}{\sqrt{4x+1}} - 2\right)$	B2,1,0	Looking for 3 components
	$\int y dx = \left[3(4x+1)^{\frac{3}{2}} \div \frac{3}{2} \right] \left[\div 4 \right] \left[-\frac{2x^2}{2} \right] (+C)$ $\left[= \frac{(4x+1)^{\frac{3}{2}}}{2} - x^2 \right]$	B1 B1 B1	B1 for $3(4x+1)^{\frac{3}{2}} \div \frac{3}{2}$ B1 for '÷4'. B1 for ' $-\frac{2x^2}{2}$ '. Ignore omission of + C. If included isw any attempt at evaluating.
		5	
(ii)	At M , $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to \frac{6}{\sqrt{4x+1}} = 2$	М1	Sets their 2 term $\frac{dy}{dx}$ to 0 and attempts to solve (as far as $x = k$)
	x=2, y=5	A1 A1	
		3	

	Answer	Mark	Partial Marks
(iii)	Area under the curve = $\left[\frac{1}{2}(4x+1)^{\frac{3}{2}} - x^2\right]_0^2$	M1	Uses their integral and their '2' and 0 correctly
	(13.5-4) - 0.5 or 9.5 - 0.5 = 9	A1	No working implies use of integration function on calculator M0A0.
	Area under the chord = trapezium = $\frac{1}{2} \times 2 \times (3+5) = 8$ Or $\left[\frac{x^2}{2} + 3x\right]_0^2 = 8$	M1	Either using the area of a trapezium with their 2, 3 and 5 or $\int (their x + 3) dx$ using their '2' and 0 correctly.
	(Shaded area = $9 - 8$) = 1	A1	Dependent on both method marks,
	OR Area between the chord and the curve is:		
	$\int_{0}^{2} 3\sqrt{4x+1} - 2x - (x+3) dx$ $= \int_{0}^{2} 3\sqrt{4x+1} - 3x - 3dx$	M1	Subtracts their line from given curve and uses their '2' and 0 correctly.
	$= 3\left[\frac{1}{6}(4x+1)^{\frac{3}{2}} - \frac{x^2}{2} - x\right]_0^2$	A1	All integration correct and limits 2 and 0.
	$= 3\left\{ \left(\frac{27}{6} - 2 - 2\right) - \left(\frac{1}{6}\right) \right\}$	M1	Evidence of substituting their '2' and 0 into their integral.
	$= 3\left\{\frac{1}{2} - \frac{1}{6}\right\} = 3\left\{\frac{1}{3}\right\} = 1$	A1	No working implies use of a calculator M0A0.
		[4]	

493. 9709_w18_ms_13 Q: 8

	Answer	Mark	Partial Marks
(i)	$y = \frac{1}{3} ax^3 + \frac{1}{2}bx^2 - 4x \ (+c)$	B1	
	11 = 0 + 0 + 0 + c	M1	Sub $x = 0$, $y = 11$ into an integrated expression. c must be present
	$y = \frac{1}{3}ax^3 + \frac{1}{2}bx^2 - 4x + 11$	A1	
		3	
(ii)	4a + 2b - 4 = 0	M1	Sub x = 2, dy/dx = 0
	$\frac{1}{2}(8a) + 2b - 8 + 11 = 3$	M1	Sub $x = 2$, $y = 3$ into an integrated expression. Allow if 11 missing
	Solve simultaneous equations	DM1	Dep. on both M marks
	a = 3, b = -4	A1A1	Allow if no working seen for simultaneous equations
		5	

494. 9709_w18_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	$V = 4(\pi) \int (3x - 1)^{-2/3} dx = 4(\pi) \left[\frac{(3x - 1)^{1/3}}{1/3} \right] [\div 3]$	M1A1A1	Recognisable integration of y^2 (M1) Independent A1, A1 for [][]
	$4(\pi)[2-1]$	DM1	Expect $4(\pi)(3x-1)^{V_3}$
	4 π or 12.6	A1	Apply limits $\frac{2}{3} \rightarrow 3$. Some working must be shown.
		5	

	Answer	Mark	Partial Marks
(ii)	$dy / dx = (-2/3)(3x-1)^{-4/3} \times 3$	B1	Expect $-2(3x-1)^{-4/3}$
	When $x = 2/3$, $y = 2$ soi $dy/dx = -2$	B1B1	2nd B1 dep. on correct expression for dy//dx
	Equation of normal is $y-2=\frac{1}{2}(x-\frac{2}{3})$	M1	Line through ($\frac{1}{2}$, their 2) and with grad $-1/m$. Dep on m from diffn
	$y = \frac{1}{2}x + \frac{5}{3}$	A1	
		5	

495. 9709_m17_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	$2x - 2/x^3 = 0$	M1	Set = 0.
	$x^4 = 1 \Rightarrow x = 1$ at A cao	A1	Allow 'spotted' $x = 1$
	Total:	2	
(ii)	$f(x) = x^2 + 1/x^2 (+c)$ cao	B1	
	$\frac{189}{16} = 16 + 1/16 + c$	M1	Sub (4, $\frac{189}{16}$). c must be present. Dep. on integration
	c = -17/4	A1	
	Total:	3	

