TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

Chapter 5

Trigonometry

Show that	$\frac{\sin\theta + 2\cos\theta}{}$	$-\frac{\sin\theta - 2\cos\theta}{\cos\theta + 2\sin\theta} \equiv$	4	r.	4]
Show that	$\cos \theta - 2 \sin \theta$	$\cos \theta + 2 \sin \theta$	$5\cos^2\theta - 4$	ľ	T J
•••••	•••••				•••
					•••
•••••			•••••		•••
•••••	•••••	•••••	••••••		•••
					•••
					•••
•••••	•••••				•••
•••••			•••••		•••
•••••	•••••	•••••	••••••		•••
					•••
					•••
					•••

Hamas salva the equation	$\sin \theta + 2\cos \theta$	$\sin \theta - 2\cos \theta$	Γ 2 -
Hence solve the equation	$\cos \theta - 2 \sin \theta$	$\frac{\sin \theta - 2\cos \theta}{\cos \theta + 2\sin \theta} = 5 \text{ for } 0^{\circ} < \theta < 180^{\circ}.$	[3]
			•••••
			•••••
			•••••
			••••
			••••
			••••
	••••••		
			•••••
			••••
			••••

181. 9709_m21_qp_12 Q: 3	
Solve the equation $\frac{\tan \theta + 2 \sin \theta}{\tan \theta - 2 \sin \theta} = 3$ for $0^{\circ} < \theta < 180^{\circ}$.	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

182. 9709_s21_qp_11 Q: 4

The diagram shows part of the graph of $y = a \tan(x - b) + c$.

Given that $0 < b < \pi$, state the values of the constants a , b and c .	[3]
	•••••
	•••••

276		CHAPTER 5. TRIGONOME
183.	9709_s21_qp_11 Q: 7	
(a)	Prove the identity $\frac{1 - 2\sin^2\theta}{1 - \sin^2\theta} \equiv 1 - \tan^2\theta$.	[2]

.....

.....

.....

	ce solve the	1	$1 - \sin^2 \theta$	1		, . , .			
	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	
•••••						•••••			
•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••••••••	•••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••
						•••••		•••••	
•••••			•••••			•••••	•••••	•••••	
•••••	••••••	••••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••
•••••			•••••			•••••			•••••
•••••				•••••	•••••	•••••			
						•••••	•••••		
			•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

10	CHAI LER J. TRIGONOM	L 1 1
34.	9709_s21_qp_12 Q: 10	
	$1 \pm \sin r$ $1 = \sin r$ At $\sin r$	[4]

a >	II 1 11 11 11	$1 + \sin x$	$1 - \sin x$	0 1	[0]
(b)	Hence solve the equation	$\frac{1-\sin x}{1-\sin x}$	$\frac{1}{1+\sin x}$	$= 8 \tan x \text{ for } 0 \leqslant x \leqslant \frac{1}{2}\pi.$	[3]
			•••••		
		•••••	•••••		
	•••••		•••••		
			•••••		
		•••••	•••••		
		•••••	•••••		
		• • • • • • • • • • • • • • • • • • • •	•••••		
		• • • • • • • • • • • • • • • • • • • •	•••••		
		••••••	•••••••		
		•••••	••••••		
					•••••
			•••••		

185. 9709_s21_qp_13 Q: 4

(a) Show	that the	equation
(**	, 511011	and the	equation

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k$$

	where k is a constant, may be expressed a	s
	$\frac{1+cc}{1-cc}$	$\frac{\partial s}{\partial s} \frac{x}{x} = k. $ [2]
(b)	Hence express $\cos x$ in terms of k .	[2]
(c)	Hence solve the equation $\frac{\tan x + \sin x}{\tan x - \sin x} = 4$	for $-\pi < x < \pi$. [2]

186. 9709_w21_qp_11 Q: 3

Solve, by factorising, the equation

$6\cos\theta\tan\theta - 3\cos\theta + 4\tan\theta - 2$

for $0^{\circ} \le \theta \le 180^{\circ}$.	[4]

The diagram shows part of the graph of $y = a\cos(bx) + c$.

(a)	Find the values of the positive integers a , b and c .	[3]

(b) For these values of a, b and c, use the given diagram to determine the number of solutions in the interval $0 \le x \le 2\pi$ for each of the following equations.

(i)
$$a\cos(bx) + c = \frac{6}{\pi}x$$
 [1]

.....

