TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

Chapter 2

Functions

13. 9	0709_m22_qp_12 Q: 5
(a)	Express $2x^2 - 8x + 14$ in the form $2[(x-a)^2 + b]$. [2]
Гhе	functions f and g are defined by
	$f(x) = x^2$ for $x \in \mathbb{R}$,
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$
	y = g(x), making clear the order in which the transformations are applied. [4]

14. 9709_m22_qp_12 Q: 9

Functions f, g and h are defined as follows:

f: $x \mapsto x - 4x^{\frac{1}{2}} + 1$ for $x \ge 0$, g: $x \mapsto mx^2 + n$ for $x \ge -2$, where m and n are constants, h: $x \mapsto x^{\frac{1}{2}} - 2$ for $x \ge 0$.

a)	Solve the equation $f(x) = 0$, giving your solutions in the form $x = a + b\sqrt{c}$, where a , b and c integers.	c are [4]
		••••

)	Given that $f(x) \equiv gh(x)$, find the values of m and n.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

15. 9709_m21_qp_12 Q: 5

In the diagram, the graph of y = f(x) is shown with solid lines. The graph shown with broken lines is a transformation of y = f(x).

(a) Describe fully the two single transformations of y = f(x) that have been combined to give the

	resulting transformation.	[4]
(b)	State in terms of y , f and x , the equation of the graph shown with broken lines.	[2]

16. 9709_m21_qp_12 Q: 7

Functions f and g are defined as follows:

$$f: x \mapsto x^2 + 2x + 3 \text{ for } x \le -1,$$

 $g: x \mapsto 2x + 1 \text{ for } x \ge -1.$

	 ••••••	
	 •••••	
••••••	 •••••	

(b)	Find an expression for $f^{-1}(x)$.	[2]
(c)	Solve the equation $gf(x) = 13$.	[3]

17. 9709_s21_qp_11 Q: 9

Functions f and g are defined as follows:

$$f(x) = (x-2)^2 - 4 \text{ for } x \ge 2,$$

$$g(x) = ax + 2 \text{ for } x \in \mathbb{R},$$

where a is a constant.

(a)	State the range of f.	[1]
(b)	Find $f^{-1}(x)$.	[2]
(c)	Given that $a = -\frac{5}{3}$, solve the equation $f(x) = g(x)$.	[3]

(d)	Given instead that $ggf^{-1}(12) = 62$, find the possible values of a .	[5]
		•••••

,,	
	2709 s21 qp 12 Q: 2 The graph of $y = f(x)$ is transformed to the graph of $y = 2f(x - 1)$.
 ,	Describe fully the two single transformations which have been combined to give the resulting transformation. [3]
o)	The curve $y = \sin 2x - 5x$ is reflected in the y-axis and then stretched by scale factor $\frac{1}{3}$ in the x-direction.
	Write down the equation of the transformed curve. [2]

	$709_s21_qp_12$ Q: 5 function f is defined by $f(x) = 2x^2 + 3$ for $x \ge 0$.	
	Find and simplify an expression for $ff(x)$. [2]	!]
(b)	Solve the equation $ff(x) = 34x^2 + 19$. [4]	.]
		•
		. .
		. .
		. .
		•

20. 9709_s21_qp_13 Q: 6

Functions f and g are both defined for $x \in \mathbb{R}$ and are given by

$$f(x) = x^2 - 2x + 5,$$

$$g(x) = x^2 + 4x + 13.$$

(a)	By first expressing each of $f(x)$ and $g(x)$ in completed square form, express $g(x)$ in the form $f(x+p)+q$, where p and q are constants. [4]
(b)	Describe fully the transformation which transforms the graph of $y = f(x)$ to the graph of $y = g(x)$. [2]

21. 9709_s21_qp_13 Q: 8

Functions f and g are defined as follows:

f:
$$x \mapsto x^2 - 1$$
 for $x < 0$,
g: $x \mapsto \frac{1}{2x + 1}$ for $x < -\frac{1}{2}$.

)	Solve the equation $fg(x) = 3$.	

