TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

## Chapter 3

## Coordinate geometry

| 66. 9709_m22_qp_12 Q: 2                                                                                        |
|----------------------------------------------------------------------------------------------------------------|
| A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation $y = 4x + c$ , where c is a constant |
| Find the set of values of $c$ for which the curve and line intersect at two distinct points. [5]               |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |

67. 9709 m22 qp 12 Q: 6



The circle with equation  $(x + 1)^2 + (y - 2)^2 = 85$  and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.

| 1) | Find, by calculation, the coordinates of A and B. | [4]   |
|----|---------------------------------------------------|-------|
|    |                                                   |       |
|    |                                                   | ••••• |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |
|    |                                                   |       |

|           | If an equation of the circle which has its centre at $C$ and for which the line with equation $3x - 20$ is a tangent to the circle. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                     |
| ,         |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| • • • •   |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| • • • • • |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |
| ••••      |                                                                                                                                     |
|           |                                                                                                                                     |
|           |                                                                                                                                     |

| 68. $9709 \text{ m}21 \text{ qp} \text{ 12 } \text{ Q: 4}$<br>A line has equation $y = 3x + k$ and a curve has equation $y = x^2 + kx + 6$ , where $k$ is a constant. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find the set of values of $k$ for which the line and curve have two distinct points of intersection. [5]                                                              |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |

|  | 69. | 9709 | m21 | qр | 12 | Q: | 8 |
|--|-----|------|-----|----|----|----|---|
|--|-----|------|-----|----|----|----|---|

| The p | points $A$ ( | (7, 1) | ), B | (7, 9) | ) and $C$ ( | (1, 9) | are on the | circumfere | ence of a | ι circle. |
|-------|--------------|--------|------|--------|-------------|--------|------------|------------|-----------|-----------|
|-------|--------------|--------|------|--------|-------------|--------|------------|------------|-----------|-----------|

| ••••••    |
|-----------|
|           |
| •••••     |
|           |
| <br>••••• |
| <br>••••• |
| •••••     |
|           |
| •••••     |
| •••••     |
| •••••     |
|           |
| •••••     |
| •••••     |
| <br>      |
| <br>••••• |
| <br>      |
| <br>••••• |

| <b>(b)</b> | Find an equation of the tangent to the circle at $B$ . [2] |
|------------|------------------------------------------------------------|
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |
|            |                                                            |

| 70    | 9709 | c91 | an | 1.1 | $\Omega$ | 1.0 |
|-------|------|-----|----|-----|----------|-----|
| / U . | 9709 | SZI | qр | 11  | W:       | 10  |

The equation of a circle is  $x^2 + y^2 - 4x + 6y - 77 = 0$ .

| (a)        | Find the $x$ -coordinates of the points $A$ and $B$ where the circle intersects the $x$ -axis. | [2] |
|------------|------------------------------------------------------------------------------------------------|-----|
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
| <b>(b)</b> | Find the point of intersection of the tangents to the circle at $A$ and $B$ .                  | [6] |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |
|            |                                                                                                |     |

| <br> | ••••• | ••••• |  |
|------|-------|-------|--|
| <br> | ••••• | ••••• |  |
| <br> | ••••• | ••••• |  |
| <br> |       |       |  |
| <br> |       |       |  |
|      |       |       |  |
|      | ••••• |       |  |
| <br> | ••••• | ••••• |  |
| <br> |       |       |  |
|      |       |       |  |
| <br> | ••••• | ••••• |  |
| <br> |       |       |  |
| <br> | ••••• |       |  |
| <br> |       |       |  |
| <br> |       |       |  |
| <br> |       |       |  |
|      |       |       |  |
| <br> |       |       |  |
|      |       |       |  |
| <br> | ••••• | ••••• |  |
| <br> |       |       |  |

| 71. $9709\_s21\_qp\_12$ Q: 6 Points $A$ and $B$ have coordinates (8, 3) and ( $p$ , $q$ ) respectively. The equation of the perpendicula bisector of $AB$ is $y = -2x + 4$ . |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find the values of $p$ and $q$ . [4]                                                                                                                                         |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |
|                                                                                                                                                                              |

| The        | $709\_s21\_qp\_12$ Q: 7 point A has coordinates (1, 5) and the line l has gradient $-\frac{2}{3}$ and passes through A. A circle has re (5, 11) and radius $\sqrt{52}$ . |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)        | Show that $l$ is the tangent to the circle at $A$ . [2]                                                                                                                  |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
| <b>(b)</b> | Find the equation of the other circle of radius $\sqrt{52}$ for which $l$ is also the tangent at $A$ . [3]                                                               |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |
|            |                                                                                                                                                                          |

| 108                                                                                           | CHAPTER 3. COORDINATE GEOMETRY                    |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------|
| 73. 9709_s21_qp_13 Q: 3                                                                       |                                                   |
| A line with equation $y = mx - 6$ is a tangent to the curv                                    | we with equation $y = x^2 - 4x + 3$ .             |
| Find the possible values of the constant $m$ , and the correction the line touches the curve. | responding coordinates of the points at which [6] |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |
|                                                                                               |                                                   |

.....

