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490 CHAPTER 7. DIFFERENTIATION

349. 9709 _m22 qp_ 12 Q: 11

It is given that a curve has equation y = k(3x — k)~! + 3x, where k is a constant.

(a) Find, in terms of k, the values of x at which there is a stationary point. [4]



491

The function f has a stationary value at x = @ and is defined by

f(x) =4(3x - 4)'1 +3x forxz %
(b) Find the value of a and determine the nature of the stationary value. [3]

(¢) The function g is defined by g(x) = —(3x + 1)~ + 3x for x = 0.

Determine, making your reasoning clear, whether g is an increasing function, a decreasing
function or neither. [2]
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If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.
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350. 9709 _s21_qp_12 Q: 3

The equation of a curve is y = (x — 3)vx+ 1 + 3. The following points lie on the curve. Non-exact
values are rounded to 4 decimal places.

A2, k) B (2.9, 2.8025) C(2.99, 2.9800) D (2.999, 2.9980) E(3,3)
(a) Find k, giving your answer correct to 4 decimal places. [1]

The gradients of BE, CE and DE, rounded to 4 decimal places, are 1.9748, 1.9975 and 1.9997
respectively.

(c¢) State, giving a reason for your answer, what the values of the four gradients suggest about the
gradient of the curve at the point E. [2]
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351. 9709 _s21 _qp_13 Q: 2

(S]]

The function f is defined by f(x) =
function.

%(2)( —1)2 = 2x for % < x < a. Itis given that f is a decreasing

Find the maximum possible value of the constant a. [4]
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352. 9709 w21 qp 12 Q: 9

The volume V m? of a large circular mound of iron ore of radius » m is modelled by the equation
V= %(r— Ll,)2 — 1 for r = 2. Iron ore is added to the mound at a constant rate of 1.5 m> per second.

(a) Find the rate at which the radius of the mound is increasing at the instant when the radius is 5.5 m.

(3]
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(b) Find the volume of the mound at the instant when the radius is increasing at 0.1 m per second.

[3]
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353. 9709 w21 qp 12 Q: 10

k
The function f is defined by f(x) = x> + = + 2 for x > 0.
X
(a) Given that the curve with equation y = f(x) has a stationary point when x = 2, find k. [3]
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(b) Determine the nature of the stationary point. 2]
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354. 9709 w21 qp 13 Q: 3

(a) Express 5y% — 30y + 50 in the form 5(y + a)? + b, where a and b are constants. [2]

(b) The function f is defined by f(x) = x° — 10x> + 50x for x € R.

Determine whether f is an increasing function, a decreasing function or neither. [3]
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355. 9709 m20 qp 12 Q: 1

+x% forx < —1.

1
The function f is defined by f(x) = i

Determine whether f is an increasing function, a decreasing function or neither. [3]
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356. 9709 m20 qp 12 Q: 4

A curve has equation y = x> — 2x — 3. A point is moving along the curve in such a way that at P the

y-coordinate is increasing at 4 units per second and the x-coordinate is increasing at 6 units per second.

Find the x-coordinate of P.

[4]
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357. 9709 20 qp_11 Q: 9

The equation of a curve is y = (3 — 2x)° + 24x.

dy d?y
(a) Find expressions for d_:/c and E\/ [4]
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(b) Find the coordinates of each of the stationary points on the curve. [3]
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358. 9709 520 qp_12 Q: 3

A weather balloon in the shape of a sphere is being inflated by a pump. The volume of the balloon is
increasing at a constant rate of 600 cm? per second. The balloon was empty at the start of pumping.

(a) Find the radius of the balloon after 30 seconds. [2]
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359. 9709 _s20_qp_12 Q: 10

The equation of a curve is y = 54x — (2x — 7).

dy d%
(a) Find d_?c and Eé [4]
(b) Find the coordinates of each of the stationary points on the curve. [3]
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360. 9709 _s20_qp_13 Q: 6

A point P is moving along a curve in such a way that the x-coordinate of P is increasing at a constant

1
rate of 2 units per minute. The equation of the curve is y = (5x — 1)2.