(b)	Find an expression for $(fg)^{-1}(x)$.	[3]
		••••••
		••••••

(a)	Express $-3x^2 + 12x + 2$ in the form $-3(x - a)^2 + b$, where a and b are constants.	[2]
		• • • • • • • • • • • • • • • • • • • •
		•••••
	one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$.	
(b)	State the largest possible value of the constant k .	[1]
It is	now given that $k = -1$.	
It is	now given that $k = -1$. State the range of f.	[1]
		[1]
		[1]
		[1]

a)	Find an expression for $\Gamma^{-1}(x)$.	[3]
		••••••
Γhe	e result of translating the graph of $y = f(x)$ by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of $y = g(x)$.	
	e result of translating the graph of $y = f(x)$ by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of $y = g(x)$.	[31
	e result of translating the graph of $y = f(x)$ by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of $y = g(x)$. Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants.	[3]
		[3]
		[3]
		[3]
		[3]
		[3]
		[3]
		[3]
		[3]
		[3]
		[3]

93	9709	w21	an	19	Ω	9
۷υ.	9109	$W \angle I$	αb	12	ω :	4

23. $9709_{\text{w}21_{\text{qp}}}$ 12 Q: 2 The graph of y = f(x) is transformed to the graph of y = f(2x) - 3.

a)	Describe fully the two single transformations that have been combined to give the transformation.	resulting [3]
		•••••
		••••••
'ne		
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]

24. 9709_w21_qp_12 Q: 3

The function f is defined as follows:

$$f(x) = \frac{x+3}{x-1}$$
 for $x > 1$.

(a)	Find the value of $ff(5)$.	[2]
(b)	Find an expression for $f^{-1}(x)$.	[3]

25. $9709_{\text{w}21_{\text{qp}}}13$ Q: 1 The graph of $y = f(x)$ is transformed to the graph of $y = 3 - f(x)$.			
Describe fully, in the correct order, the two transformations that have been combined.	[4]		
	•••••		
	•••••		
	•••••		
	•••••		
	•••••		
	•••••		
	•••••		

 $26.\ 9709_w21_qp_13\ Q:\ 6$

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4 - x^2}}$ where -2 < x < 2.

(b) Find an expression for f⁻¹(x). [4]

The	function g is defined by $g(x) = 2x$ for $-a < x < a$, where a is a constant.	
	State the maximum possible value of a for which fg can be formed.	[1]
(-)		
(d)	Assuming that fg can be formed, find and simplify an expression for $fg(x)$.	[2]

27. 9709_m20_qp_12 Q: 2			
The graph of $y = f(x)$ is transformed to the graph of $y = 1 + f(\frac{1}{2}x)$.			
Describe fully the two single transformations which have been combined to give the resulting transformation. [4]			

•••••
••••••
· • • • • • • • • • • • • • • • • • • •

For the case where $k = -1$, solve the equation $fg(x) = 193$.					
•••••					•••••
•••••			•••••		•••••
•••••					•••••
•••••		•••••	•••••		•••••
•••••			•••••		•••••
					•••••
•••••					•••••
					•••••
State	the largest value of k poss	ible for the compo	sition fg to be de	fined.	

29. 9709_s20_qp_11 Q: 6

Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto \frac{1}{2}x - a,$$

 $g: x \mapsto 3x + b,$

where a and b are constants.

(a) (Given that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b .	[4
_		
•		••••••
•		
•		
_		
•		••••••
	Using these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, we constants.	where c and d are [2]
•		
•		

30. 9709_s20_qp_12 Q: 5

The function f is defined for $x \in \mathbb{R}$ by

 $f: x \mapsto a - 2x$,

where a is a constant.

(a)	Express $ff(x)$ and $f^{-1}(x)$ in terms of a and x .	[4]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a .	[2]
		•••

 $31.\ 9709_s20_qp_13\ Q:\ 3$

In each of parts (a), (b) and (c), the graph shown with solid lines has equation y = f(x). The graph shown with broken lines is a transformation of y = f(x).

(a)

State, in terms of f, the equation of the graph shown with broken lines.

[1]

.....

(b)

State, in terms of f, the equation of the graph shown with broken lines.

[1]

(c)

State, in terms of f, the equation of the graph shown with broken lines.

[2]

32. 9709_s20_qp_13 Q: 9

The functions f and g are defined by

$$f(x) = x^2 - 4x + 3$$
 for $x > c$, where c is a constant,
 $g(x) = \frac{1}{x+1}$ for $x > -1$.

