TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

Chapter 1

Quadratics

1. 9709_m21_qp_12 Q: 2

By using a suitable substitution,	solve t	the equation
-----------------------------------	---------	--------------

[4]	$\frac{4}{(2x-3)^2} - 3 = 0.$	$(2x-3)^2$ –	

2. 9709_s21_qp_11 Q: 6
The equation of a curve is $y = (2k - 3)x^2 - kx - (k - 2)$, where k is a constant. The line $y = 3x - 4$ is a tangent to the curve.
Find the value of k . [5]

3. 97	$109 _s21 _qp _12 \ Q: 1$
(a)	Express $16x^2 - 24x + 10$ in the form $(4x + a)^2 + b$. [2]
(b)	It is given that the equation $16x^2 - 24x + 10 = k$, where k is a constant, has exactly one root.
	Find the value of this root. [2]

4	9709	e20	an	11	\cap	5
4.	9709	820	αb	11	w:	υ

The equation	of a line	is $y =$	mx + c,	where i	m and c	are	constants,	and the	equation	of .	a curve	is
xy = 16.												

	•••••
Given instead that $m = -4$, find the set of values of c for which the line intersection	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv
Given instead that $m = -4$, find the set of values of c for which the line interse wo distinct points.	ects the curv

_	0700	1.0		10	\circ	4
Ъ.	9709	sig	qр	13	Q:	1

The function f is defined by f(x	$(x) = x^2 - 4x + 8 \text{ for } x \in \mathbb{R}.$
----------------------------------	---

(i)	Express $x^2 - 4x + 8$ in the form $(x - a)^2 + b$.	[2]
		• • • • • • •
(ii)	Hence find the set of values of x for which $f(x) < 9$, giving your answer in exact form.	[3]
		• • • • • • • •
		•••••

6. 9709_s18_qp_13 Q: 1	
Express $3x^2 - 12x + 7$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]	J
	•
	•

7. 9709 w18 qp 11 Q: i	7.	9709	w18	αp	11	Q:	1
------------------------	----	------	-----	----	----	----	---

Showing all necessary working, solve the equation $4x - 11x^{\frac{1}{2}} + 6 = 0$.	[3]

8. 9709_m17_qp_12 Q: 1	
Find the set of values of k for which the equation $2x^2 + 3kx + k = 0$ has distinct real roots. [4]	

 $9.\ 9709_s16_qp_11\ Q:\ 6$

- (a) Find the values of the constant m for which the line y = mx is a tangent to the curve $y = 2x^2 4x + 8$.
- (b) The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 + ax + b$, where a and b are constants. The solutions of the equation f(x) = 0 are x = 1 and x = 9. Find
 - (i) the values of a and b, [2]
 - (ii) the coordinates of the vertex of the curve y = f(x). [2]

10. 9709_w16_qp_11 Q: 1

- (i) Express $x^2 + 6x + 2$ in the form $(x + a)^2 + b$, where a and b are constants. [2]
- (ii) Hence, or otherwise, find the set of values of x for which $x^2 + 6x + 2 > 9$. [2]

11. 9709_s15_qp_13 Q: 1

Express $2x^2 - 12x + 7$ in the form $a(x + b)^2 + c$, where a, b and c are constants. [3]

 $12.\ 9709_w15_qp_13\ Q:\ 3$

- (i) Express $3x^2 6x + 2$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
- (ii) The function f, where $f(x) = x^3 3x^2 + 7x 8$, is defined for $x \in \mathbb{R}$. Find f'(x) and state, with a reason, whether f is an increasing function, a decreasing function or neither. [3]