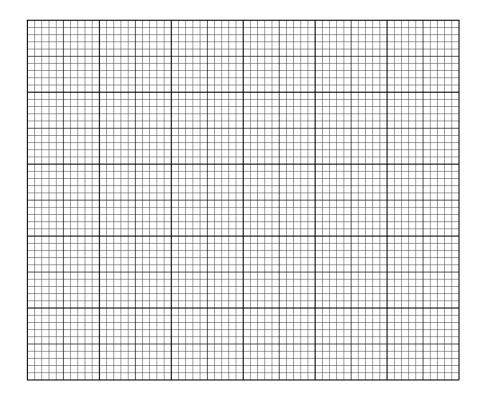
TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 5
[Probability & Statistics 1]

Exam Series: May 2015 – May 2022

Format Type A:
Answers to all questions are provided as an appendix

Chapter 1

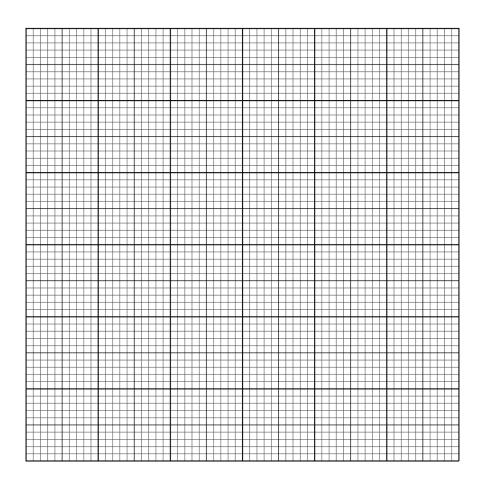

Representation of data

 $1.\ 9709_m22_qp_52\ Q:\ 3$

At a summer camp an arithmetic test is taken by 250 children. The times taken, to the nearest minute, to complete the test were recorded. The results are summarised in the table.

Time taken, in minutes	1 – 30	31 – 45	46 – 65	66 – 75	76 – 100
Frequency	21	30	68	86	45

(a) Draw a histogram to represent this information.


(b)	State which class interval contains the median. [1]
(c)	Given that an estimate of the mean time is 61.05 minutes, state what feature of the distribution accounts for the median and the mean being different. [1]

2. 9709_s22_qp_51 Q: 3

The times taken to travel to college by 2500 students are summarised in the table.

Time taken (t minutes)	0 ≤ <i>t</i> < 20	$20 \leqslant t < 30$	$30 \leqslant t < 40$	40 ≤ <i>t</i> < 60	60 ≤ <i>t</i> < 90
Frequency	440	720	920	300	120

(a) Draw a histogram to represent this information.

From the data, the estimate of the mean value of t is 31.44. (b) Calculate an estimate of the standard deviation of the times taken to travel to college. [3] (c) In which class interval does the upper quartile lie? [1] It was later discovered that the times taken to travel to college by two students were incorrectly recorded. One student's time was recorded as 15 instead of 5 and the other's time was recorded as 65 instead of 75. (d) Without doing any further calculations, state with a reason whether the estimate of the standard deviation in part (b) would be increased, decreased or stay the same.

					_	
3	9709	522	an	52	()·	1

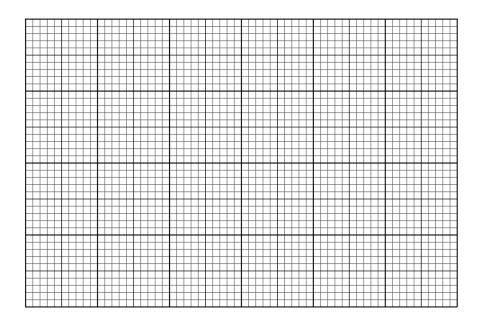
For n values of the variable x, it is given that

$\Sigma(x - 200) = 446$ and $\Sigma x = 684$
--

Find the value of n .	[3]

 $4.\ 9709_s22_qp_52\ Q\hbox{:}\ 3$

The back-to-back stem-and-leaf diagram shows the diameters, in cm, of 19 cylindrical pipes produced by each of two companies, A and B.


Company A							Co	mpan	y B		
					4	33	1	2	8		
	9	8	3	2	0	34	1	6	8	9	9
8	7	5	4	1	1	35	1	2	2	3	
		9	6	5	2	36	5	6			
			4	3	1	37	0	3	4		
						38	2	8			

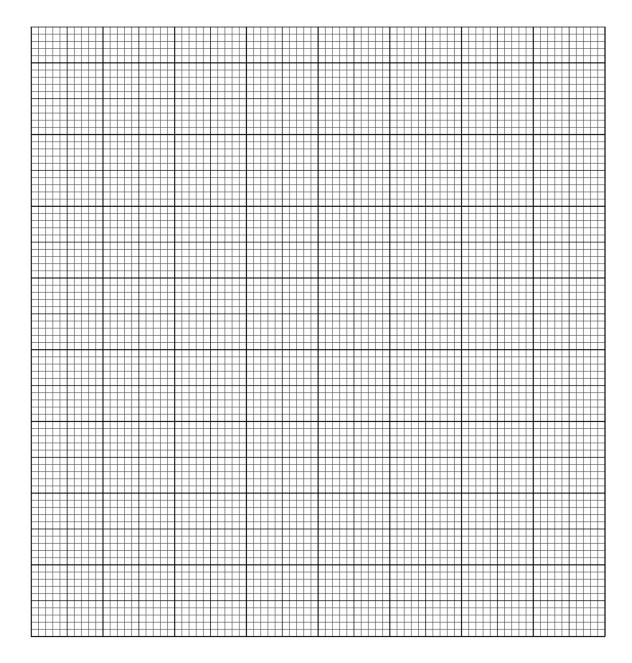
Key: $1 \mid 35 \mid 3$ means the pipe diameter from company A is 0.351 cm and from company B is 0.353 cm.