(a) Find the rate at which the y-coordinate is increasing when x = 1. [4]
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(b) Find the value of x when the y-coordinate is increasing at % units per minute. [3]
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361. 9709 w20 qp 11 Q: 3

Air is being pumped into a balloon in the shape of a sphere so that its volume is increasing at a constant

rate of 50cm’ s~

Find the rate at which the radius of the balloon is increasing when the radius is 10 cm. [3]
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362. 9709_ w20 _gp_11 Q: 6
The equation of a curve is y = 2 + V25 — X2

Find the coordinates of the point on the curve at which the gradient is %. [5]
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363. 9709 w20 qp 13 Q: 8

. . 1 1
The equation of acurveis y=2x+ 1 + o1 forx > —3.

2

(a) Find % and i; [3]
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(b) Find the coordinates of the stationary point and determine the nature of the stationary point. [5]
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364. 9709 ml19 qp_ 12 Q: 4

A curve has equation y = (2x — 1)_1 + 2x.

d2v

d y
(i) Find d—l and =5
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(ii) Find the x-coordinates of the stationary points and, showing all necessary working, determine
the nature of each stationary point. [4]




514 CHAPTER 7. DIFFERENTIATION

365. 9709 ml19 gp 12 Q: 5

Two vectors, u and v, are such that
q 8
u=(2) and v=(q—1),
6 qz -7

(i) Find the values of ¢ for which u is perpendicular to v. [3]

where g is a constant.
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(ii) Find the angle between u and v when g = 0. [4]




516 CHAPTER 7. DIFFERENTIATION

366. 9709 _s19_qp_11 Q: 7

The diagram shows a three-dimensional shape in which the base OA BC and the upper surface DEFG

are identical horizontal squares. The parallelograms OAED and CBF G both lie in vertical planes.
The point M is the mid-point of AF.

Unit vectors i and j are parallel to OA and OC respectively and the unit vector k is vertically upwards.
The position vectors of A and D are given by 54) = 8i and ED) =3i+ 10k.

(i) Express each of the vectors m and W in terms of i, j and k. [3]
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(ii) Use a scalar product to find angle GMA correct to the nearest degree. [4]
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367. 9709 _s19_qp_12 Q: 8

The position vectors of points A and B, relative to an origin O, are given by

N 6 N 3
0A=(—2) and 03:( k),
-6 -3

where k is a constant.

(i) Find the value of k for which angle AOB is 90°. [2]



519

— =
The point C is such that AC = 2CB.

(iii) In the case where k = 4, find the unit vector in the direction of W [4]
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368. 9709 _s19_qp_12 Q: 9

The curve C, has equation y = x> —4x+7. The curve C, has equation v? = 4x + k, where k is a
constant. The tangent to C, at the point where x = 3 is also the tangent to C, at the point P. Find the
value of k and the coordinates of P. [8]
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522 CHAPTER 7. DIFFERENTIATION

369. 9709 _s19_qp_13 Q: 6

A 1 8 B

The diagram shows a solid figure ABCDEF in which the horizontal base ABC is a triangle right-angled
at A. The lengths of AB and AC are 8 units and 4 units respectively and M is the mid-point of AB.
The point D is 7 units vertically above A. Triangle DEF lies in a horizontal plane with DE, DF and
FE parallel to AB, AC and CB respectively and N is the mid-point of F'E. The lengths of DE and DF

are 4 units and 2 units respectively. Unit vectors i, j and Kk are parallel to@, R and E respectively.

(1) Find W in terms of i, j and k. [1]
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(iv) Use a scalar product to find angle FMN. [4]




524 CHAPTER 7. DIFFERENTIATION

370. 9709 _s19_qp_13 Q: 8

dv
A curve is such that a‘ = 3x% + ax + b. The curve has stationary points at (-1, 2) and (3, k). Find

the values of the constants «, b and k. [8]
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526 CHAPTER 7. DIFFERENTIATION

371. 9709 w19 qp 11 Q: 2

An increasing function, f, is defined for x > n, where n is an integer. It is given that f’(x) = x> — 6x + 8.
Find the least possible value of . [3]
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372. 9709 w19 qp 11 Q: 10

A B

Relative to an origin O, the position vectors of the points A, B, C and D, shown in the diagram, are
given by

m=(‘é), @=(_§), w(;‘) and @(%)

-4 5 5

(i) Show that AB is perpendicular to BC. [3]
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529

373.9709 w19 qp 12 Q: 5

15cm hcm

The diagram shows a solid cone which has a slant height of 15 cm and a vertical height of 2 cm.