(ii)
$$a\cos(bx) + c = 6 - \frac{6}{\pi}x$$
 [1]

188. 9709_w21_qp_12 Q: 1	
Solve the equation $2\cos\theta = 7 - \frac{3}{\cos\theta}$ for $-90^{\circ} < \theta < 90^{\circ}$.	[4]
	••••••
	•••••
	•••••
	•••••
	•••••

189. 9709_w21_qp_13 Q: 7

a)	Show that the equation $\frac{\tan x + \cos x}{\tan x - \cos x} = k$, where k is a constant, can be expressed as	
	$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0.$	[4]
		•••••
		•••••

Hence solve the equation	$\frac{\tan x + \cos x}{\tan x - \cos x} =$	$= 4 \text{ for } 0^{\circ} \le x \le 360^{\circ}.$	[4]
			••••••
			•••••
	•••••		••••••

190. 9709_m20_qp_12 Q: 5

Solve the equation

$\tan\theta + 3\sin\theta + 2$	_ 2
$\tan \theta - 3 \sin \theta + 1$	

for $0^{\circ} \le \theta \le 90^{\circ}$.	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Solve the	e equation 3 ta	$an^2x - 5 tan$.	x - 2 = 0 for	or $0^{\circ} \leqslant x \leqslant 1$.80°.		
	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	
	•••••	•••••••					
•••••		••••••	•••••		••••••		
•••••	•••••	••••••					• • • • • • • • • • • • • • • • • • • •
			•••••		•••••		
	•••••	••••••	•••••	•••••	••••••	•••••	
Find the	set of values	of k for which	ch the equa	tion 3 $\tan^2 x$	$-5 \tan x + k$	= 0 has no s	solutions.
			1				
			•••••		••••••		
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••		
	•••••	••••••	•••••	•••••	•••••	•••••	

				n the interval $0^{\circ} \le x \le 180^{\circ}$, and find these solutions.								
• • • • • • • • • • • • • • • • • • • •												
	•••••					•••••	•••••		•••••		•••••	
••••••	•••••				•••••	•••••	•••••		•••••			
• • • • • • • • • • • • • • • • • • • •	•••••				•••••	•••••	•••••		•••••			
• • • • • • • • • • • • • • • • • • • •	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••		•••••	
•••••	•••••					•••••	•••••		•••••			
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	•••••				• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	••••••		
	•••••					•••••	•••••		•••••			• • • • • • • • • • • • • • • • • • • •
	•••••					•••••	•••••					
	•••••					•••••	•••••					
• • • • • • • • • • • • • • • • • • • •	•••••				• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••			
	•••••					•••••	•••••		•••••	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		
	•••••					•••••	•••••		•••••	••••••		
	•••••	• • • • • • • • • • • • • • • • • • • •				•••••	•••••	•••••	•••••			
	•••••	• • • • • • • • • • • • • • • • • • • •					•••••		•••••	• • • • • • • • • • • • • • • • • • • •		
•••••	•••••				••••••	•••••	•••••					

 $192.\ 9709_s20_qp_11\ \ Q:\ 4$

The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$.

(a)	State the range of f.	[2]

A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x).

(b)	State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ to $y = g(x)$.	2]

(c)	State the equation of the curve which is the reflection of $y = f(x)$ in the x-axis. Give your answer
	in the form $y = a \cos 2x + b$, where a and b are constants. [1]

193. 9709_s20_qp_11 Q: 7

Prove the identity					
	•••••				
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
•••••					
				•••••	
			••••••		
				•••••	
			•••••	•••••	

(b)	Hence solve the equation	$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta}$	$\frac{\theta}{\sin \theta} = \frac{3}{\sin \theta}, \text{ for}$	or $0 \le \theta \le 2\pi$.	[3]

194.	94. 9709_s20_qp_12 Q: 2				
(a)	Express the equation $3\cos\theta = 8\tan\theta$ as a quadratic equation in $\sin\theta$. [3]				
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$. [2]				

195. 9709_s20_qp_12 Q: 7

In the diagram, OAB is a sector of a circle with centre O and radius 2r, and angle $AOB = \frac{1}{6}\pi$ radians. The point C is the midpoint of OA.

(a)	Show that the exact length of BC is $r\sqrt{5-2\sqrt{3}}$.	[2]	

(b)	Find the exact perimeter of the shaded region.	[2]
		•••••
(c)	Find the exact area of the shaded region.	[3]
(c)	Find the exact area of the shaded region.	[3]
(c)	Find the exact area of the shaded region.	[3]
(c)	Find the exact area of the shaded region.	[3]
(c)	Find the exact area of the shaded region.	[3]
(c)		[3]
(c)		

 $196.\ 9709_s20_qp_12\ Q:\ 9$

Functions f and g are such that

$$f(x) = 2 - 3\sin 2x \quad \text{for } 0 \le x \le \pi,$$

$$g(x) = -2f(x) \quad \text{for } 0 \le x \le \pi.$$

(a)	State the ranges of f and g.	[3]
		•••••

The diagram below shows the graph of y = f(x).