(a)	Find the median and interquartile range of the pipes produced by company A .	[3]
		•••••

It is given that for the pipes produced by company B the lower quartile, median and upper quartile are $0.346 \,\mathrm{cm}$, $0.352 \,\mathrm{cm}$ and $0.370 \,\mathrm{cm}$ respectively.

(b) Draw box-and-whisker plots for companies A and B on the grid below. [3]

(c)	Make one comparison between the diameters of the pipes produced by companies A and B . [1]


$5.\ 9709_s22_qp_53\ Q:\ 1$

The time taken, *t* minutes, to complete a puzzle was recorded for each of 150 students. These times are summarised in the table.

Time taken (t minutes)	<i>t</i> ≤ 25	<i>t</i> ≤ 50	<i>t</i> ≤ 75	<i>t</i> ≤ 100	<i>t</i> ≤ 150	<i>t</i> ≤ 200
Cumulative frequency	16	44	86	104	132	150

(a) Draw a cumulative frequency graph to illustrate the data.

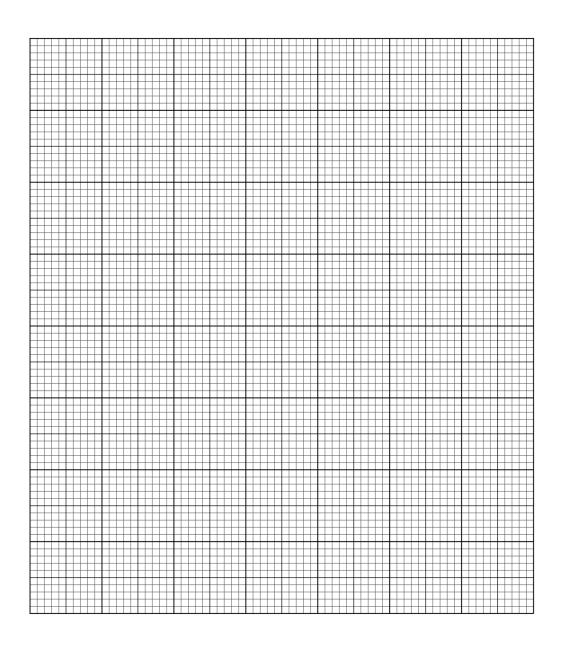
[2]

(b)	Use your graph to estimate the 20th percentile of the data.	[1]

6. 9709_s22_qp_53 Q: 2

Twenty children were asked	to estimate the height	of a particular tree.	Their estimates,	in metres,	were
as follows.					

4.1 4.2 4.4 4.5 4.6 4.8 5.0 5.2 5.3 5.4 5.5 5.8 6.0 6.2 6.3 6.4 6.6 6.8 6.9 19.4

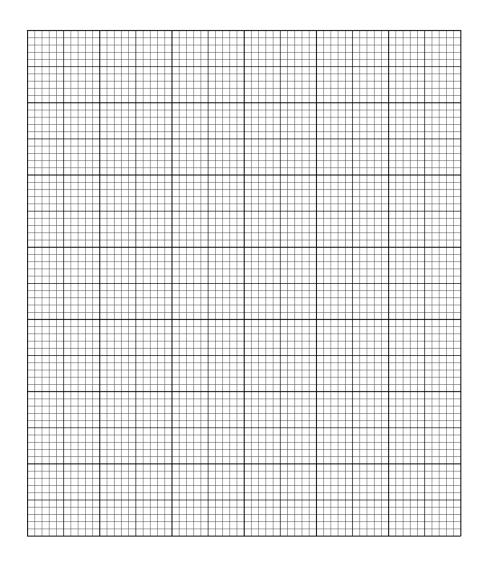

(a)	Find the mean of the estimated heights.	[1]
		••••
		••••
		••••
		••••
		••••
(b)	Find the median of the estimated heights.	[1]
		••••
		••••
(c)	Give a reason why the median is likely to be more suitable than the mean as a measure of central tendency for this information.	the [1]
		••••
		••••
		••••
		••••

7. $9709_m21_qp_52$ Q: 5

A driver records the distance travelled in each of 150 journeys. These distances, correct to the nearest km, are summarised in the following table.

Distance (km)	0 – 4	5 – 10	11 – 20	21 – 30	31 – 40	41 – 60
Frequency	12	16	32	66	20	4

(a) Draw a cumulative frequency graph to illustrate the data.


(b)	For 30% of these journeys the distance travelled is $d \neq m$ or more.							
	Use your graph to estimate the value of d .	2]						
		••						
		••						
		••						
		••						
		••						
(c)	Calculate an estimate of the mean distance travelled for the 150 journeys.	3]						
		••						
		••						
		••						
		••						
		••						
		••						
		••						
		••						
		••						
		••						
		••						
		••						
		••						

8. 9709_s21_qp_51 Q: 5

The times taken by 200 players to solve a computer puzzle are summarised in the following table.