(i) Show that the volume, V cm?, of the cone is given by V = %n(ZZSh— h*). [2]

[The volume of a cone of radius » and vertical height / is %nrzh.]
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(ii) Given that & can vary, find the value of 4 for which V has a stationary value. Determine, showing
all necessary working, the nature of this stationary value. [5]




374. 9709 w19 qp 12 Q: 7

The diagram shows a three-dimensional shape OABCDEFG. The base OABC and the upper surface

DEFG are identical horizontal rectangles. The parallelograms OAED and CBFG both lie in vertical

planes. Points P and Q are the mid-points of OD and GF respectively. Unit vectors i and j are parallel
—

—
to OA and OC respectively and the unit vector k is vertically upwards. The position vectors of A, C
and D are given by OA = 6i, OC = 8j and OD = 2i + 10k.

—
(i) Express each of the vectors ﬁ and PQ in terms of i, j and k. [4]

531
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(ii) Determine whether P is nearer to Q or to B. [2]
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375. 9709 w19 qp_ 13 Q: 3

The equation of a curve is y = x> + x> — 8x+ 7. The curve has no stationary points in the interval
a < x < b. Find the least possible value of @ and the greatest possible value of b. [4]




534 CHAPTER 7. DIFFERENTIATION

376. 9709 w19 qp 13 Q: 5

Acm 4xcm

2xcm

The dimensions of a cuboid are x cm, 2x ¢cm and 4x cm, as shown in the diagram.
(i) Show that the surface area S cm? and the volume V cm? are connected by the relation

S =7V, [3]
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(if) When the volume of the cuboid is 1000 cm? the surface area is increasing at 2 cm? 57!, Find the
rate of increase of the volume at this instant. [4]
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377.9709 w19 qp_ 13 Q: 10

Relative to an origin O, the position vectors of the points A, B and X are given by

(-8 _, (10 ., (-2
OA=|-4|, OB=[ 2| and OX=|-2].

2 11 5

1) FindH( and show that AXB is a straight line. [3]
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1
The position vector of a point C is given by OC = ( -8 )
3

(ii) Show that CX is perpendicular to AX. [3]
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378.9709 ml18 qp 12 Q: 7

o U=

Q

7 A

Fig. 1 Fig. 2

Fig. I shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been
removed, leaving a 5-sided polygon OABCD. The sides OA, AB, BC and DO have lengths of 7 units,
3 units, 3 units and 2 units respectively. Fig.2 shows the polygon OABCD forming the horizontal
base of a pyramid in which the point E is 8 units vertically above D. Unit vectors i, j and k are parallel
to OA, OD and DE respectively.

(1) Find @ and the length of CE. [3]
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(ii) Use a scalar product to find angle ECA, giving your answer in the form cos™! (f—n), where m

and n are integers. [5]




540 CHAPTER 7. DIFFERENTIATION

379.9709_ml18 gp 12 Q: 8
3
A curve has equation y = %xz —4x? + 8x.

(i) Find the x-coordinates of the stationary points. [5]



(ii)
Find ﬁ
dx?’
[1]

541
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380. 9709 m18 qp 12 Q: 10

Functions f and g are defined by

8
f(x) = —2+2 for x > 2,

8

g(x) = —2+2 for2 <x<4.

(i) (a) State the range of the function f.

CHAPTER 7. DIFFERENTIATION
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(iii) Find the set of values of x satisfying the inequality 6f’(x) + 2f~!(x) - 5 < 0. [6]




544 CHAPTER 7. DIFFERENTIATION
381. 9709 s18 qp 11 Q: 2

A point is moving along the curve y = 2x + — in such a way that the x-coordinate is increasing at a
X

constant rate of 0.02 units per second. Find the rate of change of the y-coordinate when x = 1. [4]
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382. 9709 _s18_qp_11 Q: 7

Relative to an origin O, the position vectors of the points A, B and C are given by

N 1 ., (-1 . 3
OA=|-3|, oB=( 3| and oOC=[ 1}.
2 5 2

(i) Find AC. (1]
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— —
(iii) Evaluate AB.AC and hence find angle BAC. [4]




383. 9709 _s18 qp_12 Q: 5

The diagram shows a three-dimensional shape. The base QAB is a horizontal triangle in which
angle AOB is 90°. The side OBCD is a rectangle and the side OAD lies in a vertical plane. Unit
vectors i and j are parallel to OA and OB respectively and the unit vector k is vertical. The position

. — — —
vectors of A, B and D are given by OA = 8i, OB = 5j and OD = 2i + 4k.

