TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

Chapter 7

Differentiation

349.	9709_{-}	$_{ m m22}_{ m m}$	qp_{\perp}	$_{-}12$	Q: 1	11						
------	------------	--------------------	--------------	----------	------	----	--	--	--	--	--	--

It is given that a curve has equation $y = k(3x - k)^{-1} + 3x$, where k is a constant.

	s of k , the value						
•••••	•••••	•••••					
•••••	••••••	•••••			••••••	••••••	••••••
•••••	•••••	•••••		•••••			
		•••••		•••••	•••••		•••••
••••••	••••••			•••••		••••••	••••••
•••••		•••••	•••••				
•••••							
•••••	••••••						
•••••	•••••					••••••	
•••••	•••••••	•••••	•••••	•••••	•••••		
	•••••	••••••	•••••	•••••		••••••	•••••
•••••	••••••	•••••	•••••				
	••••						

The function f has a stationary value at x = a and is defined by

$$f(x) = 4(3x - 4)^{-1} + 3x$$
 for $x \ge \frac{3}{2}$.

Find the value of a and determine the	ne nature of the stationary value.	[3]
The function g is defined by $g(x) = \frac{1}{2}$ Determine, making your reasoning function or neither.	$-(3x+1)^{-1} + 3x$ for $x \ge 0$. g clear, whether g is an increasing functi	on, a decreasing

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

050	0700 01	10. 0. 0			
	9709_s21_qreequation of		$3)\sqrt{x+1} + 3$. The fo	ollowing points lie on t	he curve. Non-exact
		ded to 4 decimal pla		<i>5</i> 1	
	A(2, k)	B(2.9, 2.8025)	C(2.99, 2.9800)	D(2.999, 2.9980)	E(3, 3)
(a)	Find k , giv	ing your answer cor	rect to 4 decimal plac	es.	[1]
(b)	Find the gr	radient of AE , giving	g your answer correct	to 4 decimal places.	[1]
	•••••				
	gradients of gradi	of <i>BE</i> , <i>CE</i> and <i>DE</i>	, rounded to 4 decin	nal places, are 1.9748,	, 1.9975 and 1.9997
(c)		ng a reason for your the curve at the poi		lues of the four gradier	nts suggest about the

.....

494	CHAPTER 7. DIFFERENTIATION
351. 9709_s21_qp_13 Q: 2	
The function f is defined by $f(x) = \frac{1}{3}(2x-1)^{\frac{3}{2}} - 2x$ for $\frac{1}{2} <$ function.	x < a. It is given that f is a decreasing
Find the maximum possible value of the constant a .	[4]

.....

The	52. $9709_{\text{w}21}_{\text{qp}_1}$ Q: 9 The volume $V \text{ m}^3$ of a large circular mound of iron ore of radius $r \text{ m}$ is modelled by the equation $V = \frac{3}{2}(r - \frac{1}{2})^3 - 1$ for $r \ge 2$. Iron ore is added to the mound at a constant rate of 1.5 m ³ per second.				
(a)	Find the rate at which the radius of the mound is increasing at the instant when the radius is 5.5 m [3]				

(b)	Find the volume of the mound at the instant when the radius is increasing at 0.1 m per second.

353. 9	9709_w21_qp_12 Q: 10
The 1	function f is defined by $f(x) = x^2 + \frac{k}{x} + 2$ for $x > 0$.
(a)	Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$, find k .

Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$, find k . [3]

Determine the nature of the stationary point.	[2]
Given that this is the only stationary point of the curve, find the range of f.	[2]
	L-J

354.	54. 9709_w21_qp_13 Q: 3					
(a)	Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$, where a and b are constants.	[2]				
		••••••				
		••••••				
(b)	The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$.					
	Determine whether f is an increasing function, a decreasing function or neither.	[3]				
		••••••				

300
355. 9709_m20_qp_12 Q: 1
The function f is defined by $f(x) = \frac{1}{3x+2} + x^2$ for $x < -1$.
Determine whether f is an increasing function, a decreasing function

Determine whether f is an increasing function, a decreasing function or neither.	[3]
	•••••
	•••••
	•••••

356.	9709_	$_{ m m20}_{ m l}$	_qp_	$_{-}12$	Q:	4
------	-------	--------------------	------	----------	----	---

[4]	nd the x -coordinate of P .

257	0700	~2O	0.00	11	Ω	Λ
30 7.	9709	SZU	qр	11	W:	9

The equation of a curve is $y = (3 - 2x)^3 + 24x$.

	ons for $\frac{dy}{dx}$ and	$\mathrm{d}x^2$				
•••••	•••••	•••••	•••••••	••••••	••••••	•••••••••
•••••						
•••••	•••••					
	•••••					
••••••	••••••	•••••	••••••	•••••		••••••
•••••	••••••	•••••		•••••		
•••••						••••••
			•••••			

Find the co							
					•	•••••	
••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••
			•••••				
••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
••••••	•••••	••••••	•••••		•••••	•••••	•••••
			•••••				
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••
	•••••		•••••				•••••
			onary point.				[:
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
			onary point.				
Determine			onary point.				

358. 9709_s20_qp_12 Q: 3

A weather balloon in the shape of a sphe	ere is being inflated by	a pump. The volum	e of the balloon is
increasing at a constant rate of 600 cm ³	per second. The balloo	n was empty at the	start of pumping.