(b) Sketch, on this diagram, the graph of y = g(x). [2]

The function h is such that

$$h(x) = g(x + \pi) \text{ for } -\pi \le x \le 0.$$

(c) Describe fully a sequence of transformations that maps the curve y = f(x) on to y = h(x). [3]

296			CHAPTER	t 5. TRIGONO
197.	9709_s20_qp_13 Q: 7			
(a)	Show that $\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta}$	$\equiv \frac{2}{\sin\theta\cos\theta}.$		[4]
		•••••	 	

.....

(b)	Hence solve the equation $\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{6}{\tan \theta}$ for $0^{\circ} < \theta < 180^{\circ}$. [4]

 $198.\ 9709_w20_qp_11\ \ Q:\ 4$

In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$.

Find, in terms of a cosine function, the equation of the upper curve.	[3]
	••••
	•••••
	· · · · · ·
	· · · · · ·
	· • • • • •
	· · · · · ·
	· • • • • •
	· • • • • •
	· · · · · ·
	· • • • • •
	·••••
	· • • • • •

 $199.\ 9709_w20_qp_11\ \ Q:\ 7$ (a) Show that $\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} \equiv 2 \tan^2 \theta$. [3]

......

(b)	Hence solve the equation	$\frac{\sin\theta}{1-\sin\theta} -$	$\frac{\sin\theta}{1+\sin\theta} =$	= 8, for $0^{\circ} < \theta < 180^{\circ}$.	[3]
			•••••		
			•••••		
			•••••		

200. 9709_w20_qp_12 Q: 6

(a)	Prove the identity $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) \equiv \frac{1}{\tan x}$.	[4]
(b)	Hence solve the equation $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2$	$2 \tan^2 x \text{ for } 0^\circ \le x \le 180^\circ.$ [2]

201	9709	w20	an	12	Ω	11
ZUI.	3103	w ZU	uν	14	w.	

A curve has equation $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.

(a)	State the greatest and least values of <i>y</i> .		
		•••••	
		•••••	

(b)	Sketch the graph of $y = 3 \cos 2x + 2$ for $0 \le x \le \pi$.	[2]
------------	---	-----

(c) By considering the straight line y = kx, where k is a constant, state the number of solutions of the equation $3\cos 2x + 2 = kx$ for $0 \le x \le \pi$ in each of the following cases.

(i)) k = -3	[1]
(ii)) k = 1	[1]
(iii)) $k = 3$	[1]

Functions	f.	g a	nd	h	are	defined	for	$x \in$	\mathbb{R}	bv
I will crolle	-, :	_ ~	114		u	acmica	101	<i>-</i>		0,

 $f(x) = 3\cos 2x + 2,$ g(x) = f(2x) + 4, $h(x) = 2f(x + \frac{1}{2}\pi).$

(d)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]
(e)	

304	CHAPTER 5. TRIGONO
202. 9709_w20_qp_13 Q: 3	
Solve the equation $3 \tan^2 \theta + 1 = \frac{2}{\tan^2 \theta}$ for $0^\circ < \theta < 180^\circ$.	[5]

203. 9709_m19_qp_12 Q: 7

(a)	Solve the equation $3\sin^2 2\theta + 8\cos 2\theta = 0$ for $0^{\circ} \le \theta \le 180^{\circ}$.	[5]
		•••••
		••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		,
		· • • • • • • • • • • • • • • • • • • •

(b)

of are constants. The curve intersects the x-axis at $\left(-\frac{1}{6}\pi, 0\right)$ and the y-axis at $(0, \sqrt{3})$. Find the values of a and b .

204. 9709_s19_qp_11 Q: 6

(i)	Prove the identity	$\left(\frac{1}{\cos x} - \tan x\right)$	$^{2} \equiv \frac{1 - \sin x}{1 + \sin x}.$		[4]
			•••••	•••••	

Hence solve the equation $\left(\frac{1}{\cos 2x} - \tan 2x\right)^2 = \frac{1}{3}$ for $0 \le x \le \pi$.	
	•••••
	•••••
	•••••
	•••••
	•••••

205	9709	s19	an	11	O	q
ZUU.	3103	SIB	uν	T T	ω .	IJ

The function f is defined by $f(x) = 2 - 3 \cos x$ for $0 \le x \le 2\pi$.