(i) Express each of the vectors Iﬁ and a in terms of i, j and k. [2]

547
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(ii) Use a scalar product to find angle CAD. [4]
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384. 9709 _s18 qp_13 Q: 8

(i) The tangent to the curve y = x° — 9x? + 24x — 12 at a point A is parallel to the line y = 2 — 3x.
Find the equation of the tangent at A. [6]
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(i) The function f is defined by f(x) = x* — 9x? + 24x — 12 for x > k, where k is a constant. Find the
smallest value of & for f to be an increasing function. [2]




385. 9709 _s18_qp_13 Q: 9

8 A

The diagram shows a pyramid OABCD with a horizontal rectangular base OABC. The sides OA and
AB have lengths of 8 units and 6 units respectively. The point £ on OB is such that OF = 2 units.

The point D of the pyramid is 7 units vertically above E. Unit vectors i, j and k are parallel to OA,
OC and ED respectively.

(i) Show that OF = 1.6i + 1.2j.

551
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386. 9709 w18 qp 11 Q: 8

F
E
D

6 4

4

c
kKl . B
i
3
o2 5 A

The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with
OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and
4 units respectively. Unit vectors i, j and k are parallel to OA, OC and OF respectively.

(i) Find DF. [
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(iii) Use a scalar product to find angle EFD. [4]
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387. 9709 w18 qp 11 Q: 10

A curve has equation y = %(4}( —3)7L. The point A on the curve has coordinates (1, %)

(i) (a) Find and simplify the equation of the normal through A. [5]
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(b) Find the x-coordinate of the point where this normal meets the curve again. [3]

(ii) A point is moving along the curve in such a way that as it passes through A its x-coordinate is
decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinate at A.

[2]




557

388. 9709 w18 qp 12 Q: 3

v
4 y=>5x
[0} R
P
y=x(9-x?)
o - X

The diagram shows part of the curve y = x(9 — x?) and the line y = 5x, intersecting at the origin O and
the point R. Point P lies on the line y = 5x between O and R and the x-coordinate of P is r. Point Q
lies on the curve and PQ is parallel to the y-axis.

(i) Express the length of PQ in terms of ¢, simplifying your answer. [2]
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389. 9709 w18 qp 12 Q: 7

12

-

CHAPTER 7. DIFFERENTIATION

The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius

4 units.

Points A, B and C lie on the circumference of the base such that AB is a diameter and

angle BOC = 90°. Points P, Q and R lie on the upper surface of the cylinder vertically above A, B
and C respectively. The height of the cylinder is 12 units. The mid-point of CR is M and N lies on

BQ with BN = 4 units.

Unit vectors i and j are parallel to OB and OC respectively and the unit vector K is vertically upwards.

Evaluate WW and hence find angle M PN.

[71
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560 CHAPTER 7. DIFFERENTIATION

390. 9709 w18 qp 13 Q: 2

The function f is defined by f(x) = x> + 2x> — 4x + 7 for x > —2. Determine, showing all necessary
working, whether f is an increasing function, a decreasing function or neither. [4]
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391. 9709 w18 qp 13 Q: 6

G F

The diagram shows a solid figure OABCDEFG with a horizontal rectangular base OABC in which
OA = 8 units and AB = 6 units. The rectangle DEFG lies in a horizontal plane and is such that D is
7 units vertically above O and DE is parallel to QA. The sides DE and DG have lengths 4 units and
2 units respectively. Unit vectors i, j and Kk are parallel to OA, OC and OD respectively. Use a scalar

product to find angle OBF, giving your answer in the form cos™! (g) where a and b are integers.

(6]
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392. 9709 ml17 qp 12 Q: 3

The diagram shows a water container in the form of an inverted pyramid, which is such that when the
height of the water level is 4 cm the surface of the water is a square of side %h cm.

(i) Express the volume of water in the container in terms of /. [1]

[The volume of a pyramid having a base area A and vertical height 4 is %Ah.]
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Water is steadily dripping into the container at a constant rate of 20 cm® per minute.

(ii) Find the rate, in cm per minute, at which the water level is rising when the height of the water
level is 10 cm. [4]
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393. 9709 ml17 qp 12 Q: 6

Relative to an origin O, the position vectors of the points A and B are given by

OA=2i+3j+5k and  OB=7i+4j+3k

(i) Use a scalar product to find angle OAB. [5]
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(ii) Find the area of triangle OAB. [2]
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394. 9709 ml17 qp 12 Q: 7

3
2

The function f is defined for x > 0 by f(x) = (dx + 1)2.