(a)	Find the radius of the balloon after 30 seconds.	[2]
		••••••
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
		••••••

359. 9709_s20_qp_12 Q: 10

The equation of a curve is $y = 54x - (2x - 7)$	$7)^{3}$.
(a) Find $\frac{dy}{dy}$ and $\frac{d^2y}{dy}$	

[3]
[2]

 $360.\ 9709_s20_qp_13\ Q:\ 6$

A point P is moving along a curve in such a way that the x -coordinate of P is increasing at a constant	nt
rate of 2 units per minute. The equation of the curve is $y = (5x - 1)^{\frac{1}{2}}$.	

Find the rate at which the y-coordinate is increasing when $x = 1$.	[4]

)	Find the value of x when the y-coordinate is increasing at $\frac{5}{8}$ units per minute. [3]

508	CHAPTER 7.	DIFFERENTIA			
361. 9709_w20_qp_11 Q: 3					
Air is being pumped into a balloon in the shape of a sphere so that its volume is increasing at a constant ate of $50 \mathrm{cm}^3 \mathrm{s}^{-1}$.					
Find the rate at which the radius of the balloon is increasing whe	en the radius is 10 cm.	[3]			

 $362.\ 9709_w20_qp_11\ \ Q:\ 6$ The equation of a curve is $y = 2 + \sqrt{25 - x^2}$. Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$. [5]

363. 9709_w20_qp_13 Q: 8

The equation of a curve is $y = 2x + 1$	$1+\frac{1}{2x+1}$	for $x > -\frac{1}{2}$
---	--------------------	------------------------

(a)	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Find the coordinates of the stationary point and determine the nature of the stationary point.

364. 9709_m19_qp_12 Q: 4

A curve has equation $y = (2x - 1)$	$)^{-1} + 2x$	
-------------------------------------	---------------	--

(i) Find $\frac{dy}{dx}$ and	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$		[3]

the na	x-coordinates of the stationary points and, showing all necessary working, detection to be of each stationary point.	[4

 $365.\ 9709_m19_qp_12\ Q:\ 5$

Two vectors, \mathbf{u} and \mathbf{v} , are such that

$$\mathbf{u} = \begin{pmatrix} q \\ 2 \\ 6 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 8 \\ q - 1 \\ q^2 - 7 \end{pmatrix}$,

where q is a constant.

Find the values of q for which \mathbf{u} is perpendicular to \mathbf{v} .	[3]

(ii)	Find the angle between \mathbf{u} and \mathbf{v} when $q = 0$.	[4]
		•••••
		· • • • • •
		•••••
		· • • • • •
		••••
		•••••
		· • • • • •
		•••••
		· · · · · ·
		· · · · · · ·

 $366.\ 9709_s19_qp_11\ \ Q:\ 7$

The diagram shows a three-dimensional shape in which the base OABC and the upper surface DEFG are identical horizontal squares. The parallelograms OAED and CBFG both lie in vertical planes. The point M is the mid-point of AF.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to OA and OC respectively and the unit vector \mathbf{k} is vertically upwards. The position vectors of A and D are given by $\overrightarrow{OA} = 8\mathbf{i}$ and $\overrightarrow{OD} = 3\mathbf{i} + 10\mathbf{k}$.

(i)	Express each of the vectors \overrightarrow{AM} and \overrightarrow{GM} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[3]
		•••••

(ii)	Use a scalar product to find angle <i>GMA</i> correct to the nearest degree.	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

 $367.\ 9709_s19_qp_12\ Q:\ 8$

The position vectors of points A and B, relative to an origin O, are given by

$$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -2 \\ -6 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix}$,

where k is a constant.

(i)	Find the value of k for which angle AOB is 90° .	[2]
		•••••
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of <i>k</i> for which the lengths of <i>OA</i> and <i>OB</i> are equal.	[2]
(ii)	Find the values of <i>k</i> for which the lengths of <i>OA</i> and <i>OB</i> are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)		[2]
(ii)		
(ii)		

The point C is such that $\overrightarrow{AC} = 2\overrightarrow{CB}$.

(iii)	In the case where $k = 4$, find the unit vector in the direction of \overrightarrow{OC} .	[4]

368.	9709	s19	ap	12	Q:	9	

The curve C_1 has equation $y = x^2 - 4x + 7$. The curve C_2 has equation $y^2 = 4x + k$, where k is onstant. The tangent to C_1 at the point where $x = 3$ is also the tangent to C_2 at the point P . Find the alue of k and the coordinates of P .	a 1e 3]
	••
	••
	•••
	••
	• • •
	•••
	•••
	••
	•••
	••
	••
	٠.

369. 9709_s19_qp_13 Q: 6

The diagram shows a solid figure ABCDEF in which the horizontal base ABC is a triangle right-angled at A. The lengths of AB and AC are 8 units and 4 units respectively and M is the mid-point of AB. The point D is 7 units vertically above A. Triangle DEF lies in a horizontal plane with DE, DF and FE parallel to AB, AC and CB respectively and N is the mid-point of FE. The lengths of DE and DF are 4 units and 2 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to \overline{AB} , \overline{AC} and \overline{AD} respectively.

(i)	Find \overrightarrow{MF} in terms of i , j and k .	[1]
(ii)	Find \overrightarrow{FN} in terms of i and j .	[1]
(iii)	Find \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[1]

v)	Use a scalar product to find angle FMN .	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

370. 9709_s19_qp_13 Q: 8
A curve is such that $\frac{dy}{dx} = 3x^2 + ax + b$. The curve has stationary points at $(-1, 2)$ and $(3, k)$. Find the values of the constants a , b and k .