.....

|            | $9709\_s21\_qp\_13$ Q: 10 nts $A(-2, 3)$ , $B(3, 0)$ and $C(6, 5)$ lie on the circumference of a circle with centre $D$ . |        |
|------------|---------------------------------------------------------------------------------------------------------------------------|--------|
| (a)        | Show that angle $ABC = 90^{\circ}$ .                                                                                      | [2]    |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
| <b>(b)</b> | Hence state the coordinates of $D$ .                                                                                      | [1]    |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           | •••••• |
| (c)        | Find an equation of the circle.                                                                                           | [2]    |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           | •••••  |
|            |                                                                                                                           | •••••• |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |
|            |                                                                                                                           |        |

.....

| 9 ] | point $E$ lies on the circumference of the circle such that $BE$ is a diameter. |
|-----|---------------------------------------------------------------------------------|
|     | Find an equation of the tangent to the circle at $E$ . [5]                      |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |

| 75. 9709_w21_qp_11 Q: 2                                                                                |
|--------------------------------------------------------------------------------------------------------|
| A curve has equation $y = kx^2 + 2x - k$ and a line has equation $y = kx - 2$ , where k is a constant. |
| Find the set of values of $k$ for which the curve and line do not intersect. [5]                       |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |

| 112        |                                                                             | CHAPTER 3. COORDINATE GEOMETRY |
|------------|-----------------------------------------------------------------------------|--------------------------------|
|            | 9709_w21_qp_11 Q: 7 ircle with centre (5, 2) passes through the point (7, 5 | ).                             |
| (a)        | Find an equation of the circle.                                             | [2]                            |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
| The        | e line $y = 5x - 10$ intersects the circle at $A$ and $B$ .                 |                                |
| <b>(b)</b> | Find the exact length of the chord $AB$ .                                   | [7]                            |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |
|            |                                                                             |                                |

.....

.....

.....

| <br> |
|------|
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
| <br> |

77. 9709\_w21\_qp\_13 Q: 9

The line y = 2x + 5 intersects the circle with equation  $x^2 + y^2 = 20$  at A and B.

| ••  | •••••                                       |
|-----|---------------------------------------------|
|     |                                             |
| ••  | <br>• • • • • • • • • • • • • • • • • • • • |
|     |                                             |
| ••  | <br>• • • • • • • • • • • • • • • • • • • • |
|     |                                             |
| ••  | <br>                                        |
|     |                                             |
| ••  |                                             |
|     | <br>                                        |
|     |                                             |
|     |                                             |
|     |                                             |
|     |                                             |
|     |                                             |
|     |                                             |
|     |                                             |
| ••  |                                             |
|     |                                             |
| ••  | • • • • • • • • • • • • • • • • • • • •     |
|     |                                             |
| ••  | <br>                                        |
|     |                                             |
| ••  | <br>•••••                                   |
|     |                                             |
| ••• |                                             |
|     |                                             |
|     |                                             |
|     | <br>                                        |
|     |                                             |
|     |                                             |
|     |                                             |
|     | <br>                                        |
|     |                                             |
| ••  |                                             |
|     |                                             |
| ••  |                                             |
|     |                                             |
| ••  | •••••                                       |
|     |                                             |
| • • | •••••                                       |
|     |                                             |
| • • | •••••                                       |

A straight line through the point (10, 0) with gradient m is a tangent to the circle. (b) Find the two possible values of m. [5] ..... ..... ...... ..... ..... .....

 $78.\ 9709\_m20\_qp\_12\ Q:\ 12$ 

A diameter of a circle  $C_1$  has end-points at (-3, -5) and (7, 3).

| (a) | Find an equation of the circle $C_1$ . | [3]   |
|-----|----------------------------------------|-------|
|     |                                        |       |
|     |                                        |       |
|     |                                        |       |
|     |                                        |       |
|     |                                        |       |
|     |                                        | ••••• |



The circle  $C_1$  is translated by  $\left(8\atop4\right)$  to give circle  $C_2$ , as shown in the diagram.

| <b>(b)</b> | Find an equation of the circle $C_2$ . | [2] |
|------------|----------------------------------------|-----|
|            |                                        |     |
|            |                                        |     |
|            |                                        |     |
|            |                                        |     |
|            |                                        |     |
|            |                                        |     |
|            |                                        |     |
|            |                                        |     |

| Show that the equation of the line RS is $y = -2x + 13$ .                                                        | [4   |
|------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  | •••• |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  | •••• |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
| Hence show that the <i>x</i> -coordinates of <i>R</i> and <i>S</i> satisfy the equation $5x^2 - 60x + 159 = 0$ . |      |
| Hence show that the <i>x</i> -coordinates of <i>R</i> and <i>S</i> satisfy the equation $5x^2 - 60x + 159 = 0$ . |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |

79. 9709\_s20\_qp\_11 Q: 10

| The coord | linates of | the noints | 4 and $F$ | ?are (_1 | _2) a | nd (7 4) | respectively. |
|-----------|------------|------------|-----------|----------|-------|----------|---------------|

| <br> |
|------|
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |

| •••••          | •••••                                   |                     |                       |                  |        |
|----------------|-----------------------------------------|---------------------|-----------------------|------------------|--------|
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
| ••••••         | • • • • • • • • • • • • • • • • • • • • |                     | ••••••                |                  | •••••  |
| •••••          |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
| •••••          | • • • • • • • • • • • • • • • • • • • • |                     |                       |                  | •••••• |
|                | • • • • • • • • • • • • • • • • • • • • |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
| •••••          |                                         |                     |                       |                  | •••••  |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                | • • • • • • • • • • • • • • • • • • • • |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
| Find the equat | ion of the circle                       | which is the reflec | ction of circle $C$ i | n the line $T$ . | [3     |
| Find the equat | ion of the circle                       | which is the reflec | ction of circle C i   | n the line $T$ . | [3     |
|                |                                         |                     |                       | n the line $T$ . |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |
|                |                                         |                     |                       |                  |        |