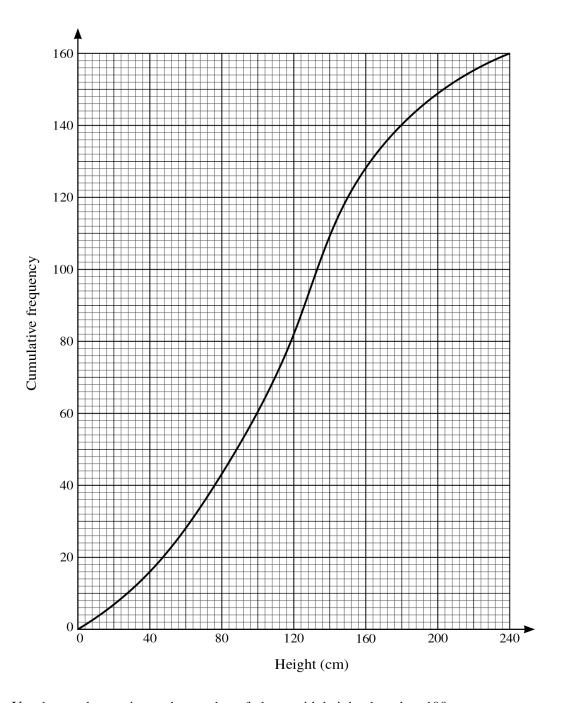
Time (t seconds)	0 ≤ <i>t</i> < 10	10 ≤ <i>t</i> < 20	20 ≤ <i>t</i> < 40	40 ≤ <i>t</i> < 60	60 ≤ <i>t</i> < 100
Number of players	16	54	78	32	20

(a) Draw a histogram to represent this information.

,	•••••		••••••
			•••••
			•••••
Find the greatest	t possible value of t	the interquartile range of these times.	
Find the greatest	t possible value of t	the interquartile range of these times.	
Find the greatest	t possible value of t	the interquartile range of these times.	
Find the greatest	t possible value of t	the interquartile range of these times.	
Find the greatest	t possible value of t	the interquartile range of these times.	
		the interquartile range of these times.	

9. $9709_s21_qp_52$ Q: 7

The heights, in cm, of the 11 basketball players in each of two clubs, the Amazons and the Giants, are shown below.


Amazons	205	198	181	182	190	215	201	178	202	196	184
Giants	175	182	184	187	189	192	193	195	195	195	204

(a)	State an advantage of using a stem-and-leaf diagram compared to a box-and-whisker plot illustrate this information.	to 1]
(b)	Represent the data by drawing a back-to-back stem-and-leaf diagram with Amazons on the left-hand side of the diagram.	he 4]

(c)	Find the interquartile range of the heights of the players in the Amazons.	[2]
		••••••
г		
rou 191	r new players join the Amazons. The mean height of the 15 players in the Am .2 cm. The heights of three of the new players are 180 cm, 185 cm and 190 cm.	iazons is now
		[2]
(a)	Find the height of the fourth new player.	[3]
		••••••
		•••••
		•••••
		•••••
		•••••

10. 9709_s21_qp_53 Q: 1

The heights in cm of 160 sunflower plants were measured. The results are summarised on the following cumulative frequency curve.

a)	Use the graph to estimate the number of plants with heights less than 100 cm.	[1
		•••••
		•••••

Use ti	ne graph to e	stilliate the	ostii pereer		surounon.		
	•••••						
•••••	•••••		••••••	••••••			••••••
••••••			•••••••		•••••		•••••••
••••••	•••••						
				• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
Use tl	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
Use tl	ne graph to e	stimate the	interquartil	e range of th	e heights of th	ese plants.	
Use tl	ne graph to e	stimate the	interquartil	e range of th	e heights of th	ese plants.	
Use the	ne graph to e	stimate the	interquartil	e range of th	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of th	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	
	ne graph to e	stimate the	interquartil	e range of the	e heights of th	ese plants.	

11	9709	c21	an	53	Ω	3
11.	9109	841	uν	JJ	ω :	J

A sports club has a volleyball team and a hockey team. The heights of the 6 members of the volleyball team are summarised by $\Sigma x = 1050$ and $\Sigma x^2 = 193700$, where x is the height of a member in cm. The heights of the 11 members of the hockey team are summarised by $\Sigma y = 1991$ and $\Sigma y^2 = 366400$, where y is the height of a member in cm.

(a)	Find the mean height of all 17 members of the club.	[2]
		,
		••••
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		••••
(b)	Find the standard deviation of the heights of all 17 members of the club.	[3]
		.
		.
		· • • • •
		••••
		· • • • •
		· • • • •

12. 9709_w21_qp_51 Q: 2

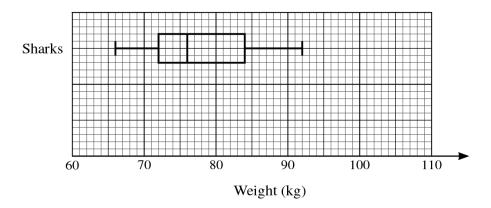
A summary of 40 values of x gives the following information:

$$\Sigma(x-k) = 520, \qquad \Sigma(x-k)^2 = 9640,$$

where k is a constant.

(a)	Given that the mean of these 40 values of x is 34, find the value of k .	[2]
(h)	Find the variance of these 40 values of x .	[2]
(D)	That the variance of these 40 values of x.	[2]

13. $9709_{2} = 21_{2} = 51$ Q: 6


The weights, in kg, of 15 rugby players in the Rebels club and 15 soccer players in the Sharks club are shown below.