 ••••
· ····
· • • • •
· • • • •
· • • • •
· · · · ·
· • • • •
· • • • •
· ····
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •

371. 9709_w19_qp_11 Q: 2
An increasing function, f, is defined for $x > n$, where n is an integer. It is given that $f'(x) = x^2 - 6x + 8$. Find the least possible value of n. [3]

 $372.\ 9709_w19_qp_11\ Q:\ 10$

Relative to an origin O, the position vectors of the points A, B, C and D, shown in the diagram, are given by

$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}.$$

(i)	Show that AB is perpendicular to BC .	[3]
(ii)	Show that <i>ABCD</i> is a trapezium.	[3]

.....

.....

 $373.\ 9709_w19_qp_12\ Q:\ 5$

The diagram shows a solid cone which has a slant height of 15 cm and a vertical height of h cm.

(i)	Show that the volume, $V \text{ cm}^3$, of the cone is given by $V = \frac{1}{3}\pi(225h - h^3)$.	[2]
	[The volume of a cone of radius r and vertical height h is $\frac{1}{3}\pi r^2 h$.]	

Given that h can vary, find the value of h for which V has a stationary value. Determine, show all necessary working, the nature of this stationary value.

374. 9709_w19_qp_12 Q: 7

The diagram shows a three-dimensional shape OABCDEFG. The base OABC and the upper surface DEFG are identical horizontal rectangles. The parallelograms OAED and CBFG both lie in vertical planes. Points P and Q are the mid-points of OD and GF respectively. Unit vectors \mathbf{i} and \mathbf{j} are parallel to \overrightarrow{OA} and \overrightarrow{OC} respectively and the unit vector \mathbf{k} is vertically upwards. The position vectors of A, C and D are given by $\overrightarrow{OA} = 6\mathbf{i}$, $\overrightarrow{OC} = 8\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 10\mathbf{k}$.

)	Express each of the vectors PB and PQ in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[4]

(ii)	Determine whether P is nearer to Q or to B .	[2]
(iii)	Use a scalar product to find angle <i>BPQ</i> .	[3]

375. 9709_w19_qp_13 Q: 3
The equation of a curve is $y = x^3 + x^2 - 8x + 7$. The curve has no stationary points in the interval $a < x < b$. Find the least possible value of a and the greatest possible value of b . [4]

376. 9709_w19_qp_13 Q: 5

The dimensions of a cuboid are x cm, 2x cm and 4x cm, as shown in the diagram.

(i)	Show that the	surface area	S cm ² and the	volume $V \text{ cm}^3$	are connected b	v the relation
(-/	onow that the	bullace alea i	o ciri aria aria	volume v cm	are connected b	j tile relation

, i	$S = /V^3$.	[3]

rate of	the volume increase of	the volume	at this in	stant.				
•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
••••••			•••••	••••••	••••••			
•••••								
••••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	
•••••								
•••••		•••••		••••••	••••••		•••••	
•••••	•••••	••••••		•••••	••••••	••••••	••••••	•••••
•••••		•••••					•••••	
•••••	•••••	••••••	••••••	••••••	••••••	••••••	••••••	

377. 9709 $_{\rm w}$ 19 $_{\rm qp}$ 13 Q: 10

Relative to an origin O, the position vectors of the points A, B and X are given by

$$\overrightarrow{OA} = \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 10 \\ 2 \\ 11 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OX} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}.$$

Find \overrightarrow{AX} and show that AXB is a straight line.	[3]

The	position vector of a point C is given by $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -8 \\ 3 \end{pmatrix}$.
(ii)	Show that CX is perpendicular to AX . [3]
(iii)	Find the area of triangle ABC . [3]

 $378.\ 9709_m18_qp_12\ Q:\ 7$

Fig. 1 shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been removed, leaving a 5-sided polygon OABCD. The sides OA, AB, BC and DO have lengths of 7 units, 3 units, 3 units and 2 units respectively. Fig. 2 shows the polygon OABCD forming the horizontal base of a pyramid in which the point E is 8 units vertically above D. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OD and DE respectively.

Find \overrightarrow{CE} and the length of CE .	[3]

(ii)	Use a scalar product to find angle ECA , giving your answer in the form $\cos^{-1}\left(\frac{m}{\sqrt{n}}\right)$, where m and n are integers. [5]

379. 9709_m18_qp_12 Q: 8

A curve has equation $y = \frac{1}{2}x^2 - 4x^{\frac{3}{2}} + 8x$.

(i)	Find the <i>x</i> -coordinates of the stationary points.	[5]

(ii)	Find $\frac{d^2y}{dx^2}$.	[1]
		•••••
(iii)	Find, showing all necessary working, the nature of each stationary point.	[2]
(111)	Thu, one wing an necessary working, the nature of each stationary points	

380. 9709_m18_qp_12 Q: 10

Functions f and g are defined by

$$f(x) = \frac{8}{x-2} + 2 \quad \text{for } x > 2,$$

$$g(x) = \frac{8}{x-2} + 2 \quad \text{for } 2 < x < 4.$$

(i)	(a)	State the range of the function f.	[1]
	(b)	State the range of the function g.	[1]
	(~)		
	(c)	State the range of the function fg.	[1]
(ii)	Exp	plain why the function gf cannot be formed.	[1]
	•••••		

(iii)	Find the set of values of x satisfying the inequality $6f'(x) + 2f^{-1}(x) - 5 < 0$.	[6]
		••••
		••••
		••••
		•••••
		••••

381.	9709	s18	αp	11	Q:	2
001.	0100	010	ЧP		∞.	_

A point is moving along the curve constant rate of 0.02 units per second	$y = 2x + \frac{5}{x}$ in such and. Find the rate of	a way that the <i>x</i> -cochange of the <i>y</i> -coch	ordinate is increasing rdinate when $x = 1$.	g at a [4]
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••