| 00  | 0700 | 20  |    | 10 | $\circ$ | ^ |
|-----|------|-----|----|----|---------|---|
| 80. | 9709 | s20 | qр | 12 | Q:      | b |

| The equation of a curve is $y = 2x^2$ | +kx+k-1, where k is a constant. |
|---------------------------------------|---------------------------------|
|                                       |                                 |

| Given that t            | 100  me  y = 2x            |                                    |                                   |                    |                           |           |
|-------------------------|----------------------------|------------------------------------|-----------------------------------|--------------------|---------------------------|-----------|
| •••••                   |                            | •••••                              |                                   |                    |                           | •••••     |
| •••••                   | ••••••                     | ••••••                             | ••••••                            |                    | ••••••                    | •••••     |
| •••••                   |                            | •••••                              |                                   |                    |                           |           |
| •••••                   |                            | •••••                              | ••••••                            |                    | •••••                     | •••••     |
| •••••                   | ••••••                     | •••••                              | ••••••                            |                    |                           | •••••     |
|                         |                            |                                    | ••••••                            |                    |                           |           |
| •••••                   |                            |                                    |                                   |                    | ••••••                    | •••••     |
|                         |                            |                                    |                                   |                    | ••••••                    | •••••     |
|                         |                            |                                    |                                   |                    |                           |           |
|                         |                            | •••••                              |                                   |                    |                           | •••••     |
|                         |                            |                                    |                                   |                    |                           |           |
| now given the           |                            |                                    |                                   |                    |                           |           |
| Express the             | equation of th             | ne curve in the                    | form $y = 2(x + x)$ of the curve. | $a)^2 + b$ , where | <i>a</i> and <i>b</i> are | constants |
| Express the             | equation of th             | ne curve in the                    | form $y = 2(x + x)$ of the curve. | $a)^2 + b$ , where | a and b are               | constants |
| Express the             | equation of th             | he curve in the<br>es of the verte | form $y = 2(x + x)$ of the curve. | $a)^2 + b$ , where | a and b are               | constants |
| Express the             | equation of th             | he curve in the                    | form $y = 2(x + x)$ of the curve. | $a)^2 + b$ , where | a and b are               | constants |
| Express the             | equation of th             | he curve in the                    | form $y = 2(x + x)$ of the curve. | $a)^2 + b$ , where | a and b are               | constants |
| Express the             | equation of th             | he curve in the                    | form $y = 2(x + x)$ of the curve. | $a)^2 + b$ , where | a and b are               | constants |
| Express the hence state | equation of the            | es of the verte                    | form $y = 2(x + x)$ of the curve. |                    |                           |           |
| Express the hence state | equation of the coordinate | es of the verte                    | x of the curve.                   |                    |                           |           |
| Express the hence state | equation of the coordinate | es of the verte                    | x of the curve.                   |                    |                           |           |
| Express the hence state | equation of the coordinate | es of the verte                    | x of the curve.                   |                    |                           |           |

| <u>۾</u> 1 | 9709 | c20 | an | 19 | $\Omega$   | 11 |
|------------|------|-----|----|----|------------|----|
| οт.        | 9709 | 820 | qυ | 12 | $\omega$ : | 11 |

The equation of a circle with centre C is  $x^2 + y^2 - 8x + 4y - 5 = 0$ .

| (a) | Find the radius of the circle and the coordinates of $C$ .                    | [3]  |
|-----|-------------------------------------------------------------------------------|------|
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     | point $P(1, 2)$ lies on the circle.                                           | F2.1 |
| (b) | Show that the equation of the tangent to the circle at $P$ is $4y = 3x + 5$ . | [3]  |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               | •••• |
|     |                                                                               |      |
|     |                                                                               |      |
|     |                                                                               |      |
|     |                                                                               |      |
|     |                                                                               |      |

| Γhe        | e point $Q$ also lies on the circle and $PQ$ is parallel to the $x$ -axis. |     |
|------------|----------------------------------------------------------------------------|-----|
| c)         | Write down the coordinates of $Q$ .                                        | [2] |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
| he         | e tangents to the circle at $P$ and $Q$ meet at $T$ .                      |     |
| <b>l</b> ) | Find the coordinates of $T$ .                                              | [3] |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |
|            |                                                                            |     |

| 82. 9709_s20_qp_13 Q: 1                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find the set of values of $m$ for which the line with equation $y = mx + 1$ and the curve with equation $y = 3x^2 + 2x + 4$ intersect at two distinct points. |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |

| 83. 9709_w20_qp_11 Q: 1                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Find the set of values of $m$ for which the line with equation $y = mx - 3$ and the curve with equation $y = 2x^2 + 5$ do not meet. [3] |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |

84.  $9709 w20 qp_11 Q: 9$ 



The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are (-1, 4) and the coordinates of B are (3, 2).

| (a) | Find the equation of the tangent <i>CBD</i> . | [2]    |
|-----|-----------------------------------------------|--------|
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               | •••••• |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |
|     |                                               |        |

|   | Find an equation of the circle with centre $B$ .            |
|---|-------------------------------------------------------------|
|   |                                                             |
|   |                                                             |
| • |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
| • |                                                             |
|   |                                                             |
| • |                                                             |
| , |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
| • |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
| ] | Find, by calculation, the $x$ -coordinates of $C$ and $D$ . |
| ] | Find, by calculation, the $x$ -coordinates of $C$ and $D$ . |
| ] | Find, by calculation, the $x$ -coordinates of $C$ and $D$ . |
| ] |                                                             |
| ] |                                                             |
| ] |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |
|   |                                                             |