(i) Find f’(x) and £ (x). [3]

The first, second and third terms of a geometric progression are respectively £(2), f'(2) and kf”(2).

(ii) Find the value of the constant k. [5]
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395. 9709 ml17 qp 12 Q: 9
The point A (2, 2) lies on the curve y = x% — 2x + 2.

(i) Find the equation of the tangent to the curve at A. [3]

The normal to the curve at A intersects the curve again at B.

(ii) Find the coordinates of B. [4]
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The tangents at A and B intersect each other at C.

(iii) Find the coordinates of C. [4]
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396. 9709 s17_qp 11 Q: 2

Relative to an origin O, the position vectors of points A and B are given by

N 3 N 2
OA:(—6) and OB:(—G),
P -7
and angle AOB = 90°.

(i) Find the value of p. [2]

— —
The point C is such that OC = _%OA.

(ii) Find the unit vector in the direction of R [4]
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397. 9709 _s17_qp_11 Q: 6

The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are
vertical. The height of the prism is # cm and the volume of the prism is 2000 cm?.

(i) Express /2 in terms of x and show that the total surface area of the prism, A cmz, is given by

V3 24000 _,
= —= X .

A -
2T

[3]



(ii) Given that x can vary, find the value of x for which A has a stationary value. [3]

573
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398. 9709 _s17_qp_12 Q: 5

12
A curve has equation y = 3 + T x

(i) Find the equation of the tangent to the curve at the point where the curve crosses the x-axis. [5]
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(ii) A point moves along the curve in such a way that the x-coordinate is increasing at a constant rate
of 0.04 units per second. Find the rate of change of the y-coordinate when x = 4. [2]
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399. 9709 _s17_qp_12 Q: 8

Relative to an origin O, the position vectors of three points A, B and C are given by

OA =3i+pj—2pk, OB=6i+(p+4)j+3k and OC = (p-1)i+2j +qk,

where p and g are constants.

(i) In the case where p = 2, use a scalar product to find angle AOB. [4]



STT

— —
(ii) In the case where AB is parallel to OC, find the values of p and g. [4]
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400. 9709 _s17_qp_12 Q: 9

The equation of a curve is y = 84/x — 2x.

(i) Find the coordinates of the stationary point of the curve. [3]
- . d?y . . . .
(ii) Find an expression for @ and hence, or otherwise, determine the nature of the stationary point.

[2]
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(iii) Find the values of x at which the line y = 6 meets the curve. [3]




580 CHAPTER 7. DIFFERENTIATION

401. 9709 s17_qp 13 Q: 4

Relative to an origin O, the position vectors of points A and B are given by

N 5 N 5
OA:(l) and OB:( 4).

3 -3
. . . 2 13D
The point P lies on AB and is such that AP = AB.
(i) Find the position vector of P. [3]
(ii) Find the distance OP. [1]
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402. 9709 _s17_qp_13 Q: 6

The line 3y + x = 25 is a normal to the curve y = x> — 5x + k. Find the value of the constant k. [6]
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403. 9709 w17 qp 11 Q: 1

3 1
A curve has equation y = 2x2 — 3x — 4x2 + 4. Find the equation of the tangent to the curve at the point
(4, 0). [4]
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404. 9709 w17 qgp_ 11 Q:2

A function f is defined by f: x — x> — x* — 8x+ 5 forx < a. Itis given that f is an increasing function.
Find the largest possible value of the constant 4. [4]




405. 9709 w17 qp 11 Q: 4

Machines in a factory make cardboard cones of base radius » cm and vertical height 2 cm. The volume,
Vem?®, of such a cone is given by V = %nrzh. The machines produce cones for which /2 + r = 18.

(i) Show that V = 6xr2 — 1xr’. [1

(ii) Given that r can vary, find the non-zero value of r for which V has a stationary value and show
that the stationary value is a maximum. [4]

585
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587
406. 9709 w17 qp_11 Q: 8

(a) Relative to an origin O, the position vectors of two points P and Q are p and q respectively. The

point R is such that POR is a straight line with Q the mid-point of PR. Find the position vector
of R in terms of p and q, simplifying your answer. [3]
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(b) The vector 6i + aj + bk has magnitude 21 and is perpendicular to 3i + 2j + 2K. Find the possible
values of a and b, showing all necessary working. [6]
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407. 9709 w17 _qp 12 Q: 7

Points A and B lie on the curve y = x*> — 4x + 7. Point A has coordinates (4, 7) and B is the stationary
point of the curve. The equation of a line L is y = mx — 2, where m is a constant.