 $382.\ 9709_s18_qp_11\ \ Q:\ 7$

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

(i)	Find AC.	[1]
(ii)	The point M is the mid-point of AC . Find the unit vector in the direction of \overrightarrow{OM} .	[3]
		•••••
		•••••

	Evaluate $\overrightarrow{AB} \cdot \overrightarrow{AC}$ and hence find angle BAC .	
		• • • • • • • • • • • • • • • • • • • •
•		• • • • • • • • • • • • • • • • • • • •
••		• • • • • • • • • • • • • • • • • • • •
		•
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
•		

The diagram shows a three-dimensional shape. The base OAB is a horizontal triangle in which angle AOB is 90°. The side OBCD is a rectangle and the side OAD lies in a vertical plane. Unit vectors \mathbf{i} and \mathbf{j} are parallel to OA and OB respectively and the unit vector \mathbf{k} is vertical. The position vectors of A, B and D are given by $\overrightarrow{OA} = 8\mathbf{i}$, $\overrightarrow{OB} = 5\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 4\mathbf{k}$.

(i)	Express each of the vectors \overrightarrow{DA} and \overrightarrow{CA} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[2]

384. 9709_s18_qp_13 Q: 8
(i) The tangent to the curve y = x³ - 9x² + 24x - 12 at a point A is parallel to the line y = 2 - 3x. Find the equation of the tangent at A. [6]

Find the equation of the tangent at A .	[6]
	•••••
	•••••

 $385.\ 9709_s18_qp_13\ \ Q:\ 9$

The diagram shows a pyramid OABCD with a horizontal rectangular base OABC. The sides OA and AB have lengths of 8 units and 6 units respectively. The point E on OB is such that OE = 2 units. The point E of the pyramid is 7 units vertically above E. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and ED respectively.

(i)	Show that $OE = 1.6i + 1.2j$.	[2]
(ii)	Use a scalar product to find angle <i>BDO</i> .	[7]

The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and 4 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OF respectively.

(i)	Find \overrightarrow{DF} .
(ii)	Find the unit vector in the direction of \overrightarrow{EF} . [3]

,	Use a scalar product to find angle <i>EFD</i> .	[4]
		•••••
		••••••
		••••••
		•••••

387. 9709_w18_qp_11 Q: 10

A curve has equation $y = \frac{1}{2}(4x - 3)^{-1}$. The point \boldsymbol{A} on the curve has coordinates ($(1, \frac{1}{2}).$
---	---	---------------------

(i) (a)	Find and simplify the equation of the normal through A .	[5]

	• • • • • • • • • • • • • • • • • • • •
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates.	ordinate in the at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates at the rate of 0.3 units per second.	ordinate in the at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates at the rate of the ra	ate at A .
A point is moving along the curve in such a way that as it passes through A its x -coordinates at the rate of 0.3 units per second. Find the rate of change of its y -coordinates at the rate of 0.3 units per second.	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates at the rate of 0.3 units per second.	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates at the rate of 0.3 units per second.	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates at the rate of 0.3 units per second.	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are the rate of the r	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates at the rate of the ra	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are the rate of the r	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are the rate of the r	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are the rate of the r	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are the rate of the r	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are second.	ate at A .
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinate the rate of change of change of its y-coordinate the rate of change	te at A. [2
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinate the rate of change of change of its y-coordinate the rate of change	te at A. [2
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinates are second.	te at A. [2

388. 9709_w18_qp_12 Q: 3

The diagram shows part of the curve $y = x(9 - x^2)$ and the line y = 5x, intersecting at the origin O and the point P. Point P lies on the line y = 5x between O and P and the P-coordinate of P is P-to Point P lies on the curve and P is parallel to the P-axis.

(i)	Express the length of PQ in terms of t , simplifying your answer.	[2]
		•••••
(ii)	Given that t can vary, find the maximum value of the length of PQ .	[3]

The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius 4 units. Points A, B and C lie on the circumference of the base such that AB is a diameter and angle $BOC = 90^{\circ}$. Points P, Q and R lie on the upper surface of the cylinder vertically above A, B and C respectively. The height of the cylinder is 12 units. The mid-point of CR is M and N lies on BQ with BN = 4 units.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to OB and OC respectively and the unit vector \mathbf{k} is vertically upwards.

Evaluate $\overrightarrow{PN} \cdot \overrightarrow{PM}$ and hence find angle MPN .	[7]

•••••
•••••
•••••
•••••
•••••
•••••

3 90.	9709	w18	αp	13	Q:	2

The function f is defined by $f(x) = x^3 + 2x^2 - 4x + 7$ for $x \ge -2$. Determine, showing all working, whether f is an increasing function, a decreasing function or neither.	necessary [4]
	•••••
	•••••
	•••••
	•••••
	•••••

 $391.\ 9709_w18_qp_13\ \ Q:\ 6$

The diagram shows a solid figure OABCDEFG with a horizontal rectangular base OABC in which OA = 8 units and AB = 6 units. The rectangle DEFG lies in a horizontal plane and is such that D is 7 units vertically above O and DE is parallel to OA. The sides DE and DG have lengths 4 units and 2 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively. Use a scalar product to find angle OBF, giving your answer in the form $\cos^{-1}\left(\frac{a}{b}\right)$, where a and b are integers.

[O]
•••••
•••••
•••••
•••••

 $392.\ 9709_m17_qp_12\ \ Q:\ 3$

The diagram shows a water container in the form of an inverted pyramid, which is such that when the height of the water level is h cm the surface of the water is a square of side $\frac{1}{2}h$ cm.