	Answer	Mark	Partial Marks
(iii)	$x^2 + 1/x^2 - 17/4 = 0 \Rightarrow 4x^4 - 17x^2 + 4 (= 0)$	M1	Multiply by $4x^2$ (or similar) to transform into 3-term quartic.
	$(4x^2-1)(x^2-4) (=0)$	M1	Treat as quadratic in x^2 and attempt solution or factorisation.
	$x=\frac{1}{2}$, 2	A1A1	Not necessary to distinguish. Ignore negative values. No working scores 0/4
	Total:	4	
(iv)	$\int (x^2 + x^{-2} - 17/4) dx = \frac{x^3}{3} - \frac{1}{x} - \frac{17x}{4}$	B2,1,0 [↑]	Mark final integral
	(8/3-1/2-17/2)-(1/24-2-17/8)	M1	Apply <i>their</i> limits from (iii) (Seen). Dep. on integration of at least 1 term of y
	Area = 9 / 4	A1	Mark final answer. $\int y^2$ scores 0/4
	Total:	4	

496. 9709_s17_ms_11 Q: 7

	Answer	Mark	Partial Marks
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 7 - x^2 - 6x$		
(i)	$y = 7x - \frac{x^3}{3} - \frac{6x^2}{2} \ (+c)$	В1	CAO
	Uses $(3, -10) \rightarrow c = 5$	M1 A1	Uses the given point to find c
	Total:	3	
(ii)	$7 - x^2 - 6x = 16 - (x+3)^2$	B1 B1	B1 <i>a</i> = 16, B1 <i>b</i> = 3.
	Total:	2	
(iii)	$16 - (x+3)^2 > 0 \rightarrow (x+3)^2 < 16$, and solve	M1	or factors $(x+7)(x-1)$
	End-points $x = 1$ or -7	A1	
	$\rightarrow -7 < x < 1$	A1	needs \leq , not \leq . (SR $x \leq 1$ only, or $x \geq -7$ only B1 i.e. 1/3)
	Total:	3	

$497.\ 9709_s17_ms_11\ Q:\ 10$

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4}{(5-3x)^2} \times (-3)$	B1 B1	B1 without ×(-3) B1 For ×(-3)
	Gradient of tangent = 3, Gradient of normal – 1/3	*M1	Use of $m_1m_2 = -1$ after calculus
	\rightarrow eqn: $y-2=-\frac{1}{3}(x-1)$	DM1	Correct form of equation, with (1, their y), not (1,0)
	$\rightarrow y = -\frac{1}{3}x + \frac{7}{3}$	A1	This mark needs to have come from $y = 2$, y must be subject
	Total:	5	
(ii)	$Vol = \pi \int_{0}^{1} \frac{16}{(5 - 3x)^{2}} dx$	M1	Use of $V = \pi \int y^2 dx$ with an attempt at integration
	$\pi \left[\frac{-16}{(5-3x)} \div -3 \right]$	A1 A1	A1 without(\div -3), A1 for (\div -3)
	$= \left(\pi\left(\frac{16}{6} - \frac{16}{15}\right)\right) = \frac{8\pi}{5} \text{ (if limits switched must show } - \text{ to } +)$	M1 A1	Use of both correct limits M1
	Total:	5	

498. 9709_s17_ms_12 Q: 6

Answer	Mark	Partial Marks
$Vol = \pi \int (5 - x)^2 dx - \pi \int \frac{16}{x^2} dx$	M1*	Use of volume formula at least once, condone omission of π and limits and $dv.$
	DM1	Subtracting volumes somewhere must be <u>after</u> squaring.
$\int (5-x)^2 dx = \frac{(5-x)^3}{3} \div -1$	B1 B1	B1 Without \div (-1). B1 for \div (-1)
$(\text{or } 25x - 10x^2/2 + \frac{1}{2}x^3)$	(B2,1,0)	-1 for each incorrect term
$\int \frac{16}{x^2} dx = -\frac{16}{x}$	B1	
Use of limits 1 and 4 in an integrated expression and subtracted.	DM1	Must have used"y2" at least once. Need to see values substituted.
$\rightarrow 9\pi$ or 28.3	A1	
Total:	7	

499. 9709_s17_ms_13 Q: 10

	Answer	Mark	Partial Marks
(a)(i)	Attempt to integrate $V = (\pi) \int (y+1) dy$	M1	Use of h in integral e.g. $\int (h+1) = \frac{1}{2}h^2 + h$ is M0 . Use of $\int y^2 dx$ is M0
	$= (\pi) \left[\frac{y^2}{2} + y \right]$	A1	
	$=\pi\bigg[\frac{h^2}{2}+h\bigg]$	A1	AG . Must be from clear use of limits $0 \rightarrow h$ somewhere.
	Total:	3	
(ii)	$\int (y+1)^{1/2} dy \qquad \qquad \mathbf{ALT} 6 - \int (x^2 - 1) dx$	M1	Correct variable and attempt to integrate
	$%(y+1)^{3/2}$ oe ALT $6-(\frac{1}{2}x^3-x)$ CAO	*A1	Result of integration must be shown
	$\frac{2}{3}[8-1]$ ALT $6-[(\frac{8}{3}-1)-(\frac{1}{3}-1)]$	DM1	Calculation seen with limits $0\rightarrow 3$ for y . For ALT, limits are $1\rightarrow 2$ and rectangle.
	14/3 ALT $6-4/3=14/3$	A1	16/3 from %×8 gets DM1A0 provided work is correct up to applying limits.
	Total:	4	