85. 9709\_w20\_qp\_12 Q: 3 The equation of a curve is  $y = 2x^2 + m(2x + 1)$ , where m is a constant, and the equation of a line is y = 6x + 4.

| Show that, for all values of $m$ , the line intersects the curve at two distinct points. [5] |
|----------------------------------------------------------------------------------------------|
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |

86. 9709\_w20\_qp\_12 Q: 9

| circle has centre at the point $B(5, 1)$ . The point $A(-1, -2)$ lies on the circle. |                                                                                                                                       |       |  |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| )                                                                                    | Find the equation of the circle.                                                                                                      | [3    |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       | ••••• |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       | ••••• |  |  |
|                                                                                      |                                                                                                                                       |       |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      | In t $C$ is such that $AC$ is a diameter of the circle. Point $D$ has coordinates (5, 16). Show that $DC$ is a tangent to the circle. | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [-    |  |  |
|                                                                                      |                                                                                                                                       | [-    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |
|                                                                                      |                                                                                                                                       | [4    |  |  |

The other tangent from D to the circle touches the circle at E. (c) Find the coordinates of E. [2] ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 

| 100                                                    |                                                                 |
|--------------------------------------------------------|-----------------------------------------------------------------|
| 87. 9709_w20_qp_13 Q: 4                                |                                                                 |
| A curve has equation $y = 3x^2 - 4x + 4$ and constant. | I a straight line has equation $y = mx + m - 1$ , where m is a  |
| Find the set of values of <i>m</i> for which the c     | urve and the line have two distinct points of intersection. [5] |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |

88. 9709\_m19\_qp\_12 Q: 10



The diagram shows the curve with equation  $y = 4x^{\frac{1}{2}}$ .

| (1) | The straight line with equation $y = x + 3$ intersects the curve at points A and B. Find the of AB. | ie lengtr<br>[6] |
|-----|-----------------------------------------------------------------------------------------------------|------------------|
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     | •••••            |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     | ••••••           |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     | ••••••           |
|     |                                                                                                     | •••••            |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |
|     |                                                                                                     |                  |

| i) | The tangent to the curve at a point $T$ is parallel to $AB$ . Find the coordinates of $T$ . | [3]             |
|----|---------------------------------------------------------------------------------------------|-----------------|
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             | ••••••          |
| )  | Find the coordinates of the point of intersection of the normal to the curve at $T$ with    | the line $AB$ . |
|    | •                                                                                           | [3]             |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             | ••••••          |
|    |                                                                                             |                 |
|    |                                                                                             |                 |
|    |                                                                                             |                 |

| QΩ  | 9709 | c10 | an | 11 | $\cap$ | 9 |
|-----|------|-----|----|----|--------|---|
| 09. | 9709 | 819 | αb | 11 | w:     | 4 |

| The line $4y = x + c$ , where $c$ is a | constant, is a tangent | to the curve $y^2$ | = x + 3 at the | point $P$ on the |
|----------------------------------------|------------------------|--------------------|----------------|------------------|
| curve.                                 |                        |                    |                |                  |

| (i)  | Find the value of $c$ .       | [3] |
|------|-------------------------------|-----|
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
| (ii) | Find the coordinates of $P$ . | [2] |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |
|      |                               |     |

90. 9709\_s19\_qp\_11 Q: 4



The diagram shows a trapezium ABCD in which the coordinates of A, B and C are (4, 0), (0, 2) and (h, 3h) respectively. The lines BC and AD are parallel, angle  $ABC = 90^{\circ}$  and CD is parallel to the x-axis.

| (i) | Find, by calculation, the value of $h$ . | [3]   |
|-----|------------------------------------------|-------|
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          | ••••• |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |
|     |                                          |       |

| (ii) | Hence find the coordinates of $D$ . | [3] |
|------|-------------------------------------|-----|
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |
|      |                                     |     |

| 91. 9709_s19_qp_12 Q: 2                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Two points $A$ and $B$ have coordinates $(1, 3)$ and $(9, -1)$ respectively. The perpendicular bisector of $AB$ intersects the $y$ -axis at the point $C$ . Find the coordinates of $C$ . [5] |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |

| 92. | $9709_{-}$ | $_{ m s}19_{ m L}$ | _qp_ | _13 | Q: 7 |  |
|-----|------------|--------------------|------|-----|------|--|
|-----|------------|--------------------|------|-----|------|--|

| The | coordinates of two points A and B are $(1, 3)$ and $(9, -1)$ respectively and D is the mid-point | nt of |
|-----|--------------------------------------------------------------------------------------------------|-------|
| AB. | A point C has coordinates $(x, y)$ , where x and y are variables.                                |       |

| (i)   | State the coordinates of $D$ . [1]                                                                                                                 |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
| (ii)  | It is given that $CD^2 = 20$ . Write down an equation relating x and y. [1]                                                                        |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
| (iii) | It is given that $AC$ and $BC$ are equal in length. Find an equation relating $x$ and $y$ and show that it can be simplified to $y = 2x - 9$ . [3] |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |
|       |                                                                                                                                                    |  |

| Using the results from parts (ii) and (iii), and showing all necessary working, find the postcoordinates of $C$ . |
|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |

| 93. 9709_w19_qp_11 Q: 3                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| The line $y = ax + b$ is a tangent to the curve $y = 2x^3 - 5x^2 - 3x + c$ at the point (2, 6). Find the values of the constants $a$ , $b$ and $c$ . |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |

| 94. | 9709 | w19 | ap | 11 | Q: | 6 |
|-----|------|-----|----|----|----|---|
|     |      |     |    |    |    |   |