(a)	Express $f(x)$ in the form $(x-a)^2 + b$.	[2]
It is	given that f is a one-one function.	
(b)	State the smallest possible value of c .	[1]

]	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .				
٠		••••••			
•		•••••			
•		••••••			
٠		•••••			
]	Find an expression for $gf(x)$ and state the range of gf .				
]					
		[3			
		[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[:			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[:			
	Find an expression for $gf(x)$ and state the range of gf .	[3			
	Find an expression for $gf(x)$ and state the range of gf .	[3			

33. 9709_w20_qp_11 Q: 11

The	func	tions	fand	o are	defined	hv
11110	Tunc	uons	1 and	g are	delilled	ν_{ν}

If g are defined by
$$f(x) = x^2 + 3 \quad \text{for } x > 0,$$

$$g(x) = 2x + 1 \quad \text{for } x > -\frac{1}{2}.$$

(a)	Find an expression for $fg(x)$.	[1]
		•••••
		•••••
(b)	Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(c)	Solve the equation $fg(x) - 3 = gf(x)$.	[4]

 $34.\ 9709_w20_qp_12\ Q{:}\ 5$

Functions f and g are defined by

$$f(x) = 4x - 2, \quad \text{for } x \in \mathbb{R},$$

$$g(x) = \frac{4}{x+1}, \quad \text{for } x \in \mathbb{R}, \ x \neq -1.$$

(a)	Find the value of $fg(7)$.	[1]
(b)	Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.	[5]

35. $9709_{20}_{1} = 9709_{1}$ (a) Express $x^2 + 6x + 5$ in the form $(x + a)^2 + b$, where a and b are constants. [2] (b) The curve with equation $y = x^2$ is transformed to the curve with equation $y = x^2 + 6x + 5$. Describe fully the transformation(s) involved. [2]

 $36.\ 9709_w20_qp_13\ Q:\ 6$

The function f is defined by $f(x) = \frac{2x}{3x-1}$ for $x > \frac{1}{3}$.

(a)	Find an expression for $f^{-1}(x)$.	[3]
(b)	Show that $\frac{2}{3} + \frac{2}{3(3x-1)}$ can be expressed as $\frac{2x}{3x-1}$.	[2]
(c)	State the range of f.	[1]

Express $x^2 - 4x + 7$ in the form $(x + a)^2 + b$.	[2
-4x + i in the form (x + u) + v.	[2
	•••••
function f is defined by $f(x) = x^2 - 4x + 7$ for $x < k$, where k is a constant.	
where $x = x + y + y = x + y + y = x + y + y = x + y + y = x + y + y = x + y + y = x + y + y = x + y $	
State the largest value of k for which f is a decreasing function.	[1
value of k is now given to be 1.	
value of k is now given to be 1.	[3
value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
alue of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
alue of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
alue of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
alue of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3

range of gf.	g is defined by $g(x)$	x-1	-	- ' '	
			 		•••••
			 		•••••
			 		•••••
			 		•••••
			 		•••••
			 		•••••
			 	••••••	
			 	••••••	
			 	•••••	
			 		•••••
			 		•••••

38. $9709_s19_qp_11~Q: 5$

The function	f is defined	by $f(x) =$	$-2x^2 + 12x -$	3 for $x \in \mathbb{R}$.
THE IMPOUNDED	I IO GOIIIIOG	0) 1 (00)		0 101 11 - 14.

	Express $-2x^2 + 12x - 3$ in the form $-2(x + a)^2 + b$, where a and b are constants.
•	
•	
•	
•	
•	
•	
•••	
••	
••	
••	
٠	State the greatest value of $f(x)$.
•	
•	
•	
•	

The function g is defined by g(x) = 2x + 5 for $x \in \mathbb{R}$.

Find the values of x for which $gf(x) + 1 = 0$.	[3

39. 9709_s19_qp_12 Q: 7

Functions f and g are defined by

$$f: x \mapsto 3x - 2, \quad x \in \mathbb{R},$$

 $g: x \mapsto \frac{2x + 3}{x - 1}, \quad x \in \mathbb{R}, \ x \neq 1.$

(i)	Obtain expressions for $f^{-1}(x)$ and $g^{-1}(x)$, stating the value of x for which $g^{-1}(x)$ is not defined. [4]

(ii)	Solve the equation $fg(x) = \frac{7}{3}$.	[3]

40	9709	c10	an	13	Ω	4
40.	9109	SIB	uν	10	ω :	4

The function f is defined by $f(x) = \frac{48}{x-1}$ for $3 \le x \le 7$. The function g is defined by g(x) = 2x - 4 for $a \le x \le b$, where a and b are constants.

composite function gf.	[2
now given that the conditions for the formation of gf are satisfied.	
Find an expression for $gf(x)$.	[
	Ĺ
Find an expression for $(gf)^{-1}(x)$.	[2
	••••••

41. 9709_w19_qp_11 Q: 7

Functions f and g are defined by

$$f: x \mapsto \frac{3}{2x+1}$$
 for $x > 0$,
 $g: x \mapsto \frac{1}{x} + 2$ for $x > 0$.