	Answer	Mark	Partial Marks
(b)	Clear attempt to differentiate wrt h	M1	Expect $\frac{dV}{dh} = \pi(h+1)$. Allow $h+1$. Allow h .
	Derivative = 4π SOI	*A1	
	$\frac{2}{their \text{ derivative}}. \text{ Can be in terms of } h$	DM1	
	$\frac{2}{4\pi} \operatorname{or} \frac{1}{2\pi} \text{or } 0.159$	A1	
	Total:	4	

500. 9709_s17_ms_13 Q: 11

	Answer	Mark	Partial Marks
(i)	$f'(x) = [(4x+1)^{1/2} \div \frac{1}{2}] [\div 4] (+c)$	B1 B1	Expect $\frac{1}{2}(4x+1)^{1/2} (+c)$
	$f'(2)=0 \Rightarrow \frac{3}{2}+c=0 \Rightarrow c=-\frac{3}{2}$ (Sufficient)	B1 FT	Expect $\frac{1}{2}(4x+1)^{1/2} - \frac{3}{2}$. FT on their $f'(x) = k(4x+1)^{1/2} + c$. (i.e. $c = -3k$)
	Total:	3	
(ii)	f''(0)=1 SOI	В1	
	$f'(0)=1/2-1\frac{1}{2}=-1$ SOI	B1 FT	Substitute $x = 0$ into <i>their</i> $f'(x)$ but must not involve c otherwise B0B0
	f(0) = -3	B1 FT	FT for 3 terms in AP. FT for 3rd B1 dep on 1st B1 . Award marks for the AP method only.
	Total:	3	
(iii)	$f(x) = \left[\frac{1}{2}(4x+1)^{3/2} \div 3/2 \div 4\right] - \left[\frac{1}{2}x\right](+k)$	B1 FT B1 FT	Expect $(1/12)(4x+1)^{3/2}-1\frac{1}{2}x$ $(+k)$. FT from their $f'(x)$ but c numerical.
	$-3 = 1/12 - 0 + k \implies k = -37/12$ CAO	M1A1	Sub $x = 0, y = their f(0)$ into their $f(x)$. Dep on $cx & k$ present (c numerical)
	Minimum value = $f(2) = \frac{27}{12} - 3 - \frac{37}{12} = -\frac{23}{6}$ or -3.83	A1	
	Total:	5	

501. 9709_w17_ms_11 Q: 10

	Answer	Mark	Partial Marks
(i)	Area = $\int \frac{1}{2} (x^4 - 1) dx = \frac{1}{2} \left[\frac{x^5}{5} - x \right]$	*B1	
	$\frac{1}{2}\left[\frac{1}{5}-1\right]-0 = (-)\frac{2}{5}$	DM1A1	Apply limits 0→1
		3	
(ii)	Vol = $\pi \int y^2 dx = \frac{1}{4} (\pi) \int (x^8 - 2x^4 + 1) dx$	М1	(If middle term missed out can only gain the M marks)
	$\sqrt[3/4]{\pi} \left[\frac{x^9}{9} - \frac{2x^5}{5} + x \right]$	*A1	
	$\frac{1}{4}(\pi)\left[\frac{1}{9} - \frac{2}{5} + 1\right] - 0$	DM1	
	$\frac{8\pi}{45}$ or 0.559	A1	
		4	

	Answer	Mark	Partial Marks
(iii)	Vol = $\pi \int x^2 dy = (\pi) \int (2y+1)^{1/2} dy$	M1	Condone use of x if integral is correct
	$(\pi) \left[\frac{(2y+1)^{3/2}}{3/2} \right] [\div 2]$	*A1A1	Expect (π) $\left[\frac{(2y+1)^{3/2}}{3}\right]$
	$(\pi)\left[\frac{1}{3}-0\right]$	DM1	
	$\frac{\pi}{3}$ or 1.05	A1	Apply $-\frac{1}{2} \rightarrow 0$
		5	

502. 9709_w17_ms_12 Q: 8

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	М1	Sets $\frac{dy}{dx}$ to 0 and attempts to solve leading to two values for x.
	x = 1, x = 4	A1	Both values needed
		2	

	Answer	Mark	Partial Marks
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2x + 5$	B1	
	Using both of their x values in their $\frac{d^2y}{dx^2}$	M1	Evidence of any valid method for both points.
	$x = 1 \rightarrow (3) \rightarrow \text{Minimum}, x = 4 \rightarrow (-3) \rightarrow \text{Maximum}$	A1	
		3	
(iii)	$y = -\frac{x^3}{3} + \frac{5x^2}{2} - 4x (+c)$	B2, 1, 0	+c not needed. -1 each error or omission.
	Uses $x = 6$, $y = 2$ in an integrand to find $c \rightarrow c = 8$	M1 A1	Statement of the final equation not required.
		4	

503. 9709_w17_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = \frac{1}{2} \times (5x - 1)^{-\frac{1}{2}} \times 5 \qquad (=\frac{5}{6})$	B1 B1	B1 Without \times 5 B1 \times 5 of an attempt at differentiation
	$m \text{ of normal} = -\frac{6}{5}$	M1	Uses $m_1m_2 = -1$ with their numeric value from their dy/dx
	Equation of normal $y-3 = -\frac{6}{5}(x-2)$ OE or $5y + 6x = 27$ or $y = \frac{-6}{5}x + \frac{27}{5}$	A1	Unsimplified. Can use $y = mx + c$ to get $c = 5.4$ ISW