(i)	State the range of f.	[2]
		•••••
		•••••
(ii)	Sketch the graph of $y = f(x)$.	[2]

) S	State the largest value of p for which g has an inverse.	[1
•		•••••
•		•••••
•		•••••
•		
F	For this value of p , find an expression for $g^{-1}(x)$.	[2
•		•••••
•		• • • • • • • • • • • • • • • • • • • •
•		
•		
•		•••••
•		•••••
•		•••••

206. 9709_s19_qp_12 Q: 4

Angle x is such that $\sin x = a + b$ and $\cos x = a - b$, where a and b are constants
--

Show that $a^2 + b^2$ has a constant value for all values of x.	[3
In the case where $\tan x = 2$, express a in terms of b .	[

207. 9709_s19_qp_12 Q: 6

The equation of a curve is $y = 3\cos 2x$ and the equation of a line is $2y + \frac{3x}{\pi} = 5$.

- (i) State the smallest and largest values of y for both the curve and the line for $0 \le x \le 2\pi$. [3]
- (ii) Sketch, on the same diagram, the graphs of $y = 3\cos 2x$ and $2y + \frac{3x}{\pi} = 5$ for $0 \le x \le 2\pi$. [3]

(iii) State the number of solutions of the equation $6\cos 2x = 5 - \frac{3x}{\pi}$ for $0 \le x \le 2\pi$. [1]

208. 9709_s19_qp_13 Q: 9

The function $f: x \mapsto p \sin^2 2x + q$ is defined for $0 \le x \le \pi$, where p and q are positive constants. The diagram shows the graph of y = f(x).

(i)	In te	erms of p and q , state the range of f.	[2]
	•••••		
	•••••		
	_		•••••
(ii)		e the number of solutions of the following equations.	F13
	(a)	f(x) = p + q	[1]
	(b)	f(x) = q	[1]
	(c)	$f(x) = \frac{1}{2}p + q$	[1]

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

209. 9709_w19_qp_11 Q: 5

(i)	Given that $4 \tan x + 3 \cos x + \frac{1}{\cos x}$	$\frac{1}{x} = 0$, show, wi	thout using a calcu	lator, that $\sin x = -\frac{2}{3}$.	[3]
					•••••
					•••••
					•••••
					•••••
					•••••
					•••••
					•••••

(ii)	Hence, showing all necessary working, solve the equation
	$4\tan(2x - 20^\circ) + 3\cos(2x - 20^\circ) + \frac{1}{\cos(2x - 20^\circ)} = 0$
	for $0^{\circ} \le x \le 180^{\circ}$.

210. 9709_w19_qp_12 Q: 6

working.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

(b) The	function $f: x \mapsto 3\cos^2 x - 2\sin^2 x$ is defined for $0 \le x \le \pi$.
(i)	Express $f(x)$ in the form $a\cos^2 x + b$, where a and b are constants.
(ii)	Find the range of f. [2]

211. 9709_w19_qp_13 Q: 7

(i)	Show that the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ can be expressed as $3x^2 - 4x + 1 = 0$, where $x = \cos^2\theta$.

Hence solve the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ for $0^\circ \le \theta \le 180^\circ$.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

212. 9709_m18_qp_12 Q: 5

	Express the equation $\frac{5+2\tan x}{3+2\tan x} = 1+\tan x$ as a quadratic equation in $\tan x$ and hence solve equation for $0 \le x \le \pi$.

(b)

The diagram shows part of the graph of $y = k \sin(\theta + \alpha)$, where k and α are constants and $0^{\circ} < \alpha < 180^{\circ}$. Find the value of α and the value of k. [2]

213. 9709_s18_qp_11 Q: 4

Prove the identity $(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) \equiv \sin^3 \theta + \cos^3 \theta$.	[3]
	•••••••••••

	Hence solve the equation $(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) = 3\cos^3 \theta$ for $0^\circ \le \theta \le 360^\circ$.
•	
•	
•	
•	
•	
•	

214. 9709_s18_qp_12 Q: 4

Fir	nd the values of	the constant	s a and b .			[3
••••	•••••			•••••		
••••	•••••					
••••	•••••		•	••••••		
••••	•••••					
••••			••••••	•••••		
••••						
 Fir	nd the set of val	ues of k for v	which the equa	f(x) = k ha	us no solution.	[3
Fir	nd the set of val	ues of k for v	which the equa	ation $f(x) = k$ ha	s no solution.	[3
Fir	nd the set of val	ues of k for v	which the equa	ation $f(x) = k$ ha	s no solution.	[3
Fir					s no solution.	
Fir						
Fir						
Fir						
Fir						
Fir						
Fir						
Fir						
Fir						
Fir						
Fir						
Fir						