(i)	Express the volume of water in the container in terms of h .	[1]
	[The volume of a pyramid having a base area A and vertical height h is $\frac{1}{3}Ah$.]	

Water is steadily dripping into the container at a constant rate of $20\,\mathrm{cm}^3$ per minute.

level is 10 c	em.					[
		•••••	•••••		 	
•••••		••••••	•••••	•••••	 	
		•••••	•••••	•••••	 	

393. 9709_m17_qp_12 Q: 6

Relative to an	origin O , th	e position vectors	of the points A	f A and $m B$ are	e given by

 $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\overrightarrow{OB} = 7\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$.

(i)	Use a scalar product to find angle <i>OAB</i> .	[5]

(ii)	Find the area of triangle <i>OAB</i> .	[2]
		•••••
		•••••••

[3]

394. 9709_m17_qp_12 Q: 7
The function f is defined for $x \ge 0$ by $f(x) = (4x + 1)^{\frac{3}{2}}$.
(i) Find $f'(x)$ and $f''(x)$.

The	first second and third terms of a geometric progression are respectively $f(2)$, $f'(2)$ and $f(2)$
	first, second and third terms of a geometric progression are respectively $f(2)$, $f'(2)$ and $kf''(2)$.
(ii)	Find the value of the constant k . [5]

395. 9709_m17_qp_12 Q: 9

The point A (2)	2, 2)	lies on the curv	$y = y^2 - 2x + 2.$
-------------------	-------	------------------	---------------------

normal to the curve at A intersects the curve again at B .	
Find the coordinates of B .	
normal to the curve at A intersects the curve again at B . Find the coordinates of B .	
Find the coordinates of <i>B</i> .	
Find the coordinates of <i>B</i> .	
Find the coordinates of <i>B</i> .	
Find the coordinates of <i>B</i> .	
Find the coordinates of <i>B</i> .	
Find the coordinates of <i>B</i> .	

 $396.\ 9709_s17_qp_11\ \ Q:\ 2$

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$,

and angle $AOB = 90^{\circ}$.

(i)	Find the value of p .	[2]
		•••••
Γhe	e point C is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$.	
	e point C is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$. Find the unit vector in the direction of \overrightarrow{BC} .	[4]
		[4]
		[4]
		[4]
		[4]
		[4]
	Find the unit vector in the direction of \overrightarrow{BC} .	[4]
	Find the unit vector in the direction of \overrightarrow{BC} .	
	Find the unit vector in the direction of \overrightarrow{BC} .	
	Find the unit vector in the direction of \overrightarrow{BC} .	

 $397.\ 9709_s17_qp_11\ \ Q:\ 6$

The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are vertical. The height of the prism is h cm and the volume of the prism is 2000 cm³.

(i)	Express h in terms of x and show that the total surface area of the prism, $A \text{ cm}^2$, is given by		
	$A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}.$	[3]	

•		
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
	Determine, showing all necessary working, the nature of this stationary value.	[2]
		[2]
•	Determine, showing all necessary working, the nature of this stationary value.	[2]
•	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]
	Determine, showing all necessary working, the nature of this stationary value.	[2]

308	9709	c17	an	19	Ω	5
o90.	9709	SII	qρ	12	Q:	υ

A curve has equation $y = 3 + \frac{12}{2 - x}$.

	Find the equation of the tangent to the curve at the point where the curve crosses the <i>x</i> -axis.
••	
••	
•	
•••	
••	
••	

	[2
•	•••
	•••
•	•••
	•••
•	•••
	•••
•	
•	• • •
•	•••
•	•••
•	•••
•	
•	
	 •••
•	•••

399. 9709_s17_qp_12 Q: 8

Relative to an origin O, the position vectors of three points A, B and C are given by

 $\overrightarrow{OA} = 3\mathbf{i} + p\mathbf{j} - 2p\mathbf{k}, \quad \overrightarrow{OB} = 6\mathbf{i} + (p+4)\mathbf{j} + 3\mathbf{k} \quad \text{and} \quad \overrightarrow{OC} = (p-1)\mathbf{i} + 2\mathbf{j} + q\mathbf{k},$ where p and q are constants.

(i)	In the case where $p = 2$, use a scalar product to find angle AOB .	[4]

1.	In the case where \overrightarrow{AB} is parallel to \overrightarrow{OC} , find the values of p and q .	[4
•		••••
• •		••••
• •		
• •		
•		••••
• •		
• •		
•		••••
•		
•		••••
• •		••••
• •		
• •		
•		••••
• •		

400. 9709_s17_qp_12 Q: 9

The equat	ion of a	curve is v	y - 84/x -	_ 2r
THE Edual	ion or a	Cui ve is v	$v = o_{\lambda} / \lambda -$	- Z.

(i)	Find the coordinates of the stationary point of the curve.	[3]
(ii)	Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the	stationary point.
		•••••
		••••••
		••••••

Find the values of x at which the line $y = 6$ meets the curve.	[3]
	•••••
	•••••
	•••••
State the set of values of k for which the line $y = k$ does not meet the curve.	[1]
	••••••

 $401.\ 9709_s17_qp_13\ \ Q:\ 4$

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$.

The point P lies on AB and is such that $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$.