| 94. 9709_w19_qp_11 Q: 6                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A straight line has gradient $m$ and passes through the point $(0, -2)$ . Find the two values of $m$ for which the line is a tangent to the curve $y = x^2 - 2x + 7$ and, for each value of $m$ , find the coordinates of the point where the line touches the curve. [7] |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                           |

| <br>      |
|-----------|
|           |
|           |
| •••••     |
|           |
| <br>      |
|           |
| •••••     |
| •••••     |
|           |
|           |
|           |
| <br>••••• |
|           |
|           |
|           |
| •••••     |
|           |
| <br>      |
|           |
|           |
|           |
|           |
|           |
| ••••••    |
| •••••     |
|           |
|           |
|           |
| <br>••••• |
|           |
|           |
|           |
|           |

| 95. 9709_w19_qp_12 Q: 2                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The point $M$ is the mid-point of the line joining the points $(3, 7)$ and $(-1, 1)$ . Find the equation of the line through $M$ which is parallel to the line $\frac{x}{3} + \frac{y}{2} = 1$ . |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |

96. 9709\_w19\_qp\_12 Q: 9

Functions f and g are defined by

$$f(x) = 2x^2 + 8x + 1 \quad \text{for } x \in \mathbb{R},$$
  
$$g(x) = 2x - k \quad \text{for } x \in \mathbb{R},$$

where k is a constant.

| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
|--------------------------------------------------------------------------------------|
|                                                                                      |
|                                                                                      |
|                                                                                      |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
| In the case where $k = -9$ , find the set of values of $x$ for which $f(x) < g(x)$ . |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |

| (iii) | In the case where $k = -1$ , find $g^{-1}f(x)$ and solve the equation $g^{-1}f(x) = 0$ .                   | [3]   |
|-------|------------------------------------------------------------------------------------------------------------|-------|
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            |       |
|       |                                                                                                            | ••••• |
|       |                                                                                                            | ••••• |
| Gw    |                                                                                                            |       |
| (1V)  | Express $f(x)$ in the form $2(x + a)^2 + b$ , where $a$ and $b$ are constants, and hence value of $f(x)$ . |       |
| (IV)  | Express $f(x)$ in the form $2(x + a)^2 + b$ , where $a$ and $b$ are constants, and hence value of $f(x)$ . |       |
| (IV)  | Express $f(x)$ in the form $2(x + a)^2 + b$ , where $a$ and $b$ are constants, and hence value of $f(x)$ . |       |
| (IV)  | Express $f(x)$ in the form $2(x + a)^2 + b$ , where $a$ and $b$ are constants, and hence value of $f(x)$ . |       |
| (IV)  | Express $f(x)$ in the form $2(x + a)^2 + b$ , where $a$ and $b$ are constants, and hence value of $f(x)$ . | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |
| (iv)  | value of f(x).                                                                                             | [3]   |

97. 9709\_w19\_qp\_13 Q: 6

| he has equation $y = 3kx - 2k$ and a curve has equation $y = x^2 - kx + 2$ , where k is a constant. |
|-----------------------------------------------------------------------------------------------------|
| Find the set of values of $k$ for which the line and curve meet at two distinct points.             |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |

| For each of two particular rangents meet on the <i>x</i> -axis |       |        | C      |       |                                         | [3        |
|----------------------------------------------------------------|-------|--------|--------|-------|-----------------------------------------|-----------|
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         |           |
|                                                                | ••••• | •••••• | •••••  | ••••• |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         |           |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        | ••••• |                                         | <br>••••• |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         |           |
|                                                                | ••••• | •••••• | •••••• | ••••• | • • • • • • • • • • • • • • • • • • • • | <br>••••• |
|                                                                |       |        |        |       | • • • • • • • • • • • • • • • • • • • • | <br>••••• |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         |           |
|                                                                | ••••• | •••••  | •••••  | ••••• | •••••                                   | <br>••••• |
|                                                                |       |        |        |       | •••••                                   | <br>••••• |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         | <br>      |
|                                                                |       |        |        |       |                                         |           |
|                                                                | ••••• | •••••  |        |       |                                         | <br>••••• |
|                                                                |       |        | •••••  |       | •••••                                   | <br>••••• |
|                                                                |       |        |        |       |                                         | <br>••••• |
|                                                                |       |        |        |       |                                         | <br>      |

| 9.0 | 9709 | m18 | an | 19 | $\Omega$ | 4 |
|-----|------|-----|----|----|----------|---|
| 90. | 9109 | што | qρ | 14 | Q:       | 4 |

A straight line cuts the positive *x*-axis at *A* and the positive *y*-axis at B(0, 2). Angle  $BAO = \frac{1}{6}\pi$  radians, where *O* is the origin.

| (i)         | Find the exact value of the $x$ -coordinate of $A$ .                                                                                                | [2]                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|             |                                                                                                                                                     | · • • • •           |
|             |                                                                                                                                                     | · • • • •           |
|             |                                                                                                                                                     | · • • • •           |
|             |                                                                                                                                                     | · • • • •           |
|             |                                                                                                                                                     | · • • • •           |
|             |                                                                                                                                                     | · • • • •           |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
| <b>(11)</b> |                                                                                                                                                     |                     |
| (ii)        | Find the equation of the perpendicular bisector of $AB$ , giving your answer in the form $y = mx$ where $m$ is given exactly and $c$ is an integer. | ⊦ <i>c</i> ,<br>[4] |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     |                     |
|             |                                                                                                                                                     | ••••                |
|             |                                                                                                                                                     | ••••                |
|             |                                                                                                                                                     | ••••                |
|             |                                                                                                                                                     | ••••                |
|             |                                                                                                                                                     | · • • • •           |