Rebels	75	78	79	80	82	82	83	84	85	86	89	93	95	99	102
Sharks	66	68	71	72	74	75	75	76	78	83	83	84	85	86	92

(a) Represent the data by drawing a back-to-back stem-and-leaf diagram with Rebels on the left-hand side of the diagram. [4]

)	[3]
	· • • • •
	· • • • •

A box-and-whisker plot for the Sharks is shown below.

(c) On the same diagram, draw a box-and-whisker plot for the Rebels.)	On the same diagram,	draw a box-and-whisker	plot for the Rebels.	[2	2]
--	---	----------------------	------------------------	----------------------	----	----

(d)	Make one comparison between the weights of the players in the Rebels club and the weights of the players in the Sharks club. [1]

[2]

 $14.\ 9709_w21_qp_52\ Q{:}\ 7$

The distances, x m, travelled to school by 140 children were recorded. The results are summarised in the table below.

Distance, x m	<i>x</i> ≤ 200	<i>x</i> ≤ 300	<i>x</i> ≤ 500	<i>x</i> ≤ 900	<i>x</i> ≤ 1200	<i>x</i> ≤ 1600
Cumulative frequency	16	46	88	122	134	140

(a) On the grid, draw a cumulative frequency graph to represent these results.

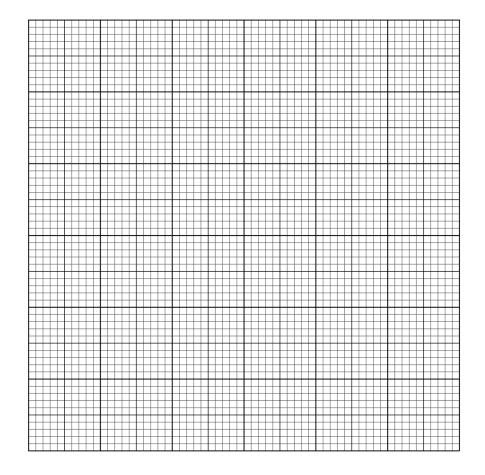
	Use your graph to estimate the interquartile range of the distances.	[2
)	Calculate estimates of the mean and standard deviation of the distances.	[6

15. 9709_w21_qp_53 Q: 2

Lakeview and Riverside are two schools. The pupils at both schools took part in a competition to see how far they could throw a ball. The distances thrown, to the nearest metre, by 11 pupils from each school are shown in the following table.

Lakeview	10	14	19	22	26	27	28	30	32	33	41
Riverside	23	36	21	18	37	25	18	20	24	30	25

(a) Draw a back-to-back stem-and-leaf diagram to represent this information, with Lakeview on the left-hand side. [4]

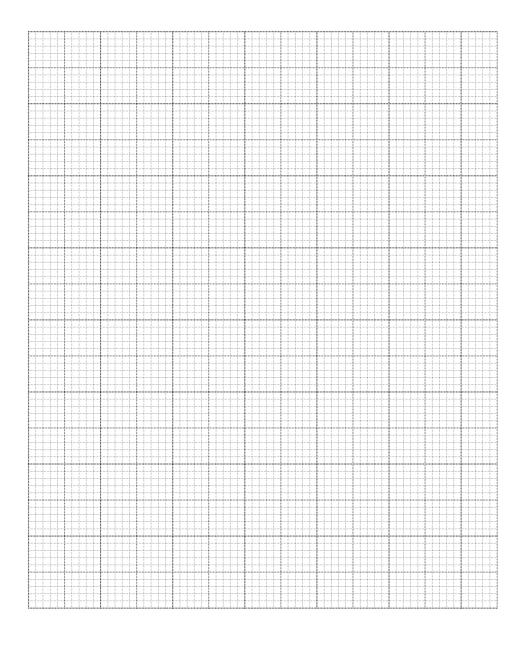

(b) Find the interquartile range of the distances thrown by the 11 pupils at Lakeview school. [2]

 $16.\ 9709_w21_qp_53\ Q\hbox{:}\ 3$

The times taken, in minutes, by 360 employees at a large company to travel from home to work are summarised in the following table.

Time, t minutes	0 ≤ <i>t</i> < 5	5 ≤ <i>t</i> < 10	10 ≤ <i>t</i> < 20	$20 \leqslant t < 30$	$30 \leqslant t < 50$
Frequency	23	102	135	76	24

(a) Draw a histogram to represent this information.


(b)	Calculate an estimate of the mean time taken by an employee to travel to work.	[2]

 $17.\ 9709_m20_qp_52\ Q{:}\ 7$

Helen measures the lengths of 150 fish of a certain species in a large pond. These lengths, correct to the nearest centimetre, are summarised in the following table.

Length (cm)	0 – 9	10 – 14	15 – 19	20 – 30
Frequency	15	48	66	21

(a) Draw a cumulative frequency graph to illustrate the data.

	% of these fish have a length of d cm or more. Use your graph to estimate the value of d . [2]
••••	
	an length of these 150 fish is 15.295 cm.
(c) Ca	clculate an estimate for the variance of the lengths of the fish. [3]
••••	
••••	
••••	
••••	
••••	
••••	

 $18.\ 9709_s20_qp_51\ Q\hbox{:}\ 7$

The numbers of chocolate bars sold per day in a cinema over a period of 100 days are summarised in the following table.

Number of chocolate bars sold	1 – 10	11 – 15	16 – 30	31 – 50	51 – 60
Number of days	18	24	30	20	8

(a) Draw a histogram to represent this information.