(i) In the case where L passes through the mid-point of AB, find the value of m. [4]
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(1i) Find the set of values of m for which L does not meet the curve. [4]




408. 9709 _wl7_qp_12 Q: 9

C

The diagram shows a trapezium OABC in which OA is parallel to CB. The position vectors of A and

N 2 N 6
B relative to the origin O are given by OA = ( -2 ) and OB = ( 1 )
-1 1
(i) Show that angle OAB is 90°. [3]

— —
The magnitude of CB is three times the magnitude of OA.

(ii) Find the position vector of C. [3]

591
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(iii) Find the exact area of the trapezium OABC, giving your answer in the form a4/ b, where a and b
are integers. [3]
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409. 9709 w17 qp 13 Q: 4

(1)

The function fis such that f(x) = (2x - 1)2 — 6x for % < x < k, where k is a constant. Find the largest
value of k for which f is a decreasing function. [5]
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410. 9709 w17 qp_13 Q: 9
Relative to an origin O, the position vectors of the points A, B and C are given by
8 -10 2
— — —
OA=|-6], OB:( 3) and OC= —3).
5 -13 -1

A fourth point, D, is such that the magnitudes |ﬁ|, |R| and |@| are the first, second and third
terms respectively of a geometric progression.

(i) Find the magnitudes |ﬁ|, |l¥| and |@| [5]
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(ii) Given that D is a point lying on the line through B and C, find the two possible position vectors
of the point D. [4]
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411. 9709 w17 _qgp_13 Q: 11

»
-

bal—

y=(-1
B(5,2)

O A(L,0)

1
The diagram shows the curve y = (x — 1)2 and points A (1, 0) and B (5, 2) lying on the curve.
(i) Find the equation of the line AB, giving your answer in the form y = mx + c. [2]

(ii) Find, showing all necessary working, the equation of the tangent to the curve which is parallel to
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(iii) Find the perpendicular distance between the line AB and the tangent parallel to AB. Give your
answer correct to 2 decimal places. [3]
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A vacuum flask (for keeping drinks hot) is modelled as a closed cylinder in which the internal radius
is 7cm and the internal height is 4 cm. The volume of the flask is 1000cm?. A flask is most efficient
when the total internal surface area, A cm?, is a minimum.

2000
(i) Show that A = 27r° + ) (3]
r

(ii) Given that r can vary, find the value of r, correct to 1 decimal place, for which A has a stationary
value and verify that the flask is most efficient when r takes this value. [5]
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The diagram shows a pyramid OABC with a horizontal triangular base OAB and vertical height OC.
Angles AOB, BOC and AOC are each right angles. Unit vectors i, j and k are parallel to OA, OB and
OC respectively, with OA = 4 units, OB = 2.4 units and OC = 3 units. The point P on CA is such
that CP = 3 units.

(i) Show that E’) =2.4i-1.8k. [2]
(ii) Express E’) and ﬁ interms of i, j and k. [2]

(iii) Use a scalar product to find angle BPC. [4]




600 CHAPTER 7. DIFFERENTIATION
414. 9709 s16_qp 11 Q: 5

- XM -

ym

A farmer divides a rectangular piece of land into 8 equal-sized rectangular sheep pens as shown in the
diagram. Each sheep pen measures x m by ym and is fully enclosed by metal fencing. The farmer
uses 480 m of fencing.

(i) Show that the total area of land used for the sheep pens, A m?, is given by

A = 384x - 9.6x°. [3]

(ii) Given that x and y can vary, find the dimensions of each sheep pen for which the value of A is a
maximum. (There is no need to verify that the value of A is a maximum.) [3]
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4
A curve has equation y = 3x — — and passes through the points A (1, —1) and B (4, 11). At each of
X

the points C and D on the curve, the tangent is parallel to AB. Find the equation of the perpendicular
bisector of CD. [7]
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Relative to an origin O, the position vectors of points A, B and C are given by
2 5 2
OA=( 1|, OB=|-1]| and OC=| 6
-2 k -3

respectively, where k is a constant.
(i) Find the value of k in the case where angle AOB = 90°. [2]

(ii) Find the possible values of k for which the lengths of AB and OC are equal. [4]

The point D is such that OD is in the same direction as OA and has magnitude 9 units. The point E

— —
is such that OF is in the same direction as OC and has magnitude 14 units.