99. 9709\_m18\_qp\_12 Q: 9

|  | A curve has equation $y =$ | $\frac{1}{x}$ + c and a line | has equation $y =$ | cx-3, | where $c$ is | a constant. |
|--|----------------------------|------------------------------|--------------------|-------|--------------|-------------|
|--|----------------------------|------------------------------|--------------------|-------|--------------|-------------|

| (i) | Find the set of values of $c$ for which the curve and the line meet. | [4]   |
|-----|----------------------------------------------------------------------|-------|
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      | ····· |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |
|     |                                                                      |       |

| The line is a tangent to the curve for two particular values of $c$ . For each of these values find $x$ -coordinate of the point at which the tangent touches the curve. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |

 $100.\ 9709\_s18\_qp\_11\ \ Q{:}\ 5$ 



The diagram shows a kite OABC in which AC is the line of symmetry. The coordinates of A and C are (0, 4) and (8, 0) respectively and O is the origin.

| Find the equations of $AC$ and $OB$ . | [4] |
|---------------------------------------|-----|
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |

|    | Find, by calculation, the coordinates of $B$ . | [                                       |
|----|------------------------------------------------|-----------------------------------------|
| •• |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
| •• |                                                |                                         |
|    |                                                | • • • • • • • • • • • • • • • • • • • • |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                | • • • • • • • • • • • • • • • • • • • • |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
| •• |                                                | •••••                                   |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
| •• |                                                |                                         |
|    |                                                | •••••                                   |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
| •• |                                                | •••••                                   |
|    |                                                |                                         |
|    |                                                |                                         |
|    |                                                |                                         |
| •• |                                                |                                         |
| •• |                                                | •••••                                   |
|    |                                                |                                         |

101. 9709\_s18\_qp\_11 Q: 9

Functions f and g are defined for  $x \in \mathbb{R}$  by

$$f: x \mapsto \frac{1}{2}x - 2,$$
  
$$g: x \mapsto 4 + x - \frac{1}{2}x^{2}.$$

| (i)  | Find the points of intersection of the graphs of $y = f(x)$ and $y = g(x)$ . | [3] |
|------|------------------------------------------------------------------------------|-----|
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
|      |                                                                              |     |
| (ii) | Find the set of values of x for which $f(x) > g(x)$ .                        | [2] |
| (ii) | Find the set of values of $x$ for which $f(x) > g(x)$ .                      | [2] |
| (ii) |                                                                              |     |

|    | Find an expression for $fg(x)$ and deduce the range of fg.                     | [4]       |
|----|--------------------------------------------------------------------------------|-----------|
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                |           |
|    |                                                                                | • • • • • |
|    |                                                                                | •••••     |
| he | function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \ge k$ . | ••••      |
|    |                                                                                | [2]       |
|    |                                                                                | [2]       |
|    |                                                                                | [2]       |
|    |                                                                                | [2]       |
|    |                                                                                |           |
|    | Find the smallest value of <i>k</i> for which h has an inverse.                |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |
|    | Find the smallest value of k for which h has an inverse.                       |           |

 $102.\ 9709\_s18\_qp\_12\ Q:\ 2$ 

| The  | equation of a curve is $y = x^2 - 6x + k$ , where k is a constant.                           |
|------|----------------------------------------------------------------------------------------------|
| (i)  | Find the set of values of $k$ for which the whole of the curve lies above the $x$ -axis. [2] |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
| (ii) | Find the value of $k$ for which the line $y + 2x = 7$ is a tangent to the curve. [3]         |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |
|      |                                                                                              |

| 103. 9709_s18_qp_12 Q: 8                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Points <i>A</i> and <i>B</i> have coordinates $(h, h)$ and $(4h + 6, 5h)$ respectively. The equation of the perpendicular bisector of <i>AB</i> is $3x + 2y = k$ . Find the values of the constants <i>h</i> and <i>k</i> . [7] |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                 |  |  |  |

.....

.....

.....

| 156 | CHAPTER 3. | COORDINATE GEOMETRY |
|-----|------------|---------------------|
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |
|     |            |                     |

| 104  | 9709 | s18 | an | 13 | O          | 6 |
|------|------|-----|----|----|------------|---|
| 104. | 9109 | SIO | uν | 10 | $\omega$ . | U |

| The coordinates of points A and B are $(-3k - 1)$ , | (k+3) and $(k+3, 3k+5)$ respectively, where k is a |
|-----------------------------------------------------|----------------------------------------------------|
| constant $(k \neq -1)$ .                            |                                                    |

|                                                                        | [2 |
|------------------------------------------------------------------------|----|
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
| Find and simplify the equation of the perpendicular bisector of $AB$ . | [5 |
|                                                                        | L- |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |
|                                                                        |    |

| 105. 9709_w18_qp_11 Q: 2                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A line has equation $y = x + 1$ and a curve has equation $y = x^2 + bx + 5$ . Find the set of values of the constant $b$ for which the line meets the curve. [4] |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |

106. 9709\_w18\_qp\_11 Q: 3

| Two points A and B | have coordinates | (3a, -a) | and $(-a, 2)$ | 2a) respectively, | where $a$ is a | positive |
|--------------------|------------------|----------|---------------|-------------------|----------------|----------|
| constant.          |                  |          |               |                   |                |          |

| (1)           | Find the equation of the line through the origin parallel to $AB$ .          | [2]   |
|---------------|------------------------------------------------------------------------------|-------|
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              | ••••• |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              | ••••• |
|               |                                                                              | ••••• |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              |       |
|               |                                                                              |       |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| ( <b>ii</b> ) | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| ( <b>ii</b> ) | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . | [3]   |
| (ii)          | The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ . |       |
| ( <b>ii</b> ) |                                                                              |       |
| (ii)          |                                                                              |       |