[5]

	nterquartile range for the data?
Calculate estimates of the mean and standa	ard deviation of the number of chocolate bars solo

19. 9709_s20_qp_52 Q: 1

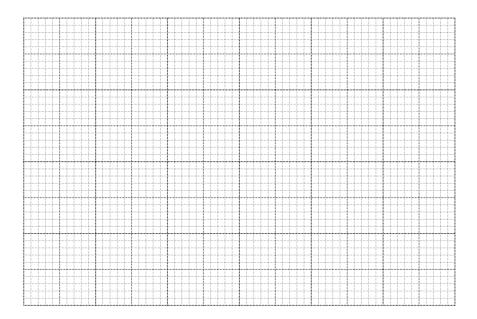
For n	values	of the	variable x.	it	is	given	that
1 01 /1	, aracs	or the	variable st	, 10	10	51,011	tiltt

	Σ	(x -	50)	= 144	and	$\Sigma x =$	944.
--	----------	------	-----	-------	-----	--------------	------

Find the value of n .	[3]

 $20.\ 9709_s20_qp_52\ Q\hbox{:}\ 3$

Two machines, A and B, produce metal rods of a certain type. The lengths, in metres, of 19 rods produced by machine A and 19 rods produced by machine B are shown in the following back-to-back stem-and-leaf diagram.


	A 7 6 3 0 8 7 4 3 1 1 5 5 5 3 2 4 3 1 0								1	3		
						21	1	2	4			
		7	6	3	0	22	2	4	5	5	6	
8	7	4	3	1	1	23	0	2	6	8	9	9
	5	5	5	3	2	24	3	3	4	6		
		4	3	1	0	25	6					

Key: $7 \mid 22 \mid 4$ means 0.227 m for machine A and 0.224 m for machine B.

(a)	Find the median and the interquartile range for machine A . [3]

It is given that for machine B the median is $0.232\,\mathrm{m}$, the lower quartile is $0.224\,\mathrm{m}$ and the upper quartile is $0.243\,\mathrm{m}$.

(b) Draw box-and-whisker plots for A and B. [3]

(c)	Hence make two comparisons between the lengths of the rods produced by machine A and those produced by machine B . [2]

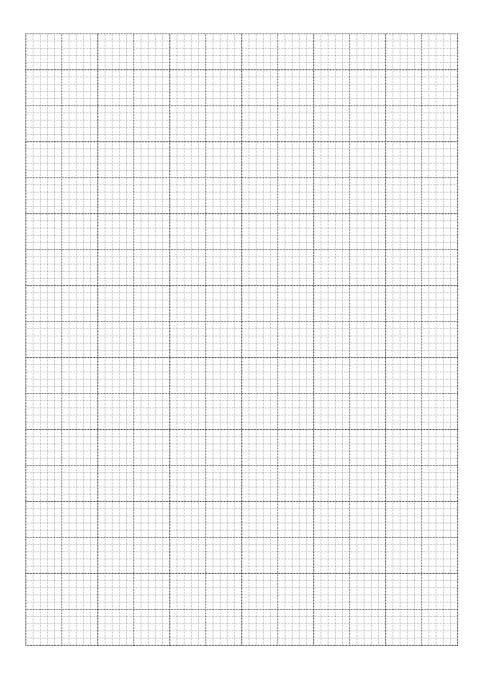
$21.\ 9709_s20_qp_53\ Q:\ 6$

The annual salaries, in thousands of dollars, for 11 employees at each of two companies A and B are shown below.

Company A	30	32	35	41	41	42	47	49	52	53	64
Company B	26	47	30	52	41	38	35	42	49	31	42

(a) Represent the data by drawing a back-to-back stem-and-leaf diagram with company A on the left-hand side of the diagram. [4]

This the med	an and the into				
		•••••			••••••
w employee id	oins company	B. The mean s	alary of the 12	employees is no	ow \$38 500.
	y of the new e	mployee.			
	y of the new e	employee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	employee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			
	y of the new e	mployee.			


 $22.\ 9709_w20_qp_51\ \ Q:\ 6$

The times, t minutes, taken by 150 students to complete a particular challenge are summarised in the following cumulative frequency table.

Time taken (t minutes)	<i>t</i> ≤ 20	<i>t</i> ≤ 30	<i>t</i> ≤ 40	<i>t</i> ≤ 60	<i>t</i> ≤ 100
Cumulative frequency	12	48	106	134	150

(a) Draw a cumulative frequency graph to illustrate the data.

[2]

estimate the value of k .
Calculate estimates of the mean and the standard deviation of the time taken to complete the challenge.

$23.\ 9709_w20_qp_52\ Q:\ 5$

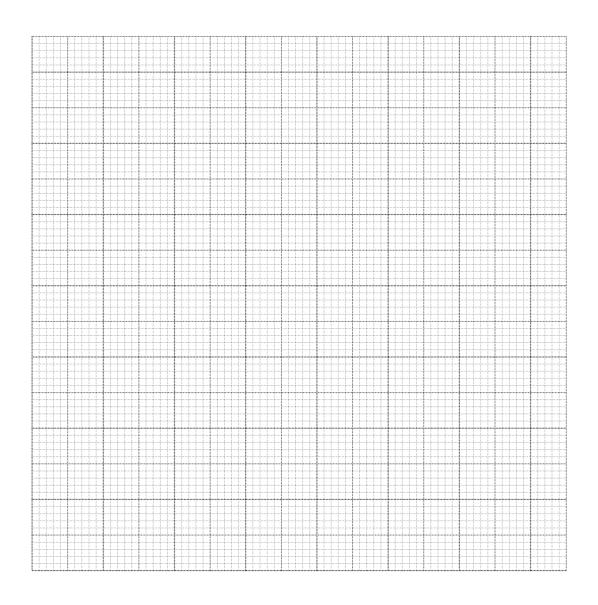
The following table gives the weekly snowfall, in centimetres, for 11 weeks in 2018 at two ski resorts, Dados and Linva.