(i)	Find the position vector of P .	[3]
(ii)	Find the distance <i>OP</i> .	[1]
(iii)	Determine whether OP is perpendicular to AB . Justify your answer.	[2]

402. 9709_s17_qp_13 Q: 6
The line $3y + x = 25$ is a normal to the curve $y = x^2 - 5x + k$. Find the value of the constant k . [6]

CHAPTER 7. DIFFERENTIATION

582

403. 9709_w17_qp_11 Q: 1
A curve has equation $y = 2x^{\frac{3}{2}} - 3x - 4x^{\frac{1}{2}} + 4$. Find the equation of the tangent to the curve at the point (4, 0).

404. 9709_w17_qp_11 Q: 2	
A function f is defined by $f: x \mapsto x^3 - x^2 - 8x + 5$ for $x < a$. It is given that f is an increasing Find the largest possible value of the constant a .	g function. [4]

405	9709	w17	an	11	O٠	4
TUU.	0100	WII	un	11	w.	-±

Machines in a factory make cardboard cones of base radius r cm and vertical height h ci	n. The volume,
$V \text{ cm}^3$, of such a cone is given by $V = \frac{1}{3}\pi r^2 h$. The machines produce cones for which	h + r = 18.

(i)	Show that $V = 6\pi r^2 - \frac{1}{3}\pi r^3$.	[1]
(ii)	Given that r can vary, find the non-zero value of r for which V has a stationary that the stationary value is a maximum.	y value and show [4]

406. 9709_w17_qp_11 Q: 8

(a)	Relative to an origin O , the position vectors of two points P and Q are \mathbf{p} and \mathbf{q} respectively. The point R is such that PQR is a straight line with Q the mid-point of PR . Find the position vector of R in terms of \mathbf{p} and \mathbf{q} , simplifying your answer.

٧.	alues of a and b , showing all necessary working.	
		••••
•••		•••••
•••		••••
•••		•••••
•••		••••
•••		••••
		•••••
•••		••••
•••		•••••
•••		•••••
		•••••
•••		•••••
•••		
		• • • • • • • • • • • • • • • • • • • •

407	9709	w17	an	12	Ω	7
407.	3103	WII	ųν	14	ω .	- 1

Points A and B lie on the curve $y = x^2 - 4x + 7$. Point A has coordinates $(4, 7)$ and B is the stationary
point of the curve. The equation of a line L is $y = mx - 2$, where m is a constant.

 ••••••

Find the set of values of m for which L does not meet the curve.	[4

408. 9709_w17_qp_12 Q: 9

The diagram shows a trapezium OABC in which OA is parallel to CB. The position vectors of A and B relative to the origin O are given by $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}$.

(i)	Show that angle OAB is 90° .	[3]
Γhe	e magnitude of \overrightarrow{CB} is three times the magnitude of \overrightarrow{OA} .	
(ii)	Find the position vector of C .	[3]

409. 9709_w17_qp_13 Q: 4
The function f is such that $f(x) = (2x - 1)^{\frac{3}{2}} - 6x$ for $\frac{1}{2} < x < k$, where k is a constant. Find the largest value of k for which f is a decreasing function. [5]

410. 9709_w17_qp_13 Q: 9

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 8 \\ -6 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -10 \\ 3 \\ -13 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}.$$

A fourth point, D, is such that the magnitudes $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ and $|\overrightarrow{CD}|$ are the first, second and third terms respectively of a geometric progression.

\overrightarrow{AB} , $ \overrightarrow{BC} $ and $ \overrightarrow{C} $	<i>2</i> .		[5

	oint D.							ı
	•••••	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	
			· • • • • • • • • • • • • • • • • • • •					
	•••••	•••••			• • • • • • • • • • • • • • • • • • • •			
	•••••	•••••	, 	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••••	
	•••••	•••••			• • • • • • • • • • • • • • • • • • • •			
••••••		•••••						
••••••	••••••	•••••		••••••	•	••••••	•	
	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
••••••	••••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••	••••••
	•••••				•••••			

 $411.\ 9709_w17_qp_13\ Q:\ 11$

The diagram shows the curve $y = (x - 1)^{\frac{1}{2}}$ and points A(1, 0) and B(5, 2) lying on the curve.

(i)	Find the equation of the line AB, giving your answer in the form $y = mx + c$.	[2]
		••••

(ii)	Find, showing all necessary working, the equation of the tangent to the curve which is parallel to AB .

ii)	Find the perpendicular distance between the line AB and the tangent parallel to AB . Give your answer correct to 2 decimal places. [3]

 $412.\ 9709_m16_qp_12\ Q:\ 6$

A vacuum flask (for keeping drinks hot) is modelled as a closed cylinder in which the internal radius is r cm and the internal height is h cm. The volume of the flask is $1000 \, \text{cm}^3$. A flask is most efficient when the total internal surface area, $A \, \text{cm}^2$, is a minimum.

(i) Show that
$$A = 2\pi r^2 + \frac{2000}{r}$$
. [3]

(ii) Given that r can vary, find the value of r, correct to 1 decimal place, for which A has a stationary value and verify that the flask is most efficient when r takes this value. [5]

 $413.\ 9709_m16_qp_12\ Q:\ 7$

The diagram shows a pyramid OABC with a horizontal triangular base OAB and vertical height OC. Angles AOB, BOC and AOC are each right angles. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OB and OC respectively, with OA = 4 units, OB = 2.4 units and OC = 3 units. The point P on CA is such that CP = 3 units.

(i) Show that
$$\overrightarrow{CP} = 2.4\mathbf{i} - 1.8\mathbf{k}$$
. [2]

(ii) Express
$$\overrightarrow{OP}$$
 and \overrightarrow{BP} in terms of i, j and k. [2]

414. 9709_s16_qp_11 Q: 5

A farmer divides a rectangular piece of land into 8 equal-sized rectangular sheep pens as shown in the diagram. Each sheep pen measures x m by y m and is fully enclosed by metal fencing. The farmer uses 480 m of fencing.