107. 9709\_w18\_qp\_12 Q: 10

| [3]  |
|------|
|      |
|      |
|      |
| •••  |
|      |
| •••  |
|      |
|      |
|      |
|      |
| •••  |
|      |
|      |
|      |
|      |
| [3]  |
|      |
| •••  |
| •••  |
|      |
| •••  |
|      |
| •••• |
|      |
|      |

| 108  | 9709 | w18   | an | 13 | O          | 4 |
|------|------|-------|----|----|------------|---|
| 100. | 3103 | W I O | uν | 10 | $\omega$ . | 4 |

Two points A and B have coordinates (-1, 1) and (3, 4) respectively. The line BC is perpendicular to AB and intersects the x-axis at C.

| ii) Find the distance $AC$ , giving your an | iswer correct to 3 decimal places. | [2] |
|---------------------------------------------|------------------------------------|-----|
|                                             |                                    |     |
|                                             |                                    |     |
|                                             |                                    |     |
|                                             |                                    |     |
|                                             |                                    |     |
|                                             |                                    |     |
|                                             |                                    |     |

109. 9709\_w18\_qp\_13 Q: 9

| A cı | A curve has equation $y = 2x^2 - 3x + 1$ and a line has equation $y = kx + k^2$ , where k is a constant. |           |  |
|------|----------------------------------------------------------------------------------------------------------|-----------|--|
| (i)  | Show that, for all values of $k$ , the curve and the line meet.                                          | [4]       |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          | , <b></b> |  |
|      |                                                                                                          | •••••     |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          | •••••     |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          | •••••     |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |
|      |                                                                                                          |           |  |

| i) | State the value of $k$ for which the line is a tangent to the curve and find the coordinates of the point where the line touches the curve. [4] |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |
|    |                                                                                                                                                 |

110. 9709\_s17\_qp\_12 Q: 2

| The point A has coordinates $(-2, 6)$ . | The equation of the perpendicular bisector of the line A | B is |
|-----------------------------------------|----------------------------------------------------------|------|
| 2y = 3x + 5.                            |                                                          |      |

| (i)  | Find the equation of $AB$ .        | [3] |
|------|------------------------------------|-----|
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
| (ii) | Find the coordinates of $B$ .      | [3] |
| (ii) | Find the coordinates of $B$ .      | [3] |
| (ii) | Find the coordinates of <i>B</i> . | [3] |
| (ii) | Find the coordinates of <i>B</i> . | [3] |
| (ii) | Find the coordinates of <i>B</i> . | [3] |
| (ii) | Find the coordinates of <i>B</i> . | [3] |
| (ii) | Find the coordinates of <i>B</i> . | [3] |
| (ii) |                                    |     |

| 111. 9709_s17_qp_13 Q: 3                                                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Find the coordinates of the points of intersection of the curve $y = x^{\frac{2}{3}} - 1$ with the curve $y = x^{\frac{1}{3}} + 1$ . [4] |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |
|                                                                                                                                          |  |  |

112. 9709\_s17\_qp\_13 Q: 8

| (i)  | Find an expression for $b$ in terms of $a$ .                                                          | [2]     |
|------|-------------------------------------------------------------------------------------------------------|---------|
| (1)  | Thin an expression for $b$ in terms of $a$ .                                                          | [4.     |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
|      |                                                                                                       |         |
| (ii) | D(10 1) is a dial asist and dat AD AD Colorlate the small star of the small star                      |         |
|      | B (10, -1) is a third point such that $AP = AB$ . Calculate the coordinates of the possible po        | sitions |
| ()   | B(10, -1) is a third point such that $AP = AB$ . Calculate the coordinates of the possible poof $P$ . |         |
| ()   | of $P$ .                                                                                              | [6]     |
| ()   |                                                                                                       | [6]     |
| (==) | of $P$ .                                                                                              | [6]     |
| ()   | of <i>P</i> .                                                                                         | [6]     |
| ()   | of <i>P</i> .                                                                                         | [6]     |
| ()   | of <i>P</i> .                                                                                         | [6]     |
| ()   | of <i>P</i> .                                                                                         | [6]     |
| ()   | of <i>P</i> .                                                                                         | [6]     |
|      | of <i>P</i> .                                                                                         | [6]     |

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |

| 113. 9709 <sub>-</sub> | $_{ m w}17_{ m c}$ | $_{ m qp}_{ m }$ | _11 | Q: 6 |  |
|------------------------|--------------------|------------------|-----|------|--|
|------------------------|--------------------|------------------|-----|------|--|

| The points $A(1,$ | 1) and $B(5,$ | 9) lie on the curve | $6y = 5x^2 - 18x + 19.$ |
|-------------------|---------------|---------------------|-------------------------|
|-------------------|---------------|---------------------|-------------------------|

| show that the equation of the perpendicular bisector of AB is $2y = 13 - x$ . | [4] |
|-------------------------------------------------------------------------------|-----|
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |
|                                                                               |     |

The perpendicular bisector of AB meets the curve at C and D.

| (ii) Find, by calculation, the distance $CD$ , giving your answer in the form $\sqrt{\left(\frac{p}{q}\right)}$ , where $p$ and $p$ integers |               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
|                                                                                                                                              | integers. [5] |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |
|                                                                                                                                              |               |  |  |  |

|  | 114. | 9709 | w17 | αp | 13 | Q: | 2 |
|--|------|------|-----|----|----|----|---|
|--|------|------|-----|----|----|----|---|

| Find the set of values of $a$ for which the curve $y = -$ distinct points. | $-\frac{2}{x}$ and the straight line $y = ax + 3a$ meet at two [4] |
|----------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |
|                                                                            |                                                                    |

 $115.\ 9709\_m16\_qp\_12\ \ Q:\ 5$ 

Two points have coordinates A(5, 7) and B(9, -1).