Find the range of f and the range of g.	[3

i)	Find an expression for fg(x), giving your answer in the form $\frac{ax}{bx+c}$, where a, b and c are	integers.
	bx + c	[2]
		•••••
		•••••
		•••••
i)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3
i)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3
)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3
)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3
i)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3]
		[3]
)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3
		[3]
)		
)		
)		
)		
))		
)		

42.	9709_	_w19_	$_{ m qp}_{ m }$	_13	Q: 2

The function g is defined by $g(x) = x^2 - 6x + 7$ for $x > 4$. expression for $g^{-1}(x)$ and state the domain of g^{-1} .	By first completing the	e square, find an [5]

43. 9709_s18_qp_12 Q: 7

The function f is defined by $f: x +$	$\rightarrow 7 - 2x^2 - 12x$ for $x \in \mathbb{R}$	

(i)	Express $7 - 2x^2 - 12x$ in the form $a - 2(x + b)^2$, where a and b are constants.	[2]
		••••
		•••••
(ii)	State the coordinates of the stationary point on the curve $y = f(x)$.	[1]
		•••••

• \		F4:
I)	State the smallest value of k for which g has an inverse.	[1]
		•••••
		• • • • • • • •
		•••••
	For this value of k , find $g^{-1}(x)$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

44. 9709_s18_qp_13 Q: 10

The	one-one function f is defined by $f(x) = (x-2)^2 + 2$ for $x \ge c$, where c is a cons	tant.
(i)	State the smallest possible value of c .	[1]
In pa	arts (ii) and (iii) the value of c is 4.	
(ii)	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3]

iii)	Solve the equation $ff(x) = 51$, giving your answer in the form $a + \sqrt{b}$.	[5]

45. $9709_{\mathbf{w}}18_{\mathbf{q}}p_{\mathbf{1}}11$ Q: 11 (a) The one-one function f is defined by $f(x) = (x-3)^2 - 1$ for x < a, where a is a constant. (i) State the greatest possible value of a. [1] (ii) It is given that a takes this greatest possible value. State the range of f and find an expression for $f^{-1}(x)$. [3]

.....

.....

(b)	The	function g is defined by $g(x) = (x-3)^2$ for $x \ge 0$.
	(i)	Show that $gg(2x)$ can be expressed in the form $(2x-3)^4 + b(2x-3)^2 + c$, where b and c are constants to be found. [2]
	(ii)	Hence expand $gg(2x)$ completely, simplifying your answer. [4]

46. 9709_w18_qp_12 Q: 9

The function f is defined by $f: x \mapsto 2x^2 - 12x + 7$ for $x \in \mathbb{R}$.

)	Express $2x^2 - 12x + 7$ in the form $2(x + a)^2 + b$, where a and b are constants.	[2]
	State the range of f.	[1]

function g is defined by $g: x \mapsto 2x^2 - 12x + 7$ for $x \le k$.	
State the largest value of k for which g has an inverse.	[1]
Given that g has an inverse, find an expression for $g^{-1}(x)$.	[3]
	•••••
	Given that g has an inverse, find an expression for g ⁻¹ (x).

47. 9	709_w18_qp_13 Q: 11
(i)	Express $2x^2 - 12x + 11$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
The	function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$.
(ii)	State the largest value of the constant k for which f is a one-one function. [1]
(iii)	For this value of k find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4]

48. 9709_m17_qp_12 Q: 8

TI	functions	£	1	_		1-61	£	'	_	\sim	1	
i ne	Hinchons		ana	σ	are	aeunea	IOT	X .	~	()	nν	

$$f: x \mapsto 2x^2 + 3,$$
$$g: x \mapsto 3x + 2.$$

(i)	Show that $gf(x) = 6x^2 + 11$ and obtain an unsimplified expression for $fg(x)$.	[2]
		•••••
		•••••
(ii)	Find an expression for $(fg)^{-1}(x)$ and determine the domain of $(fg)^{-1}$.	[5]
		••••

.....