21	5. 9709_s18_qp_12 Q: 10
i)	Solve the equation $2\cos x + 3\sin x = 0$, for $0^{\circ} \le x \le 360^{\circ}$. [3]

(iii)	Use your answers to parts (i) and (ii) to find the set of values of x for $0^{\circ} \le x \le 360^{\circ}$ for which $2\cos x + 3\sin x > 0$. [2]	

(ii) Sketch, on the same diagram, the graphs of $y = 2\cos x$ and $y = -3\sin x$ for $0^{\circ} \le x \le 360^{\circ}$. [3]

216. 9709_s18_qp_13 Q: 7

Express	$\frac{\tan^2 \theta - 1}{\tan^2 \theta + 1}$ in the	e form $a \sin^2 \theta + b$, where a and b	are constants to be found
	•••••		
••••••	••••••		
	•••••		•••••
	•••••		
	•••••		
•••••	•••••		
Hence	or otherwise and	d showing all necessary working,	solve the equation
,	, ·		1
		$\frac{\tan^2\theta - 1}{\tan^2\theta + 1} = \frac{1}{4}$	
		$\tan^{2}\theta + 1$ 4	
	$^{\circ} \leqslant \theta \leqslant 0^{\circ}$.		
for -90			
for –90			

(b)

The diagram shows the graphs of $y = \sin x$ and $y = 2\cos x$ for $-\pi \le x \le \pi$. The graphs intersect at the points A and B.

(i)	Find the x -coordinate of A .	[2]
		•••••
(ii)	Find the y -coordinate of B .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]

217. 9709_w18_qp_11 Q: 5

(i) Show that the equation	(i)	Show	that th	e equation
----------------------------	-----	------	---------	------------

	$\frac{\cos\theta - 4}{\sin\theta} -$	$\frac{4\sin\theta}{5\cos\theta - 2} = 0$	
may be expressed as $9\cos^2\theta$	$-22\cos\theta$ +	+4 = 0.	[3]

(ii) Hence solve the equation

$\cos \theta - 4$		$4 \sin \theta$	=	Λ
$\sin \theta$	_	$5\cos\theta-2$	_	U

for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]
	••••••
	•••••

[3]

 $218.\ 9709_w18_qp_12\ Q:\ 4$

Functions f and g are defined by

f:
$$x \mapsto 2 - 3\cos x$$
 for $0 \le x \le 2\pi$,
g: $x \mapsto \frac{1}{2}x$ for $0 \le x \le 2\pi$.

(i)	Solve the equation $fg(x) = 1$.	[3]
(ii)	Sketch the graph of $y = f(x)$.	[3]

The diagram shows a triangle ABC in which BC = 20 cm and angle $ABC = 90^{\circ}$. The perpendicular from B to AC meets AC at D and AD = 9 cm. Angle $BCA = \theta^{\circ}$.

(i)	By expressing the length of <i>BD</i> in terms of θ in each of the triangles <i>ABD</i> and <i>DBC</i> , show that $20 \sin^2 \theta = 9 \cos \theta$. [4]

•••••
••••••
•••••

220	0. 9709_w18	_qp_13 Q:	7				
(i)	Show that -	$\frac{\tan\theta+1}{1+\cos\theta}+$	$\frac{\tan\theta - 1}{1 - \cos\theta} \equiv$	$\frac{2(\tan\theta - \cos\theta)}{\sin^2\theta}$	<u>)</u> .		[3]
			••••••				
	•••••						
	•••••		•••••				
		•••••					
		•••••					
	•••••	•••••					
		•••••					
	•••••	•••••					
					•••••		
	•••••	•••••	••••••	•••••	••••••	••••••	
	•••••	•••••	•••••	•••••	•••••		
	•••••	•••••	••••••				
						•••••	

(ii) Hence, showing all necessary working, solve the equation

$\frac{\tan\theta+1}{1+\cos\theta}$	$+\frac{\tan\theta-1}{1-\cos\theta}=0$
for $0^{\circ} < \theta < 90^{\circ}$.	[4]

221. 9709_m17_qp_12 Q: 5

The diagram shows the graphs of $y = \tan x$ and $y = \cos x$ for $0 \le x \le \pi$. The graphs intersect at points A and B.

(i)	Find by calculation the x -coordinate of A .	[4]

.....