(i) Show that the total area of land used for the sheep pens, A m², is given by

$$A = 384x - 9.6x^2. ag{3}$$

(ii) Given that x and y can vary, find the dimensions of each sheep pen for which the value of A is a maximum. (There is no need to verify that the value of A is a maximum.) [3]

415. 9709_s16_qp_11 Q: 8

A curve has equation $y = 3x - \frac{4}{x}$ and passes through the points A(1, -1) and B(4, 11). At each of the points C and D on the curve, the tangent is parallel to AB. Find the equation of the perpendicular bisector of CD.

 $416.\ 9709_s16_qp_11\ Q:\ 10$

Relative to an origin O, the position vectors of points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2\\1\\-2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5\\-1\\k \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2\\6\\-3 \end{pmatrix}$$

respectively, where k is a constant.

- (i) Find the value of k in the case where angle $AOB = 90^{\circ}$. [2]
- (ii) Find the possible values of k for which the lengths of AB and OC are equal. [4]

The point D is such that \overrightarrow{OD} is in the same direction as \overrightarrow{OA} and has magnitude 9 units. The point E is such that \overrightarrow{OE} is in the same direction as \overrightarrow{OC} and has magnitude 14 units.

(iii) Find the magnitude of \overrightarrow{DE} in the form \sqrt{n} where n is an integer. [4]

417. 9709_s16_qp_12 Q: 3

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$$
 and $\overrightarrow{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

The point C is such that $\overrightarrow{AB} = \overrightarrow{BC}$. Find the unit vector in the direction of \overrightarrow{OC} . [4]

 $418.\ 9709_s16_qp_13\ \ Q{:}\ 5$

A curve has equation $y = 8x + (2x - 1)^{-1}$. Find the values of x at which the curve has a stationary point and determine the nature of each stationary point, justifying your answers. [7]

 $419.\ 9709_s16_qp_13\ Q\hbox{:}\ 7$

The point P(x, y) is moving along the curve $y = x^2 - \frac{10}{3}x^{\frac{3}{2}} + 5x$ in such a way that the rate of change of y is constant. Find the values of x at the points at which the rate of change of x is equal to half the rate of change of y.

 $420.\ 9709_s16_qp_13\ Q:\ 9$

The position vectors of A, B and C relative to an origin O are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 5 \\ p \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix},$$

where p is a constant.

- (i) Find the value of p for which the lengths of AB and CB are equal. [4]
- (ii) For the case where p = 1, use a scalar product to find angle ABC. [4]

421. 9709_w16_qp_11 Q: 9

The diagram shows a cuboid OABCDEFG with a horizontal base OABC in which OA = 4 cm and AB = 15 cm. The height OD of the cuboid is 2 cm. The point X on AB is such that AX = 5 cm and the point P on DG is such that DP = p cm, where P is a constant. Unit vectors P is and P are parallel to P on P and P respectively.

(i) Find the possible values of p such that angle
$$OPX = 90^{\circ}$$
. [4]

(ii) For the case where
$$p = 9$$
, find the unit vector in the direction of \overrightarrow{XP} . [2]

(iii) A point
$$Q$$
 lies on the face $CBFG$ and is such that XQ is parallel to AG . Find \overrightarrow{XQ} . [3]

 $422.\ 9709_w16_qp_11\ Q:\ 11$

The point P(3, 5) lies on the curve $y = \frac{1}{x-1} - \frac{9}{x-5}$.

- (i) Find the x-coordinate of the point where the normal to the curve at P intersects the x-axis. [5]
- (ii) Find the x-coordinate of each of the stationary points on the curve and determine the nature of each stationary point, justifying your answers. [6]

 $423.\ 9709_w16_qp_12\ Q{:}\ 7$

The equation of a curve is $y = 2 + \frac{3}{2x - 1}$.

(i) Obtain an expression for
$$\frac{dy}{dx}$$
. [2]

(ii) Explain why the curve has no stationary points. [1]

At the point P on the curve, x = 2.

- (iii) Show that the normal to the curve at P passes through the origin. [4]
- (iv) A point moves along the curve in such a way that its x-coordinate is decreasing at a constant rate of 0.06 units per second. Find the rate of change of the y-coordinate as the point passes through P. [2]

 $424.\ 9709_w16_qp_12\ Q:\ 9$

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ 5 \end{pmatrix}.$$

- (i) Use a scalar product to find angle *AOB*. [4]
- (ii) Find the vector which is in the same direction as \overrightarrow{AC} and of magnitude 15 units. [3]
- (iii) Find the value of the constant p for which $p\overrightarrow{OA} + \overrightarrow{OC}$ is perpendicular to \overrightarrow{OB} . [3]

 $425.\ 9709_w16_qp_13\ Q:\ 4$

The function f is such that $f(x) = x^3 - 3x^2 - 9x + 2$ for x > n, where n is an integer. It is given that f is an increasing function. Find the least possible value of n. [4]

 $426.\ 9709_w16_qp_13\ Q:\ 7$

The diagram shows a triangular pyramid ABCD. It is given that

$$\overrightarrow{AB} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$$
, $\overrightarrow{AC} = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and $\overrightarrow{AD} = \mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$.

- (i) Verify, showing all necessary working, that each of the angles *DAB*, *DAC* and *CAB* is 90°. [3]
- (ii) Find the exact value of the area of the triangle *ABC*, and hence find the exact value of the volume of the pyramid. [4]

[The volume V of a pyramid of base area A and vertical height h is given by $V = \frac{1}{3}Ah$.]