.....

76

49. 9709_s17_qp_11 Q: 9

The function f is defined by $f: x \mapsto \frac{2}{3-2x}$ for $x \in \mathbb{R}, x \neq \frac{3}{2}$.

(i)	Find an expression for $f^{-1}(x)$.	[3]
		•••••
		•••••
		•••••

Find the value of a for which $gf(-1) = 3$.
Find the possible values of a given that the equation $f^{-1}(x) = g^{-1}(x)$ has two equal roots.
That the possible values of a given that the equation $f(x) = g'(x)$ has two equal roots.
That the possible values of a given that the equation 1 (x) = g (x) has two equal roots.
That the possible values of a given that the equation 1 (x) = g (x) has two equal roots.

 $50.\ 9709_s17_qp_13\ Q:\ 9$ (i) Express $9x^2 - 6x + 6$ in the form $(ax + b)^2 + c$, where a, b and c are constants. [3] The function f is defined by $f(x) = 9x^2 - 6x + 6$ for $x \ge p$, where p is a constant. (ii) State the smallest value of p for which f is a one-one function. [1]

.....

iii) F	For this value of p , obtain an expression for $f^{-1}(x)$, and state the domain of f^{-1} .
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
iv) S	State the set of values of q for which the equation $f(x) = q$ has no solution.
•	

51. 9709_w17_qp_11 Q: 9

Functions f and g are defined for x > 3 by

$$f: x \mapsto \frac{1}{x^2 - 9},$$

$$g: x \mapsto 2x - 3.$$

(i)	Find and simplify an expression for $gg(x)$.	[2]
(ii)	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[4]
		•••••••
		•••••••
		• • • • • • • • • • • • • • • • • • • •

.....

.....

F 0	0700	1 77		10	\circ	0
04.	9709	WI/	ab	12	Q:	_

A function f is defined by $f: x \mapsto 4 - 5x$ for $x \in \mathbb{R}$.

(i)	Find an expression for $f^{-1}(x)$ and find the point of intersection of the graphs of $y = f(x)$ and $y = f^{-1}(x)$. [3]
(ii)	Sketch, on the same diagram, the graphs of $y = f(x)$ and $y = f^{-1}(x)$, making clear the relationship between the graphs. [3]

 $53.\ 9709_w17_qp_13\ Q:\ 6$

The functions f and g are defined by

$$f(x) = \frac{2}{x^2 - 1} \text{ for } x < -1,$$

$$g(x) = x^2 + 1 \text{ for } x > 0.$$

(i)	Find an expression for $f^{-1}(x)$.	[3]

i) Solve the equation $gf(x) = 5$.	[4

 $54.\ 9709_m16_qp_12\ Q:\ 8$

The function f is such that $f(x) = a^2x^2 - ax + 3b$ for $x \le \frac{1}{2a}$, where a and b are constants.

- (i) For the case where $f(-2) = 4a^2 b + 8$ and $f(-3) = 7a^2 b + 14$, find the possible values of a and b.
- (ii) For the case where a = 1 and b = -1, find an expression for $f^{-1}(x)$ and give the domain of f^{-1} .

55. 9709_s16_qp_12 Q: 1

Functions f and g are defined by

$$f: x \mapsto 10 - 3x, \quad x \in \mathbb{R},$$

 $g: x \mapsto \frac{10}{3 - 2x}, \quad x \in \mathbb{R}, \ x \neq \frac{3}{2}.$

Solve the equation ff(x) = gf(2).

[3]

 $56.\ 9709_s16_qp_12\ Q:\ 11$

The function f is defined by $f: x \mapsto 6x - x^2 - 5$ for $x \in \mathbb{R}$.

(i) Find the set of values of x for which
$$f(x) \le 3$$
. [3]

(ii) Given that the line
$$y = mx + c$$
 is a tangent to the curve $y = f(x)$, show that $4c = m^2 - 12m + 16$.

The function g is defined by $g: x \mapsto 6x - x^2 - 5$ for $x \ge k$, where k is a constant.

(iii) Express
$$6x - x^2 - 5$$
 in the form $a - (x - b)^2$, where a and b are constants. [2]

(iv) State the smallest value of
$$k$$
 for which g has an inverse. [1]

(v) For this value of
$$k$$
, find an expression for $g^{-1}(x)$. [2]

57. $9709_s16_qp_13$ Q: 10

The function f is such that f(x) = 2x + 3 for $x \ge 0$. The function g is such that $g(x) = ax^2 + b$ for $x \le q$, where a, b and q are constants. The function fg is such that $f(x) = 6x^2 - 21$ for $x \le q$.