	Answer	Mark	Partial Marks
(ii)	EITHER:	(B1	Correct expression without ÷5
	For the curve $(\int)\sqrt{5x-1}dx = \frac{(5x-1)^{\frac{3}{2}}}{\frac{3}{2}} \div 5$	B1	For dividing an attempt at integration of y by 5
	Limits from $\frac{1}{5}$ to 2 used \rightarrow 3.6 or $\frac{18}{5}$ OE	M1 A1	Using $\frac{1}{5}$ and 2 to evaluate an integrand (may be $\int y^2$)
	Normal crosses x-axis when $y = 0, \rightarrow x = (4\frac{1}{2})$	M1	Uses their equation of normal, NOT tangent
	Area of triangle = 3.75 or $\frac{15}{4}$ OE	A1	This can be obtained by integration
	Total area= $3.6 + 3.75 = 7.35$, $\frac{147}{20}$ OE	A1)	
	OR: For the curve: $\left(\int \int \frac{1}{5} \left(y^2 + 1\right) dy = \frac{1}{5} \left(\frac{y^3}{3} + y\right)$	(B2, 1, 0	-1 each error or omission.
	Limits from 0 to 3 used \rightarrow 2.4 or $\frac{12}{5}$ OE	M1 A1	Using 0 and 3 to evaluate an integrand
	Uses their equation of normal, NOT tangent.	M1	Either to find side length for trapezium or attempt at integrating between 0 and 3
	Area of trapezium = $\frac{1}{2}(2+4\frac{1}{2}) \times 3 = \frac{39}{4} or 9\frac{3}{4}$	A1	This can be obtained by integration
	Shaded area = $\frac{39}{4} - \frac{12}{5} = 7.35, \frac{147}{20}$ OE	A1)	

504. 9709_w17_ms_13 Q: 8

	Answer	Mark	Partial Marks
(i)	EITHER: $4 - 3\sqrt{x} = 3 - 2x \rightarrow 2x - 3\sqrt{x} + 1 \ (=0)$ or e.g. $2k^2 - 3k + 1 \ (=0)$	(M1	Form 3-term quad & attempt to solve for \sqrt{x} .
	$\sqrt{x} = \frac{1}{2}$, 1	A1	Or $k = \frac{1}{2}$ or 1 (where $k = \sqrt{x}$).
	$x = \frac{1}{4}, 1$	A1)	
	$ORI: (3\sqrt{x})^2 = (1+2x)^2$	(M1	
	$4x^2 - 5x + 1 \ (=0)$	A1	
	$x = \frac{1}{4}, 1$	A1)	
	OR2: $\frac{3-y}{2} = \left(\frac{4-y}{3}\right)^2 \left(\to 2y^2 - 7y + 5(=0)\right)$	(M1	Eliminate x
	$y=\frac{5}{2},1$	A1	
	x = ½, 1	A1)	
		3	

	Answer	Mark	Partial Marks
(ii)	EITHER: Area under line = $\int (3-2x) dx = 3x - x^2$	(B1	
	$= \left[(3-1) - \left(\frac{3}{4} - \frac{1}{16} \right) \right]$	M1	Apply their limits (e.g. $\frac{1}{4} \rightarrow 1$) after integn.
	Area under curve = $\int (4-3x^{1/2}) dx = 4x-2x^{3/2}$	B1	
	[(4-2)-(1-1/4)]	M1	Apply their limits (e.g. $\frac{1}{4} \rightarrow 1$) after integration.
	Required area = $\frac{21}{16} - \frac{5}{4} = \frac{1}{16}$ (or 0.0625)	A1)	
	OR: +/- $\int (3-2x) - \left(4-3x^{\frac{1}{2}}\right) = +/-\int (-1-2x+3x^{\frac{1}{2}})$	(*M1	Subtract functions and then attempt integration
	$+/-\left[-x-x^2+\frac{3x^{3/2}}{3/2}\right]$	A2, 1, 0 FT	FT on their subtraction. Deduct 1 mark for each term incorrect
	$+/-\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}$ (or 0.0625)	DM1 A1)	Apply their limits $\frac{1}{4} \rightarrow 1$
		5	

 $505.\ 9709_w17_ms_13\ Q:\ 10$

	Answer	Mark	Partial Marks
(i)	$ax^{2} + bx = 0 \rightarrow x(ax + b) = 0 \rightarrow x = \frac{-b}{a}$	В1	
	Find $f''(x)$ and attempt sub their $\frac{-b}{a}$ into their $f''(x)$	M1	
	When $x = \frac{-b}{a}$, $f''(x) = 2a\left(\frac{-b}{a}\right) + b = -b$ MAX	A1	
		3	
(ii)	Sub $f'(-2) = 0$	M1	
	Sub f'(1) = 9	M1	
	a=3 b=6	*A1	Solve simultaneously to give both results.
	$f'(x) = 3x^2 + 6x \rightarrow f(x) = x^3 + 3x^2 (+c)$	*M1	Sub <i>their a, b</i> into $f'(x)$ and integrate 'correctly'. Allow $\frac{ax^3}{3} + \frac{bx^2}{2}(+c)$
	-3 = -8 + 12 + c	DM1	Sub $x = -2$, $y = -3$. Dependent on c present. Dependent also on a , b substituted.
	$f(x) = x^3 + 3x^2 - 7$	A1	
		6	

506. 9709_m16_ms_12 Q: 2

 Answer	Mark	Partial Marks
$y = \frac{3x^3}{3} - \frac{2x^{-2}}{-2} (+c)$	B1B1	
3 = -1 + 1 + c	M1	Sub $x = -1, y = 3$. c must be present
$y = x^3 + x^{-2} + 3$	A1	Accept $c = 3$ www
	[4]	_