(iii) Find the magnitude of ﬁ in the form /n where 7 is an integer. [4]
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Relative to an origin O, the position vectors of points A and B are given by
— —
OA =2i-5j—-2k and OB =4i-4j+2k.

— — —
The point C is such that AB = BC. Find the unit vector in the direction of OC. [4]
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A curve has equation y = 8x + (2x — 1)™'. Find the values of x at which the curve has a stationary
point and determine the nature of each stationary point, justifying your answers. [7]
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3 .
X2+ 5x in such a way that the rate of change

of y is constant. Find the values of x at the points at which the rate of change of x is equal to half the
rate of change of y. [7]

The point P (x, y) is moving along the curve y = x? — 10
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The position vectors of A, B and C relative to an origin O are given by
2 1 5
— — —
OA:( 3), OB:(S) and OC:(O),
-4 p 2

(i) Find the value of p for which the lengths of AB and CB are equal. [4]

where p is a constant.

(ii) For the case where p = 1, use a scalar product to find angle ABC. [4]
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2cm

The diagram shows a cuboid OABCDEF G with a horizontal base OABC in which OA = 4 cm and
AB = 15cm. The height OD of the cuboid is 2cm. The point X on AB is such that AX = 5 cm and the
point P on DG is such that DP = p cm, where p is a constant. Unit vectors i, j and k are parallel to
OA, OC and OD respectively.

(i) Find the possible values of p such that angle OPX = 90°. [4]
(ii) For the case where p = 9, find the unit vector in the direction of )ﬁ” [2]

(iif) A point Q lies on the face CBF G and is such that XQ is parallel to AG. Find X_Q) [3]
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. . 1
The point P (3, 5) lies on the curve y = —— — ——.
x-1 x-5

(i) Find the x-coordinate of the point where the normal to the curve at P intersects the x-axis. [5]

(ii) Find the x-coordinate of each of the stationary points on the curve and determine the nature of
each stationary point, justifying your answers. [6]
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The equation of acurveis y = 2 +

2x-1°
(i) Obtain an expression for j—i [2]
(ii) Explain why the curve has no stationary points. [1]
At the point P on the curve, x = 2.
(iili) Show that the normal to the curve at P passes through the origin. [4]

(iv) A point moves along the curve in such a way that its x-coordinate is decreasing at a constant

rate of (.06 units per second. Find the rate of change of the y-coordinate as the point passes
through P. [2]
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Relative to an origin O, the position vectors of the points A, B and C are given by

2 -2 2
— — —
0A=(—2), OBz( 3) and 0C=(6).

-1 6 5
(i) Use a scalar product to find angle AOB. [4]
(ii) Find the vector which is in the same direction as A_C)’ and of magnitude 15 units. [3]

(iii) Find the value of the constant p for which pai +0C is perpendicular to OB. [3]
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The function f is such that f(x) = x> = 3x*> —=9x + 2 for x > n, where n is an integer. It is given that f is
an increasing function. Find the least possible value of n. [4]
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A B

The diagram shows a triangular pyramid ABCD. It is given that

— — —
AB=3i+j+k, AC=i-2j—-k and AD=i+4j-7k.

(i) Verify, showing all necessary working, that each of the angles DAB, DAC and CAB is 90°. [3]

(ii) Find the exact value of the area of the triangle ABC, and hence find the exact value of the volume
of the pyramid. [4]

[The volume V of a pyramid of base area A and vertical height % is given by V = %Ah.]
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427.9709_s15_qp_11 Q: 2

P =

X (-2, 0) (@) P(p, 0)

The diagram shows the curve y = 2x” and the points X (=2, 0) and P (p. 0). The point Q lies on the
curve and PQ is parallel to the y-axis.

(i) Express the area, A, of triangle X PQ in terms of p. [2]

The point P moves along the x-axis at a constant rate of 0.02 units per second and Q moves along the
curve so that PQ remains parallel to the y-axis.

(ii) Find the rate at which A is increasing when p = 2. [3]
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428. 9709 s15 qp 11 Q: 4
Relative to the origin O, the position vectors of points A and B are given by
3 6
ﬁ:( 0) and 79):(—3).
-4 2
(i) Find the cosine of angle AOB.
k
—
The position vector of C is given by OC = ( -2k )
2k -3

(ii) Given that AB and OC have the same length, find the possible values of £.