- (i) Find the values of a and b. [3]
- (ii) Find the greatest possible value of q. [2]

It is now given that q = -3.

- (iii) Find the range of fg. [1]
- (iv) Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$. [3]

$$58.\ 9709_w16_qp_11\ Q:\ 8$$

The functions f and g are defined by

$$f(x) = \frac{4}{x} - 2 \quad \text{for } x > 0,$$
$$g(x) = \frac{4}{5x + 2} \quad \text{for } x \ge 0.$$

- (i) Find and simplify an expression for fg(x) and state the range of fg. [3]
- (ii) Find an expression for $g^{-1}(x)$ and find the domain of g^{-1} . [5]

59. 9709_w16_qp_13 Q: 8

- (i) Express $4x^2 + 12x + 10$ in the form $(ax + b)^2 + c$, where a, b and c are constants. [3]
- (ii) Functions f and g are both defined for x > 0. It is given that $f(x) = x^2 + 1$ and $fg(x) = 4x^2 + 12x + 10$. Find g(x).
- (iii) Find $(fg)^{-1}(x)$ and give the domain of $(fg)^{-1}$. [4]

60. $9709_s15_qp_12$ Q: 11

The function f is defined by $f: x \mapsto 2x^2 - 6x + 5$ for $x \in \mathbb{R}$.

(i) Find the set of values of p for which the equation f(x) = p has no real roots. [3]

The function g is defined by $g: x \mapsto 2x^2 - 6x + 5$ for $0 \le x \le 4$.

(ii) Express g(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]

(iii) Find the range of g. [2]

The function h is defined by h: $x \mapsto 2x^2 - 6x + 5$ for $k \le x \le 4$, where k is a constant.

(iv) State the smallest value of k for which h has an inverse. [1]

(v) For this value of k, find an expression for $h^{-1}(x)$. [3]

61. 9709_s15_qp_13 Q: 6

The diagram shows the graph of $y = f^{-1}(x)$, where f^{-1} is defined by $f^{-1}(x) = \frac{1 - 5x}{2x}$ for $0 < x \le 2$.

- (i) Find an expression for f(x) and state the domain of f. [5]
- (ii) The function g is defined by $g(x) = \frac{1}{x}$ for $x \ge 1$. Find an expression for $f^{-1}g(x)$, giving your answer in the form ax + b, where a and b are constants to be found. [2]

62. 9709_w15_qp_11 Q: 9

(i) Express
$$-x^2 + 6x - 5$$
 in the form $a(x + b)^2 + c$, where a, b and c are constants. [3]

The function $f: x \mapsto -x^2 + 6x - 5$ is defined for $x \ge m$, where m is a constant.

(ii) State the smallest value of
$$m$$
 for which f is one-one. [1]

(iii) For the case where
$$m = 5$$
, find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4]

63.
$$9709 w15 qp_12 Q: 1$$

Functions f and g are defined by

$$f: x \mapsto 3x + 2, \quad x \in \mathbb{R},$$

 $g: x \mapsto 4x - 12, \quad x \in \mathbb{R}.$

Solve the equation $f^{-1}(x) = gf(x)$. [4]

 $64.\ 9709_w15_qp_12\ Q:\ 8$

The function f is defined, for $x \in \mathbb{R}$, by $f: x \mapsto x^2 + ax + b$, where a and b are constants.

- (i) In the case where a = 6 and b = -8, find the range of f. [3]
- (ii) In the case where a = 5, the roots of the equation f(x) = 0 are k and -2k, where k is a constant. Find the values of b and k.
- (iii) Show that if the equation f(x + a) = a has no real roots, then $a^2 < 4(b a)$. [3]

65. $9709_{w15_{qp}13}$ Q: 8

The function f is defined by f(x) = 3x + 1 for $x \le a$, where a is a constant. The function g is defined by $g(x) = -1 - x^2$ for $x \le -1$.

(i) Find the largest value of a for which the composite function gf can be formed. [2]

For the case where a = -1,

- (ii) solve the equation fg(x) + 14 = 0, [3]
- (iii) find the set of values of x which satisfy the inequality $gf(x) \le -50$. [4]