507. 9709_m16_ms_12 Q: 10

	Answer	Mark	Partial Marks
(i)	x = 1/3	B1 [1]	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{2}{16}(3x - 1)\right][3]$	B1B1	
	When $x = 3$ $\frac{dy}{dx} = 3$ soi	M1	
	Equation of QR is $y-4=3(x-3)$	M1	
	When $y = 0$ $x = 5/3$	A1 [5]	
(iii)	Area under curve = $\left[\frac{1}{16 \times 3} (3x - 1)^3\right] \left[\times \frac{1}{3}\right]$	B1B1	
	$\left[\frac{1}{16 \times 9} \left[8^3 - 0 \right] \right] = \frac{32}{9}$	M1A1	Apply limits: their $\frac{1}{3}$ and 3
	Area of $\Delta = 8/3$	B1	
	Shaded area $=\frac{32}{9} - \frac{8}{3} = \frac{8}{9}$ (or 0.889)	A1 [6]	

508. 9709_s16_ms_11 Q: 3

 Answer	Mark	Partial Marks
$x = \frac{12}{y^2} - 2.$ $Vol = (\pi) \times \int x^2 dy$ $\rightarrow \left[\frac{-144}{3y^3} + 4y + \frac{48}{y} \right]$	M1 3 × A1	Ignore omission of π at this stage Attempt at integration Un-simplified
Limits 1 to 2 used $\rightarrow 22\pi$	A1 [5]	only from correct integration

 $509.\ 9709_s16_ms_11\ Q{:}\ 4$

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = 2 - 8(3x + 4)^{-\frac{1}{2}}$		
	$\frac{dy}{dx} = 2 - 8(3x + 4)^{-\frac{1}{2}}$ $(x = 0, \rightarrow \frac{dy}{dx} = -2)$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow -0.6$		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \longrightarrow -0.6$	M1A1 [2]	Ignore notation. Must be $\frac{dy}{dx} \times 0.3$
(ii)	$y = \{2x\} \left\{ -\frac{8\sqrt{3x+4}}{\frac{1}{2}} \div 3 \right\} (+c)$	B1 B1	No need for $+c$.
	$x = 0, y = \frac{4}{3} \rightarrow c = 12.$	M1 A1 [4]	Uses x , y values after \int with c

510. 9709_s16_ms_12 Q: 2

 Answer	Ма	ırk	Partial Marks
$f'(x) = \frac{8}{\left(5 - 2x\right)^2}$			
$f(x) = \frac{8(5-2x)^{-1}}{-1} \div -2 (+c)$	B1 B1		Correct without (÷ by -2) An attempt at integration (÷ by-2)
Uses $x = 2$, $y = 7$,	M1		Substitution of correct values into an integral to find c
c=3	A1	[4]	an integral to find c

511. 9709_s16_ms_12 Q: 10

	Answer	Mark	Partial Marks
	$y = \frac{8}{x} + 2x.$		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -8x^{-2} + 2$	B1	unsimplified ok
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 16x^{-3}$	B1	unsimplified ok
	$\int y^2 dx = -64x^{-1} \text{ oe} + 32x \text{ oe} + \frac{4x^3}{3} \text{ oe} (+c)$	3 × B1 [5]	B1 for each term – unsimplified ok
(ii)	sets $\frac{dy}{dx}$ to $0 \rightarrow x = \pm 2$	M1	Sets to 0 and attempts to solve
	$ \rightarrow M(2, 8) $ Other turning point is $(-2, -8)$	A1 A1	Any pair of correct values A1 Second pair of values A1
	$If x = -2, \frac{d^2y}{dx^2} < 0$	M1	Using their $\frac{d^2y}{dx^2}$ if kx^{-3} and $x < 0$
	∴Maximum	A1 [5]	
(iii)	$Vol = \pi \times [part(i)] \text{ from 1 to 2}$	M1	Evidence of using limits 1&2 in their integral of y^2 (ignore π)
	$\frac{220\pi}{3}$,73.3 π ,230	A1 [2]	

512. 9709_s16_ms_13 Q: 2

 Answer	Mark	Partial Marks
$(\pi)\int (x^3+1)\mathrm{d}x$	M1	Attempt to resolve y^2 and attempt to integrate
$(\pi)\left[\frac{x^4}{4} + x\right]$	A1	to morganic
6π or 18.8	DM1A1	Applying limits 0 and 2.
	[4]	(Limits reversed: Allow M mark
		and allow A mark if final answer is 6π)
		,

513. 9709_s16_ms_13 Q: 3

	Answer	Mark	Partial Marks
(i)	$6+k=2 \rightarrow k=-4$	B1 [1]	
(ii)	$(y) = \frac{6x^3}{3} - \frac{4}{-2}x^{-2} (+c)$ $9 = 2 + 2 + c \qquad c \text{ must be present}$	B1B1√	ft on their k. Accept $+\frac{k}{-2}x^{-2}$
	-	M1	Sub $(1,9)$ with numerical k . Dep on attempt \int
	$(y) = 2x^3 + 2x^{-2} + 5$	A1 [4]	Equation needs to be seen Sub $(2, 3) \rightarrow c = -13\frac{1}{2}$ scores M1A0