Dados	6	8	12	15	10	36	42	28	10	22	16
Linva	2	11	15	16	0	32	36	40	10	12	9

(a) Represent the information in a back-to-back stem-and-leaf diagram.

[4]

	he weekly snowfall in Dados. [3]
The median, lower quartile and upper quartile of cm respectively. Use this information and yendency and the spread of the weekly snowfall	of the weekly snowfall for Linva are 12, 9 and our answers to part (b) to compare the central in Dados and Linva. [2]


24. 9709_w20_qp_53 Q: 7

A particular piece of music was played by 91 pianists and for each pianist, the number of incorrect notes was recorded. The results are summarised in the table.

Number of incorrect notes	1 – 5	6 – 10	11 – 20	21 – 40	41 – 70
Frequency	10	5	26	32	18

(a) Draw a histogram to represent this information.

[5]

(b)	State which class interval contains the lower quartile and which class interval contains the upper quartile.
	Hence find the greatest possible value of the interquartile range. [2]
(c)	Calculate an estimate for the mean number of incorrect notes. [3]

25	9709	m 10	an	69	Ω	9
25.	9709	m_{19}	ap	02	w:	2

For 40 values of the variable x, it is given that $\Sigma(x-c)^2 = 3099.2$, where c is a constant. The standard deviation of these values of x is 3.2.

Find the value of $\Sigma(x-c)$.	[3]
Given that $c = 50$, find the mean of these values of x .	[1

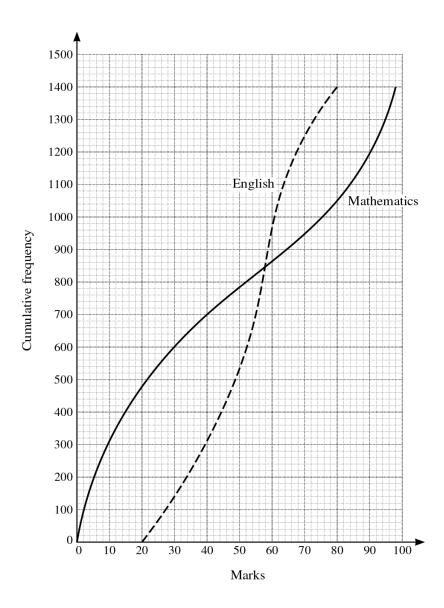
 $26.\ 9709_m19_qp_62\ Q\hbox{:}\ 5$

The weights, in kg, of the 11 members of the Dolphins swimming team and the 11 members of the Sharks swimming team are shown below.

Dolphins	62	75	69	82	63	80	65	65	73	82	72
Sharks	68	84	59	70	71	64	77	80	66	74	72

(i) Draw a back-to-back stem-and-leaf diagram to represent this information, with Dolphins on the left-hand side of the diagram and Sharks on the right-hand side. [4]

nd the median and interquartile range for the Dolphins.	
	••••••
	•••••
	••••••
	•••••
	••••••
	•••••
	•••••


 $27.\ 9709_s19_qp_61\ Q:\ 1$

The times, t seconds, taken to swim	100 m were recorded	for a group of 9 swimme	ers and were found
to be as follows.			

95 126 117 135 120 125 114 119 136 (i) Find the values of $\Sigma(t-120)$ and $\Sigma(t-120)^2$. [2] (ii) Using your values found in part (i), calculate the variance of t. [2]

28. 9709_s19_qp_61 Q: 4

The Mathematics and English A-level marks of 1400 pupils all taking the same examinations are shown in the cumulative frequency graphs below. Both examinations are marked out of 100.

Use suitable data from these graphs to compare the central tendency and spread of the marks in Mathematics and English. [6]

29.	$9709_s19_qp_62~Q:6$
	Give one advantage and one disadvantage of using a box-and-whisker plot to represent a set of data.
ii)	The times in minutes taken to run a marathon were recorded for a group of 13 marathon runners and were found to be as follows.
	180 275 235 242 311 194 246 229 238 768 332 227 228
	State which of the mean, mode or median is most suitable as a measure of central tendency for these times. Explain why the other measures are less suitable. [3]

	19 26 30	3	203267318	215269327	246274331	249276336	253 280 345	255 288 351	254283353	258 287 360	260294368	261 300 375	
(a)	On the gr	id b	elow	, draw	a box-	-and-w	hisker	plot to	illust	rate th	e time	s for these 33 p	eople [-
				•••••		•••••	•••••						
		•••••	•••••										•••••
	Foreign Control												
	in the state of th												
(1.)				. • 1	<u></u>				······································	······································		ndonimianianianianianianiani	-
(D)	Find the i	ntei	rquar	me rar	ige or	tnese t	imes.						[
		•••••		•••••	•••••	•••••	•••••	••••••	•••••				
		• • • • • •	•••••						•••••	•••••			

30. $9709_s19_qp_63$ Q: 7

The times in minutes taken by 13 pupils at each of two schools in a cross-country race are recorded in the table below.