222. 9709_s17_qp_11 Q: 3

(i)	Prove the identity	$\frac{1+\cos\theta}{}$ +	$\frac{\sin \theta}{1}$	$=\frac{2}{1-\alpha}$.			[3]
	·	sın 0	$1 + \cos \theta$	sın <i>θ</i>			
						•••••	
						•••••	•••••
		••••••		••••••	•••••		•••••
							•••••
		•••••	•••••	••••••		•••••	•••••
		•••••	••••••	••••••	•••••		•••••
		••••••	•••••	••••••	•••••		
		•••••	••••••	••••••	•••••	•••••	•••••
							•••••
						••••••	

	**	$1 + \cos \theta$	$\sin \theta$	3	. 2 < 0.0	503
(11)	Hence solve the equation	${\sin \theta}$ +	$\frac{1+\cos\theta}{1+\cos\theta} =$	$\frac{1}{\cos\theta}$ for $0^{\circ} \leqslant \theta$	≤ 360°.	[3]
		••••••	•••••			••••••
			•••••			
		•••••	•••••			
		••••••	•••••		••••••••••	
		•••••	•••••			
		••••••	•••••		••••••••••	
		•••••	•••••			
		••••••	••••••			
		•••••		•••••		••••••

223. 9709_s17_qp_11 Q: 5						
The equation of a curve is $y = 2 \cos x$.						
(i) Sketch the graph of $y = 2\cos x$ for $-\pi \le x \le \pi$, stating the coordinates of the point of intersection with the <i>y</i> -axis.						
Points P and Q lie on the curve and have x -coordinates of $\frac{1}{3}\pi$ and π respectively.						
(ii) Find the length of PQ correct to 1 decimal place. [2]						

.....

.....

.....

Show that $h = \frac{5}{9}\pi$ and find the value of k .	[3]

 $224.\ 9709_s17_qp_12\ Q:\ 3$

(i)	Prove the identity $\left(\frac{1}{\cos \theta} - \tan \theta\right)^2 \equiv \frac{1}{1}$	$\frac{-\sin\theta}{+\sin\theta}.$	3]
			••
			••
			••
			••

	solve the ed	()	OS U	, -	-				
		•••••		•••••					
				•••••					
•••••		•••••	••••••	•••••		•••••		•••••	
•••••									
••••••		••••••	••••••	•••••		•••••		•••••	•••••
•••••		•••••	••••••	•••••	••••••	•••••		•••••	•••••
•••••		•••••		•••••					
•••••									
••••••	•••••	••••••		•••••	•••••	•••••	•••••	•••••	•••••
•••••		•••••	••••••	•••••		•••••		•••••	
•••••									
•••••									

225. 9709_s17_qp_12 Q: 10

The	function f is defined by $f(x) = 3\tan(\frac{1}{2}x) - 2$, for $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$.	
(i)	Solve the equation $f(x) + 4 = 0$, giving your answer correct to 1 decimal place.	[3]
		••••••
(ii)	Find an expression for $f^{-1}(x)$ and find the domain of f^{-1} .	[5]
		•••••

(iii) Sketch, on the same diagram, the graphs of y = f(x) and $y = f^{-1}(x)$.

[3]

 $226.\ 9709_s17_qp_13\ Q{:}\ 5$

• `	CI	4 44	. 2 si	$\frac{2\sin\theta + \cos\theta}{\sin\theta + \cos\theta} = 2\tan\theta \text{ may be expressed as } \cos^2\theta = 2\sin^2\theta.$ [3]						F2.1
1)	Snow	that the equa	sir	$\frac{1}{1}\theta + \cos\theta$	$= 2 \tan \theta$	may be ex	tpressed as	$\cos^{2}\theta = 2$	sın⁻θ.	[3]
	•••••	••••••	••••••			••••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••
		••••••	••••••		•••••	••••••		••••••	••••••	••••••
					•••••	••••••			•••••	•••••
		•••••••	••••••		••••••	••••••		••••••	••••••	••••••
										•••••
								•••••		
	•••••		•••••						•••••	
			•••••		••••••				•••••	•••••
								•••••		•••••

ii)	Hence solve the equation	$\frac{2\sin\theta + \cos\theta}{\sin\theta + \cos\theta} =$	$= 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]
		•••••		

227. 9709_w17_qp_11 Q: 7

The diagram shows part of the graph of $y = a + b \sin x$. Find the values of the constants a and b . [2]

(b)	(i)	Show	that t	he	equation
------------	-----	------	--------	----	----------

	$(\sin\theta + 2\cos\theta)(1 + \sin\theta - \cos\theta) = \sin\theta(1 + \cos\theta)$				
	may be expressed as $3\cos^2\theta - 2\cos\theta - 1 = 0$.	[3]			
		•••••			
		••••••			
(ii)	Hence solve the equation				
	$(\sin\theta + 2\cos\theta)(1 + \sin\theta - \cos\theta) = \sin\theta(1 + \cos\theta)$				
	for $-180^{\circ} \le \theta \le 180^{\circ}$.	[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			
		[4]			

228. 9709_w17_qp_12 Q: 5

Show that the equation $\cos 2x(\tan^2 2x + 3) + 3 = 0$ can be expressed as				
$2\cos^2 2x + 3\cos 2x + 1 = 0.$	[3]			

Hence solve the equation $\cos 2x(\tan^2 2x + 3) + 3 = 0$ for $0^\circ \le x \le 180^\circ$.	