 $514.\ 9709_w16_ms_11\ Q{:}\ 7$

	Answer	Mark		Partial Marks
(i)	$A = (\frac{1}{2}, 0)$	B1	[1]	Accept $x = 0$ at $y = 0$
1	$\int (1-2x)^{\frac{1}{2}} dx = \left[\frac{(1-2x)^{3/2}}{3/2} \right] \left[\div (-2) \right]$	B1B1		May be seen in a single expression
	$\int (2x-1)^2 dx = \left[\frac{(2x-1)^3}{3}\right] [\div 2]$	B1B1		May use $\int_{a}^{1} x dy$, may expand
	[0-(-1/3)]-[0-(-1/6)]	M1		$\left(2x-1\right)^2$
	1/6	A1		Correct use of their limits
			[6]	

515. 9709_w16_ms_11 Q: 10

	Answer	Mark	Partial Marks
(i)	$3z - \frac{2}{z} = -1 \implies 3z^2 + z - 2 = 0$ $x^{1/2} (\text{ or } z) = 2/3 \text{ or } -1$ x = 4/9 only	M1 A1 A1	Express as 3-term quad. Accept $x^{1/2}$ for z (OR $3x-1=-\sqrt{x}, 9x^2-13x+4=0$ M1, A1,A1 $x=4/9$)
(ii)	$f(x) = \frac{3x^{3/2}}{3/2} - \frac{2x^{1/2}}{1/2} (+c)$ Sub $x = 4, y = 10$ $10 = 16 - 8 + c \implies c = 2$ When $x = \frac{4}{9}, y = 2\left(\frac{4}{9}\right)^{3/2} - 4\left(\frac{4}{9}\right)^{1/2} + 2$ $-2/27$	B1B1 M1A1 M1 A1	c must be present Substituting x value from part (i)

516. 9709_w16_ms_12 Q: 1

Answer	Mark		Partial Marks
$(y) = 8(4x+1)^{\frac{1}{2}} \div \frac{1}{2} \div 4 (+c)$	B1 B1		Correct integrand (unsimplified) without $\div 4$ $\div 4$. Ignore c .
Uses $x = 2$ and $y = 5$	M1		Substitution of correct values into an integrand
c = -7	A1		to find c. $y = 4\sqrt{4x+1} - 7$
		[4]	

517. 9709_w16_ms_13 Q: 10

	Answer	Mark		Partial Marks
(i)	at $x = a^2$, $\frac{dy}{dx} = \frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-2} + a^{-2} \left(= \frac{3}{a^2} \text{ or } 3a^{-2} \right)$	B1		$\frac{2}{a^2} + \frac{1}{a^2}$ or $2a^{-2} + a^{-2}$ seen
	$y-3 = \frac{3}{a^2}(x-a^2)$ or $y = \frac{3}{a^2}x+c \rightarrow 3 = \frac{3}{a^2}a^2+c$	M1		anywhere in (i) Through $(a^2,3)$ & with <i>their</i> grad as $f(a)$
	$y = \frac{3}{a^2}x \text{ or } 3a^{-2}x \text{ cao}$	A1	[3]	grad as I(a)
(ii)	$(y) = \frac{2}{a} \frac{x^{1/2}}{1/2} + \frac{ax^{-1/2}}{-1/2} (+c)$	B1B1		
	sub $x = a^2$, $y = 3$ into $\int dy / dx$	M1		c must be present. Expect
	$c = 1 (y = \frac{4x^{\frac{1}{2}}}{a} - 2ax^{-\frac{1}{2}} + 1)$	A1	[4]	3 = 4 - 2 + c
(iii)	sub $x = 16$, $y = 8 \rightarrow 8 = \frac{4}{a} \times 4 - 2a \times \frac{1}{4} + 1$	*M1		Sub into their y
	$a^2 + 14a - 32 (= 0)$	A1		
	a = 2	A1		Allow –16 in addition
	$A = (4, 3), B = (16, 8)$ $AB^2 = 12^2 + 5^2 \rightarrow AB = 13$	DM1A1	[5]	

518. 9709_w16_ms_13 Q: 11

	Answer	Mark		Partial Marks
(i)	Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$	*M1		Must contain $(kx-3)^{-2}$ + other term(s)
	$(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k = 0$	DM1		Simplify to a quadratic
	$x = \frac{2}{k}$ or $\frac{4}{k}$	*A1*A1		Legitimately obtained
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2k^2 \left(kx - 3\right)^{-3}$	B1√		Ft must contain $Ak^2(kx-3)^{-3}$
	When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previous	DB1		where A>0 Convincing alt. methods (values either side) must show which
	When $x = \frac{4}{k}$, $\frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correct	DB1		values used & cannot use $x = 3 / k$
			[7]	
(ii)	$V = (\pi) \int \left[(x-3)^{-1} + (x-3) \right]^2 dx$	*M1		Attempt to expand y^2 and then integrate
	$= (\pi) \int [(x-3)^{-2} + (x-3)^2 + 2] dx$	A1		megrate
	$= (\pi) \left[-(x-3)^{-1} + \frac{(x-3)^3}{3} (+2x) \right]$ Condone missing 2x	A1		Or $\begin{bmatrix} & & & & & & & & & & & & & & & & & & $
				$\left[-(x-3)^{-1} + \frac{x^3}{3} - 3x^2 + 9x + 2x \right]$
	$=(\pi)\left 1-\frac{1}{3}+4-\left(\frac{1}{3}-9+0\right)\right $	DM1		Apply limits $0 \rightarrow 2$
	$=40\pi/3$ oe or 41.9	A1	[5]	2 missing \rightarrow 28 π / 3 scores M1A0A1M1A0
			[2]	111110111111111