Thaters School	38	43	48	52	54	56	57	58	58	61	62	66	75
Whitefay Park School	45	47	53	56	56	61	64	66	69	73	75	78	83

(i) Draw a back-to-back stem-and-leaf diagram to illustrate these times with Thaters School on the left. [4]

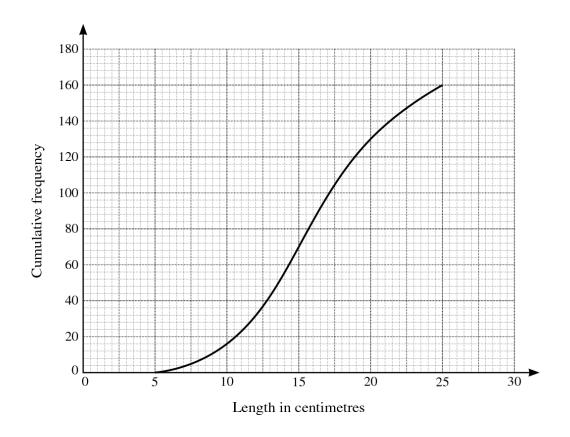
(ii)	Find the interquartile range of the times for pupils at Thaters School.	[2]
		••••
		••••
		••••

The times taken by pupils at Whitefay Park School are denoted by x minutes. (iii) Find the value of $\Sigma(x-60)^2$. [2] (iv) It is given that $\Sigma(x-60) = 46$. Use this result, together with your answer to part (iii), to find the variance of x. [2]

.....

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.						
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					
	••••					

31. 9709_w19_qp_61 Q: 3


The mean and standard deviation of 20 values of x are 60 and 4 re	respectively
---	--------------

(i)	Find the values of Σx and Σx^2 .	[3]

Find the mea	an and standard	deviation of al	1 these 30 valu	a a b a b a b a a b a	
		,	,	•••••	•••••
••••••					
		,	,	•••••	
••••••				•••••	

 $32.\ 9709_w19_qp_61\ Q\hbox{:}\ 5$

Ransha measured the lengths, in centimetres, of 160 palm leaves. His results are illustrated in the cumulative frequency graph below.

(i)	Estimate how many leaves have a length between 14 and 24 centimetres. [1]
(ii)	10% of the leaves have a length of L centimetres or more. Estimate the value of L . [2]

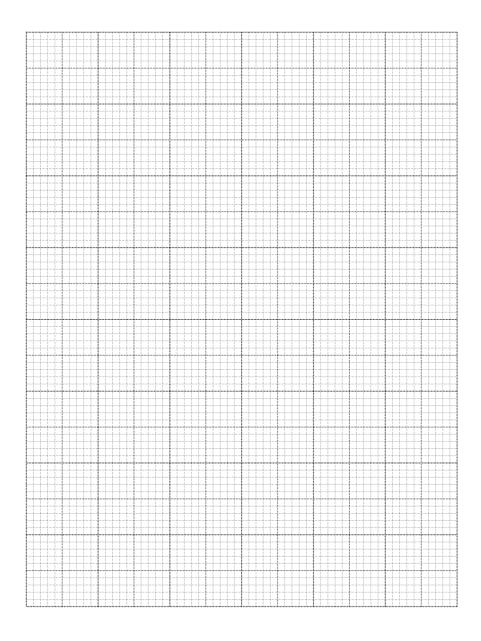
ii) Estir	nate the r	nedian and t	he interquar	tile range of	the lengths			[3]
•••••								
•••••								
		the lengths, lot for the da				s of a differ	ent type. I	Ie drew a
			10	1.5	20	0.5	20	
	0	5	10 Lengtl	15 h in centime	20 tres	25	30	
` ~								503
) Com	ipare the o	central tende	ency and the	spread of th	e two sets o	if data.		[2]
•••••								
•••••								

33. 9709_w19_qp_62 Q: 1

Twelve tourists were asked to estimate the height,	in metres,	of a new	building.	Their estimates	were
as follows.					

50 45 62 30 40 55 110 38 52 60 55 40

(1)	Find the median and the interquartile range for the data.	[3]
		•••••
		•••••
(ii)	Give a disadvantage of using the mean as a measure of the central tendency in this case.	[1]
		•••••
		•••••


 $34.\ 9709_w19_qp_62\ Q:\ 3$

The speeds, in $km h^{-1}$, of 90 cars as they passed a certain marker on a road were recorded, correct to the nearest $km h^{-1}$. The results are summarised in the following table.

Speed (km h ⁻¹)	10 – 29	30 – 39	40 – 49	50 – 59	60 – 89
Frequency	10	24	30	14	12

(i) On the grid, draw a histogram to illustrate the data in the table.

[4]

$35.\ 9709_w19_qp_63\ Q\hbox{:}\ 5$

Last Saturday, 200 drivers entering a car park were asked the time, in minutes, that it had taken them to travel from home to the car park. The results are summarised in the following cumulative frequency table.

Time (t minutes)	<i>t</i> ≤ 10	<i>t</i> ≤ 20	<i>t</i> ≤ 30	<i>t</i> ≤ 50	<i>t</i> ≤ 70	<i>t</i> ≤ 90
Cumulative frequency	16	50	106	146	176	200

(i) On the grid, draw a cumulative frequency graph to illustrate the data.

[2]

1)	Use your graph to estimate the median of the data.	[1]
		· · · · · ·
		•••••

(iii)	For 80 of the drivers, the time taken was at least T minutes. Use your graph to estimate the value of T .
(iv)	Calculate an estimate of the mean time taken by all 200 drivers to travel to the car park. [4]

36. 9709_m18_qp_62 Q: 1

There are 900 students in a certain year-group. An identical puzzle is given to each student and the time taken, t minutes, to complete the puzzle is recorded. These times are summarised in the following frequency table.