 $427.\ 9709_s15_qp_11\ \ Q:\ 2$

The diagram shows the curve $y = 2x^2$ and the points X(-2, 0) and P(p, 0). The point Q lies on the curve and PQ is parallel to the y-axis.

(i) Express the area,
$$A$$
, of triangle XPQ in terms of p . [2]

The point P moves along the x-axis at a constant rate of 0.02 units per second and Q moves along the curve so that PQ remains parallel to the y-axis.

(ii) Find the rate at which A is increasing when
$$p = 2$$
. [3]

 $428.\ 9709_s15_qp_11\ \ Q:\ 4$

Relative to the origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ -3 \\ 2 \end{pmatrix}$.

(i) Find the cosine of angle AOB.

[3]

The position vector of C is given by $\overrightarrow{OC} = \begin{pmatrix} k \\ -2k \\ 2k-3 \end{pmatrix}$.

- (ii) Given that AB and OC have the same length, find the possible values of k.
- [4]

429. 9709_s15_qp_11 Q: 9

The equation of a curve is $y = x^3 + px^2$, where p is a positive constant.

- (i) Show that the origin is a stationary point on the curve and find the coordinates of the other stationary point in terms of p. [4]
- (ii) Find the nature of each of the stationary points. [3]

Another curve has equation $y = x^3 + px^2 + px$.

(iii) Find the set of values of p for which this curve has no stationary points. [3]

430. 9709_s15_qp_12 Q: 2

In the diagram, AYB is a semicircle with AB as diameter and OAXB is a sector of a circle with centre O and radius r. Angle $AOB = 2\theta$ radians. Find an expression, in terms of r and θ , for the area of the shaded region. [4]

 $431.\ 9709_s15_qp_12\ \ Q:\ 4$

Variables u, x and y are such that u = 2x(y - x) and x + 3y = 12. Express u in terms of x and hence find the stationary value of u. [5]

 $432.\ 9709_s15_qp_12\ Q:\ 9$

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$$
 and $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$.

(i) Use a vector method to find angle AOB. [4]

The point C is such that $\overrightarrow{AB} = \overrightarrow{BC}$.

- (ii) Find the unit vector in the direction of \overrightarrow{OC} . [4]
- (iii) Show that triangle OAC is isosceles. [1]

 $433.\ 9709_s15_qp_13\ Q\hbox{:}\ 5$

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix}.$$

- (i) Show that angle ABC is 90° . [4]
- (ii) Find the area of triangle ABC, giving your answer correct to 1 decimal place. [3]

 $434.\ 9709_s15_qp_13\ Q:\ 8$

The function f is defined by $f(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$ for x > -1.

(i) Find
$$f'(x)$$
. [3]

(ii) State, with a reason, whether f is an increasing function, a decreasing function or neither. [1]

The function g is defined by $g(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$ for x < -1.

(iii) Find the coordinates of the stationary point on the curve y = g(x). [4]

 $435.\ 9709_w15_qp_11\ \ Q:\ 5$

A curve has equation $y = \frac{8}{x} + 2x$.

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [3]

(ii) Find the coordinates of the stationary points and state, with a reason, the nature of each stationary point. [5]

 $436.\ 9709_w15_qp_11\ \ Q:\ 10$

The diagram shows a cuboid OABCPQRS with a horizontal base OABC in which AB = 6 cm and OA = a cm, where a is a constant. The height OP of the cuboid is 10 cm. The point T on BR is such that BT = 8 cm, and M is the mid-point of AT. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OP respectively.

(i) For the case where
$$a = 2$$
, find the unit vector in the direction of \overrightarrow{PM} . [4]

(ii) For the case where angle
$$ATP = \cos^{-1}(\frac{2}{7})$$
, find the value of a. [5]

 $437.9709_{w}15_{qp}12 Q: 3$

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are identical isosceles triangles. Angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is fixed in position with the open top ABCD horizontal. Water is poured into the tank at a constant rate of 200 cm³ s⁻¹. The depth of water, t seconds after filling starts, is h cm (see Fig. 2).

- (i) Show that, when the depth of water in the tank is h cm, the volume, V cm³, of water in the tank is given by $V = (40\sqrt{3})h^2$. [3]
- (ii) Find the rate at which h is increasing when h = 5. [3]

 $438.\ 9709_w15_qp_12\ \ Q:\ 7$

Relative to an origin O, the position vectors of points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ p \\ q \end{pmatrix}.$$

- (i) In the case where ABC is a straight line, find the values of p and q. [4]
- (ii) In the case where angle BAC is 90°, express q in terms of p. [2]
- (iii) In the case where p = 3 and the lengths of AB and AC are equal, find the possible values of q. [3]

 $439.\ 9709_w15_qp_12\ \ Q:\ 9$

The curve y = f(x) has a stationary point at (2, 10) and it is given that $f''(x) = \frac{12}{x^3}$.

- (i) Find f(x). [6]
- (ii) Find the coordinates of the other stationary point. [2]
- (iii) Find the nature of each of the stationary points. [2]

 $440.\ 9709_w15_qp_13\ \ Q:\ 5$

Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} p-6\\2p-6\\1 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 4-2p\\p\\2 \end{pmatrix}$,

where p is a constant.

- (i) For the case where OA is perpendicular to OB, find the value of p. [3]
- (ii) For the case where OAB is a straight line, find the vectors \overrightarrow{OA} and \overrightarrow{OB} . Find also the length of the line OA. [4]