$519.\ 9709_s15_ms_11\ Q:\ 10$

	$y = \frac{8}{\sqrt{3x+4}}$ $\frac{dy}{dx} = \frac{-4}{(3x+4)^{\frac{3}{2}}} \times 3 \text{ aef}$	B1	Without the "×3"
	$(3x+4)^2$	B1	For "×3" even if 1st B mark lost.
	$\rightarrow m_{(x=0)} = -\frac{3}{2} \text{ Perpendicular } m_{(x=0)} = \frac{2}{3}$	M1	Use of $m_1m_2 = -1$ after attempting to find $\frac{dy}{dx}_{(x=0)}$
E	Eqn of normal $y-4=\frac{2}{3}(x-0)$	M1	Unsimplified line equation
	Meets $x = 4$ at $B\left(4, \frac{20}{3}\right)$	A1 [5]	cao
(ii) J	$\int \frac{8}{\sqrt{(3x+4)}} \mathrm{d}x = \frac{8\sqrt{(3x+4)}}{\frac{1}{2}} \div 3$	B1 B1	Without "÷3". For "÷3"
	$Area P = \frac{32}{3}$ Area P = $\frac{32}{3}$	M1 A1	Correct use of correct limits. cao
A	Area $Q = \text{Trapezium} - P$ Area of Trapezium = $\frac{1}{2} \left(4 + \frac{20}{3} \right) \times 4 = \frac{64}{3}$	M1	Correct method for area of trapezium
	Areas of <i>P</i> and <i>Q</i> are both $\frac{32}{3}$	A1 [6]	All correct.

520. 9709_s15_ms_12 Q: 10

	Answer	Mark	Partial Marks
	$y = \frac{4}{2x - 1}.$	B1	Correct without the ÷2
(i)	$\int \frac{16}{(2x-1)^2} dx = \frac{-16}{2x-1} \div 2$ $Vol = \pi \left[\frac{-8}{2x-1} \right] \text{ with limits 1 and 2}$	B1 M1	For the ÷2 even if first B1 is lost Use of limits in a changed
	Vol = $\pi \left[\frac{16\pi}{2x-1} \right]$ with limits 1 and 2 $\rightarrow \frac{16\pi}{3}$	A1 [4]	expression. co
(ii)	$m = \frac{1}{2}m \text{ of tangent} = -2$ $\frac{dy}{dx} = \frac{-4}{(2x-1)^2} \times 2$	M1 B1 B1	Use of $m_1m_2 = -1$ Correct without the ×2 For the ×2 even if first B1 is lost
	Equating their $\frac{dy}{dx}$ to -2	DM1 A1	со
	$\rightarrow c = \frac{1}{2} \text{or} - \frac{1}{2}$	A1 [6]	со

521. 9709_s15_ms_13 Q: 2

	Answer	Mark	Partial Marks
$\left[\frac{(2x+1)^{\frac{3}{2}}}{\frac{3}{2}}\right] [\div 2]$	(+c)	B1B1	
7=9+c		M1	Attempt subst $x = 4$, $y = 7$. c must be there.
$v = \frac{(2x+1)^{\frac{3}{2}}}{2} - 2$	or unsimplified	A1	Dep. on attempt at integration. $c = -2$ sufficient
3	or unumprimed	[4]	2 Sufficient

522. 9709_s15_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	$\frac{dy}{dx} = 6 - 6x$ At $x = 2$, gradient $= -6$ soi $y - 9 = -6(x - 2)$ oe Expect $y = -6x + 21$ When $y = 0$, $x = 3\frac{1}{2}$ cao	B1 B1√ M1 M1 A1 [4]	Line through (2, 9) and with gradient <i>their</i> –6
(ii)	Area under curve: $\int 9 + 6x - 3x^2 dx = 9x + 3x^2 - x^3$ (27 + 27 - 27) - (18 + 12 - 8) Area under tangent: $\frac{1}{2} \times \frac{3}{2} \times 9 = \frac{27}{4}$ Area required $\frac{27}{4} - 5 = \frac{7}{4}$	B2,1,0 M1 B1√ A1	Allow unsimplified terms Apply limits 2,3. Expect 5 OR $\int_{2}^{\frac{7}{2}} (-6x + 21) dx (\rightarrow \frac{27}{4})$. Ft on their $-6x + 21$ and/or their 7/2.

523. 9709_w15_ms_11 Q: 2

 Answer	Mark	Partial Marks
$f(x) = x^{3} - 7x (+c)$ $5 = 27 - 21 + c$ $c = -1 \rightarrow f(x) = x^{3} - 7x - 1$	B1 M1 A1 [3]	Sub $x = 3$, $y = 5$. Dep. on c present

524. 9709_w15_ms_11 Q: 11

	Answer	Mark	Partial Marks
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(1+4x)^{-1/2}\right] \times \left[4\right]$	B1B1	
	$At x = 6, \frac{dy}{dx} = \frac{2}{5}$	B1	
	Gradient of normal at $P = -\frac{1}{2}$	B1 √	OR eqn of norm
			$y-5 = their - \frac{5}{2}(x-6)$
	Gradient of $PQ = -\frac{5}{2}$ hence PQ is a normal,		When $y = 0, x = 8$ hence result
	or $m_1 m_2 = -1$	B1 [5]	
(ii)	Vol for curve = $(\pi) \int (1+4x)$ and attempt to	M1	
	integrate y^2		
	$= (\pi)[x + 2x^2] \text{ ignore '} + c'$	A1	
	$=(\pi)[6+72-0]$	DM1	Apply limits $0 \rightarrow 6$ (allow reversed if
	$=78(\pi)$	A1	corrected later)
	Vol for line $=\frac{1}{3} \times (\pi) \times 5^2 \times 2$	M1	$\mathbf{OR} (\pi) \boxed{\frac{\left(-\frac{5}{2}x + 20\right)^3}{3 \times -\frac{5}{2}}}^{8}$
	$=\frac{50}{3}(\pi)$	A1	$\begin{bmatrix} 3 \times -\frac{5}{2} \end{bmatrix}_{6}$
	Total Vol = $78\pi + 50\pi/3 = 94\frac{2}{3}\pi$ (or $284\pi/3$)	A1 [7]	