229. 9709_w17_qp_12 Q: 6

	function f, defined by $f: x \mapsto a + b \sin x$ for $x \in \mathbb{R}$, is such that $f(\frac{1}{6}\pi) = 0$	(2")
(i)	Find the values of the constants a and b .	[3]
		•••••••••••
• \	F. 1. (1970)	ra1
I)	Evaluate $ff(0)$.	[2]
		•••••••••••
		••••••

The function g is defined by $g: x \mapsto c + d \sin x$ for $x \in \mathbb{R}$. The range of g is given by $-4 \le g(x) \le C$. Find the values of the constants c and d .

 $230.\ 9709_w17_qp_13\ \ Q:\ 5$ (i) Show that the equation $\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0$ may be expressed as $5\cos^2 \theta - \cos \theta - 4 = 0$. [3]

[4	e solve the equation $\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.

 $231.\ 9709_m16_qp_12\ Q:\ 4$

- (a) Solve the equation $\sin^{-1}(3x) = -\frac{1}{3}\pi$, giving the solution in an exact form. [2]
- **(b)** Solve, by factorising, the equation $2\cos\theta\sin\theta 2\cos\theta \sin\theta + 1 = 0$ for $0 \le \theta \le \pi$. [4]

 $232.\ 9709_s16_qp_11\ \ Q:\ 2$

Solve the equation $3 \sin^2 \theta = 4 \cos \theta - 1$ for $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

 $233.\ 9709_s16_qp_11\ Q:\ 11$

The function f is defined by $f: x \mapsto 4\sin x - 1$ for $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$.

- (i) State the range of f. [2]
- (ii) Find the coordinates of the points at which the curve y = f(x) intersects the coordinate axes. [3]
- (iii) Sketch the graph of y = f(x). [2]
- (iv) Obtain an expression for $f^{-1}(x)$, stating both the domain and range of f^{-1} . [4]

 $234.\ 9709_s16_qp_12\ Q\hbox{:}\ 5$

In the diagram, triangle ABC is right-angled at C and M is the mid-point of BC. It is given that angle $ABC = \frac{1}{3}\pi$ radians and angle $BAM = \theta$ radians. Denoting the lengths of BM and MC by x,

(i) find
$$AM$$
 in terms of x , [3]

(ii) show that
$$\theta = \frac{1}{6}\pi - \tan^{-1}\left(\frac{1}{2\sqrt{3}}\right)$$
. [2]

 $235.\ 9709_s16_qp_12\ Q{:}\ 7$

(i) Prove the identity
$$\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} \equiv \frac{4}{\sin\theta\tan\theta}$$
. [4]

(ii) Hence solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\sin\theta\left(\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta}\right) = 3.$$
 [3]

 $236.\ 9709_s16_qp_13\ \ Q:\ 6$

The diagram shows triangle ABC where AB = 5 cm, AC = 4 cm and BC = 3 cm. Three circles with centres at A, B and C have radii 3 cm, 2 cm and 1 cm respectively. The circles touch each other at points E, F and G, lying on AB, AC and BC respectively. Find the area of the shaded region EFG.

[7]

 $237.\ 9709_s16_qp_13\ Q:\ 8$

- (i) Show that $3 \sin x \tan x \cos x + 1 = 0$ can be written as a quadratic equation in $\cos x$ and hence solve the equation $3 \sin x \tan x \cos x + 1 = 0$ for $0 \le x \le \pi$. [5]
- (ii) Find the solutions to the equation $3 \sin 2x \tan 2x \cos 2x + 1 = 0$ for $0 \le x \le \pi$. [3]

238. 9709_w16_qp_11 Q: 6

(i) Show that
$$\cos^4 x = 1 - 2\sin^2 x + \sin^4 x$$
. [1]

(ii) Hence, or otherwise, solve the equation $8 \sin^4 x + \cos^4 x = 2 \cos^2 x$ for $0^\circ \le x \le 360^\circ$. [5]

239. 9709_w16_qp_12 Q: 2

- (i) Express the equation $\sin 2x + 3\cos 2x = 3(\sin 2x \cos 2x)$ in the form $\tan 2x = k$, where k is a constant.
- (ii) Hence solve the equation for $-90^{\circ} \le x \le 90^{\circ}$. [3]

 $240.\ 9709_w16_qp_12\ Q:\ 10$

A function f is defined by $f: x \mapsto 5 - 2\sin 2x$ for $0 \le x \le \pi$.