(i) Find the equation of the perpendicular bisector of AB. [3]

The line through C(1, 2) parallel to AB meets the perpendicular bisector of AB at the point X.

(ii) Find, by calculation, the distance BX. [5]

 $116.\ 9709\_s16\_qp\_12\ Q{:}\ 8$ 

Three points have coordinates A(0, 7), B(8, 3) and C(3k, k). Find the value of the constant k for which

- (i) C lies on the line that passes through A and B, [4]
- (ii) C lies on the perpendicular bisector of AB. [4]

117. 9709\_s16\_qp\_13 Q: 11

Triangle ABC has vertices at A(-2, -1), B(4, 6) and C(6, -3).

- (i) Show that triangle ABC is isosceles and find the exact area of this triangle. [6]
- (ii) The point D is the point on AB such that CD is perpendicular to AB. Calculate the x-coordinate of D.

 $118.\ 9709\_w16\_qp\_11\ \ Q:\ 4$ 

C is the mid-point of the line joining A (14, -7) to B (-6, 3). The line through C perpendicular to AB crosses the y-axis at D.

(i) Find the equation of the line CD, giving your answer in the form y = mx + c. [4]

(ii) Find the distance AD. [2]

119. 9709\_w16\_qp\_12 Q: 3

A curve has equation  $y = 2x^2 - 6x + 5$ .

- (i) Find the set of values of x for which y > 13. [3]
- (ii) Find the value of the constant k for which the line y = 2x + k is a tangent to the curve. [3]

120. 9709\_w16\_qp\_12 Q: 5

The line  $\frac{x}{a} + \frac{y}{b} = 1$ , where a and b are positive constants, intersects the x- and y-axes at the points A and B respectively. The mid-point of AB lies on the line 2x + y = 10 and the distance AB = 10. Find the values of a and b.

121. 9709\_w16\_qp\_13 Q: 1

Find the set of values of k for which the curve  $y = kx^2 - 3x$  and the line y = x - k do not meet. [3]

122. 9709\_w16\_qp\_13 Q: 6

Three points, A, B and C, are such that B is the mid-point of AC. The coordinates of A are (2, m) and the coordinates of B are (n, -6), where m and n are constants.

(i) Find the coordinates of C in terms of m and n. [2]

The line y = x + 1 passes through C and is perpendicular to AB.

(ii) Find the values of m and n. [5]

 $123.\ 9709\_s15\_qp\_11\ \ Q:\ 6$ 

The line with gradient -2 passing through the point P(3t, 2t) intersects the x-axis at A and the y-axis at B.

(i) Find the area of triangle AOB in terms of t. [3]

The line through P perpendicular to AB intersects the x-axis at C.

(ii) Show that the mid-point of PC lies on the line y = x. [4]

124.  $9709_s15_qp_12$  Q: 6

A tourist attraction in a city centre is a big vertical wheel on which passengers can ride. The wheel turns in such a way that the height, h m, of a passenger above the ground is given by the formula  $h = 60(1 - \cos kt)$ . In this formula, k is a constant, t is the time in minutes that has elapsed since the passenger started the ride at ground level and kt is measured in radians.

(i) Find the greatest height of the passenger above the ground. [1]

One complete revolution of the wheel takes 30 minutes.

(ii) Show that 
$$k = \frac{1}{15}\pi$$
. [2]

(iii) Find the time for which the passenger is above a height of 90 m. [3]

125. 9709 s15 qp 13 Q: 7

The point A has coordinates (p, 1) and the point B has coordinates (9, 3p + 1), where p is a constant.

- (i) For the case where the distance AB is 13 units, find the possible values of p. [3]
- (ii) For the case in which the line with equation 2x + 3y = 9 is perpendicular to AB, find the value of p.

 $126.\ 9709\_w15\_qp\_11\ Q:\ 6$ 

A curve has equation  $y = x^2 - x + 3$  and a line has equation y = 3x + a, where a is a constant.

- (i) Show that the x-coordinates of the points of intersection of the line and the curve are given by the equation  $x^2 4x + (3 a) = 0$ . [1]
- (ii) For the case where the line intersects the curve at two points, it is given that the *x*-coordinate of one of the points of intersection is −1. Find the *x*-coordinate of the other point of intersection. [2]
- (iii) For the case where the line is a tangent to the curve at a point P, find the value of a and the coordinates of P. [4]

127. 9709\_w15\_qp\_12 Q: 6

Points A, B and C have coordinates A(-3, 7), B(5, 1) and C(-1, k), where k is a constant.

(i) Given that AB = BC, calculate the possible values of k. [3]

The perpendicular bisector of AB intersects the x-axis at D.

(ii) Calculate the coordinates of D. [5]

 $128.\ 9709\_w15\_qp\_13\ Q{:}\ 1$ 

A line has equation y = 2x - 7 and a curve has equation  $y = x^2 - 4x + c$ , where c is a constant. Find the set of possible values of c for which the line does not intersect the curve. [3]