525. 9709_w15_ms_12 Q: 10

	Answer	Mark	Partial Marks
	$y = \sqrt{(9-2x^2)} P(2, 1)$		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{(9-2x^2)}} \times -4x$	B1 B1	Without " $\times -4x$ " Allow even if B0 above.
	At P , $x = 2$, $m = -4$ Normal grad = $\frac{1}{4}$ Eqn AP $y - 1 = \frac{1}{4}(x - 2)$	M1 M1	For $m_1m_2 = -1$ calculus needed Normal, not tangent
	$\rightarrow A$ (-2, 0) or B (0, ½) Midpoint AP also (0, ½)	A1 A1 [6]	Full justification.
(ii)	$\int x^2 dy = \int \left(\frac{9}{2} - \frac{y^2}{2}\right) dy$ $= \frac{9y}{2} - \frac{y^3}{6}$	M1	Attempt to integrate x ²
	$=\frac{9y}{2}-\frac{y^3}{6}$	A1	Correct integration
	Upper limit = 3 Uses limits 1 to 3 \rightarrow volume = $4\frac{2}{3}\pi$	B1 DM1 A1	Evaluates upper limit Uses both limits correctly
	- 101aiie 173 N	[5]	

	Answer	Mark	Partial Marks
(i)	At $x = 4$, $\frac{dy}{dx} = 2$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = 2 \times 3 = 6$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 2 \times 3 = 6$	M1A1 [3]	Use of Chain rule
(ii)	$(y) = x + 4x^{\frac{1}{2}}(+c)$	B1	
	Sub $x = 4$, $y = 6 \rightarrow 6 = 4 + (4 \times 4^{\frac{1}{2}}) + c$	M1	Must include <i>c</i>
	$c = -6 \to (y = x + 4x^{\frac{1}{2}} - 6$	A1 [3]	
(iii)	Eqn of tangent is $y - 6 = 2(x - 4)$ or $(6 - 0)/(4 - x) = 2$	M1 A1	Correct eqn thru $(4, 6)$ & with $m = their 2$
	B = (1, 0) (Allow $x = 1$)	M1	[Expect eqn of normal: $y = -\frac{1}{2}x +$
	Gradient of normal = $-1/2$ C = (16, 0) (Allow $x = 16$)	A1 A1	8]
	Area of triangle = $\frac{1}{2} \times 15 \times 6 = 45$	[5]	Or $AB = \sqrt{45}$, $AC = \sqrt{180} \rightarrow$ Area = 45.0

527. 9709_w15_ms_13 Q: 10

	Answer	Mark	Partial Marks
(i)	$f'(x) = 2 - 2(x+1)^{-3}$	B1	
	$f''(x) = 6(x+1)^{-4}$	B1	
	f'0 = 0 hence stationary at $x = 0$	B1	AG
	f''0 = 6 > 0 hence minimum	B1	www. Dependent on correct f " (x) "
		[4]	except $-6(x+1)^{-4} \rightarrow < 0 \text{ MAX}$
(ii)	$AB^2 = (3/2)^2 + (3/4)^2$	M1	scores SC1
	$AB = 1.68 \text{ or } \sqrt{45/4}$ oe	A1	
		[2]	
(iii)	Area under curve = $\int f(x) = x^2 - (x+1)^{-1}$	B1	Ignore $+c$ even if evaluated
(111)	$=\left(1-\frac{1}{2}\right)-\left(\frac{1}{4}-2\right)=9/4$		Do not penalise reversed limits
	(Apply limits $-\frac{1}{2} \rightarrow 1$)	M1A1	Allow reversed subtn if final ans
	Area trap. = $\frac{1}{2}(3 + \frac{9}{4}) \times \frac{3}{2}$	NIIAI	positive
	Area trap. $=\frac{1}{2}(3+\frac{1}{4})\times\frac{1}{2}$	M1	Positive
	=63/16 or 3.94	A1	
	Shaded area $63/16 - 9/4 + 27/16$ or 1.69	A1	
	ALT eqn <i>AB</i> is $y = -\frac{1}{2}x + 11/4$	[6] B1	
	Area = $\int -\frac{1}{2}x + 11/4 - \int 2x + (x+1)^{-2}$	M1	Attempt integration of at least one
	$ = \left[-\frac{1}{4}x^2 + \frac{11}{4}x \right] - \left[x^2 - (x+1)^{-1} \right] $	A1A1	Ignore $+c$ even if evaluated
		AIAI	Dep. on integration having taken
	Apply limits 1/ >1 to both integrals		place
	Apply limits $-\frac{1}{2} \rightarrow 1$ to both integrals 27/16 or 1.69	M1	Allow reversed subtn if final ans
	2//10 01 1.09	A1	positive