- (i) Find the range of f. [2]
- (ii) Sketch the graph of y = f(x). [2]
- (iii) Solve the equation f(x) = 6, giving answers in terms of π . [3]

The function g is defined by $g: x \mapsto 5 - 2\sin 2x$ for $0 \le x \le k$, where k is a constant.

- (iv) State the largest value of k for which g has an inverse. [1]
- (v) For this value of k, find an expression for $g^{-1}(x)$. [3]

 $241.\ 9709_w16_qp_13\ \ Q:\ 3$

Showing all necessary working, solve the equation $6 \sin^2 x - 5 \cos^2 x = 2 \sin^2 x + \cos^2 x$ for $0^{\circ} \le x \le 360^{\circ}$. [4]

 $242.\ 9709_s15_qp_11\ \ Q:\ 1$

Given that θ is an obtuse angle measured in radians and that $\sin \theta = k$, find, in terms of k, an expression for

(i)
$$\cos \theta$$
, [1]

(ii)
$$\tan \theta$$
, [2]

(iii)
$$\sin(\theta + \pi)$$
. [1]

 $243.\ 9709_s15_qp_11\ \ Q:\ 8$

The function $f: x \mapsto 5 + 3\cos(\frac{1}{2}x)$ is defined for $0 \le x \le 2\pi$.

- (i) Solve the equation f(x) = 7, giving your answer correct to 2 decimal places. [3]
- (ii) Sketch the graph of y = f(x). [2]
- (iii) Explain why f has an inverse. [1]
- (iv) Obtain an expression for $f^{-1}(x)$. [3]

244. 9709_s15_qp_12 Q: 1

The function f is such that $f'(x) = 5 - 2x^2$ and (3, 5) is a point on the curve y = f(x). Find f(x). [3]

 $245.\ 9709_s15_qp_12\ Q:\ 8$

- (a) The first, second and last terms in an arithmetic progression are 56, 53 and -22 respectively. Find the sum of all the terms in the progression. [4]
- (b) The first, second and third terms of a geometric progression are 2k + 6, 2k and k + 2 respectively, where k is a positive constant.
 - (i) Find the value of k. [3]
 - (ii) Find the sum to infinity of the progression. [2]

 $246.\ 9709_s15_qp_13\ Q:\ 4$

(i) Express the equation $3 \sin \theta = \cos \theta$ in the form $\tan \theta = k$ and solve the equation for $0^{\circ} < \theta < 180^{\circ}$.

(ii) Solve the equation $3\sin^2 2x = \cos^2 2x$ for $0^\circ < x < 180^\circ$. [4]

 $247.\ 9709_w15_qp_11\ \ Q:\ 3$

Solve the equation $\sin^{-1}(4x^4 + x^2) = \frac{1}{6}\pi$.

[4]

248. 9709_w15_qp_11 Q: 4

(i) Show that the equation $\frac{4\cos\theta}{\tan\theta} + 15 = 0$ can be expressed as

$$4\sin^2\theta - 15\sin\theta - 4 = 0.$$
 [3]

(ii) Hence solve the equation $\frac{4\cos\theta}{\tan\theta} + 15 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$. [3]

249. 9709_w15_qp_12 Q: 4

(i) Prove the identity
$$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \frac{1 - \cos x}{1 + \cos x}$$
. [4]

(ii) Hence solve the equation
$$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \frac{2}{5}$$
 for $0 \le x \le 2\pi$. [3]

 $250.\ 9709_w15_qp_13\ Q:\ 7$

(a) Show that the equation $\frac{1}{\cos \theta} + 3 \sin \theta \tan \theta + 4 = 0$ can be expressed as

$$3\cos^2\theta - 4\cos\theta - 4 = 0,$$

and hence solve the equation $\frac{1}{\cos \theta} + 3\sin \theta \tan \theta + 4 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$. [6]

(b)

The diagram shows part of the graph of $y = a \cos x - b$, where a and b are constants. The graph crosses the x-axis at the point $C(\cos^{-1} c, 0)$ and the y-axis at the point D(0, d). Find c and d in terms of a and b.