[3]

(4]




615

429. 9709 s15 qp 11 Q: 9
The equation of a curve is y = x° + px?, where p is a positive constant.

(i) Show that the origin is a stationary point on the curve and find the coordinates of the other
stationary point in terms of p. [4]

(ii) Find the nature of each of the stationary points. [3]
Another curve has equation y = x° + px* + px.

(iii) Find the set of values of p for which this curve has no stationary points. [3]
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430. 9709 s15_qp 12 Q: 2

(0] 20rad X Y

B

In the diagram, AY B is a semicircle with AB as diameter and OAXB is a sector of a circle with centre
O and radius r. Angle AOB = 20 radians. Find an expression, in terms of r and 6, for the area of the
shaded region. [4]
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Variables #, x and y are such that # = 2x(y — x) and x + 3y = 12. Express # in terms of x and hence
find the stationary value of . [5]
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Relative to an origin O, the position vectors of points A and B are given by
OA=2i+4j+4k and OB =3i+j+4k.
(i) Use a vector method to find angle AOB. [4]
The point C is such that AB = BC.

(ii) Find the unit vector in the direction of ﬁ [4]

(iii) Show that triangle OAC is isosceles. [1]




619

433.9709 s15 _qp 13 Q: 5
Relative to an origin O, the position vectors of the points A, B and C are given by
3 5 6
@i:(z : @:(—1 and 7:(1 .
-3 -2 2

(i) Show that angle ABC is 90°. (4]

(ii) Find the area of triangle ABC, giving your answer correct to 1 decimal place. [3]
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1
The function f is defined by f(x) = —

+ ——— forx > —1.
x+1 (x+1)

(i) Find f'(x). (3]

(i) State, with a reason, whether f is an increasing function, a decreasing function or neither.  [1]

1
The function g is defined by g(x) = ——

+———— forx < —1.
x+1 (x+1)?

(iii) Find the coordinates of the stationary point on the curve y = g(x). [4]
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8
A curve has equation y = < + 2x.

d d?
Y and —y

(i) Find P 2

621

131

(ii) Find the coordinates of the stationary points and state, with a reason, the nature of each stationary

point.

[51
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S
R
|
|
' T
|
P | Q
|
|
: 8cm
|
10cm : M
C Y
L7 B
’
e
kTJ s 6cm

O i acm A

The diagram shows a cuboid OABCPQRS with a horizontal base OABC in which AB = 6 cm and
OA = a cm, where a is a constant. The height OP of the cuboid is 10 cm. The point 7 on BR is such
that BT = 8 cm, and M is the mid-point of AT. Unit vectors i, j and k are parallel to OA, OC and OP
respectively.

(i) For the case where a = 2, find the unit vector in the direction of m . [4]

(ii) For the case where angle ATP = cos™' (%), find the value of a. [5]
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20 ¢

30° 30°
hcm

E E
Fig. 1 Fig. 2

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are
identical isosceles triangles. Angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is
fixed in position with the open top ABCD horizontal. Water is poured into the tank at a constant rate
of 200cm®s™!. The depth of water, # seconds after filling starts, is 4 cm (see Fig. 2).

(i) Show that, when the depth of water in the tank is 4 cm, the volume, V em?, of water in the tank
is given by V = (40v3)h>. [3]

(ii) Find the rate at which 4 is increasing when /2 = 5. [3]
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Relative to an origin O, the position vectors of points A, B and C are given by

m:(g), @:(_ﬁ) and 7:(3).

-3 2 q
(i) Inthe case where ABC is a straight line, find the values of p and g. [4]
(ii) In the case where angle BAC is 90°, express ¢ in terms of p. [2]

(iii) In the case where p = 3 and the lengths of AB and AC are equal, find the possible values of .
[3]
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The curve y = f(x) has a stationary point at (2, 10) and it is given that f”(x) = %
x
(i) Find f(x). [6]
(ii) Find the coordinates of the other stationary point. [2]

(iif) Find the nature of each of the stationary points. [2]
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Relative to an origin O, the position vectors of the points A and B are given by
N p-6 N 4-2p
OA=|2p-6 and OB= p R
1 2

where p is a constant.

(i) For the case where OA is perpendicular to OB, find the value of p. [3]

(ii) For the case where OAB is a straight line, find the vectors OA and OB. Find also the length of
the line OA. [4]