Time taken, t minutes	<i>t</i> ≤ 3	3 < <i>t</i> ≤ 4	<i>4</i> < <i>t</i> ≤ 5	5 < <i>t</i> ≤ 6	6 < <i>t</i> ≤ 8	8 < <i>t</i> ≤ 10	$10 < t \le 14$
Frequency	120	180	200	160	110	80	50

On the grid, draw a cumulative frequency graph to represent the data. Use your graph to estimate the median time taken by these students to complete the puzzle. [4]

37. 9709_m18_qp_62 Q: 5

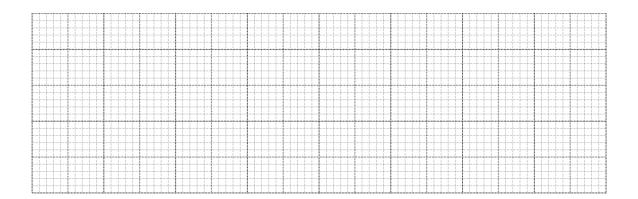
	A	summary	of n	values	of x	gave th	ne foll	owing	informa	ation:
--	---	---------	------	--------	--------	---------	---------	-------	---------	--------

$$\Sigma(x-20) = 136,$$
 $\Sigma(x-20)^2 = 2888.$

The mean of the n values of x is 24.25.

(i)	Find the value of n .	[2]
(ii)	Find Σx^2 .	[4]

38. 9709_s18_qp_61 Q: 1
In a statistics lesson 12 people were asked to think of a number, x , between 1 and 20 inclusive. From the results Tom found that $\Sigma x = 186$ and that the standard deviation of x is 4.5. Assuming that Tom's calculations are correct, find the values of $\Sigma(x-10)$ and $\Sigma(x-10)^2$.


 $39.\ 9709_s18_qp_61\ Q\hbox{:}\ 2$

In a survey 55 students were asked to record, to the nearest kilometre, the total number of kilometres they travelled to school in a particular week. The results are shown below.

5	5	9	10	13	13	13	15	15	15	15
16	18	18	18	19	19	20	20	20	20	21
21	21	21	23	25	25	27	27	29	30	33
35	38	39	40	42	45	48	50	50	51	51
52	55	57	57	60	61	64	65	66	69	70

(i) On the grid, draw a box-and-whisker plot to illustrate the data.

[5]

An 'outlier' is defined as any data value which is more than 1.5 times the interquartile range above the upper quartile, or more than 1.5 times the interquartile range below the lower quartile.

(ii)	Show that there are no outliers.	[2]
		· • • • •
		· • • • •
		· • • • •

40.	9709_{-}	$_{ m s}18_{ m L}$	$_{ m qp}_{ m }$	$_{-}62$	Q:	1
E.	ah af	0 00	01110	of	10	h

Each of a group of 10 boys estimates the length of a piece of string. The estimates, in centimetres, are as follows.

		37	40	45	38	36	38	42	38	40	39	
(i)	Find the m	ode.										[1]
		•••••	•••••			•••••	••••••	••••••	•••••	•••••		•••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••		•••••		•••••	
		•••••	•••••			•••••	•••••	•••••	•••••	•••••		•••••
						•••••	•••••	•••••	•••••	•••••		
			•••••			•••••		•••••				
(ii)	Find the m	edian aı	nd the i	nterqua	rtile raı	nge.						[3]
			•••••			•••••		•••••	•••••	•••••		•••••
			•••••			•••••	••••••	•••••				
		•••••				•••••			•••••	•••••		•••••
									•••••			
			•••••			•••••	••••••	•••••		•••••		
						•••••						
									•••••	•••••		

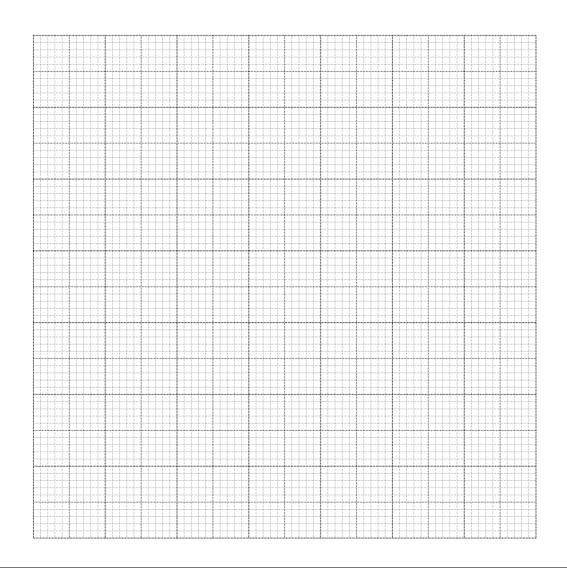
 $41.\ 9709_s18_qp_62\ Q\hbox{:}\ 5$

The lengths, t minutes, of 242 phone calls made by a family over a period of 1 week are summarised in the frequency table below.

Length of phone call (t minutes)	0 < t ≤ 1	1 < <i>t</i> ≤ 2	2 < t ≤ 5	5 < <i>t</i> ≤ 10	10 < t ≤ 30
Frequency	14	46	102	а	40

(i)	Find the value of a.	[1]
(ii)	Calculate an estimate of the mean length of these phone calls.	[2]

[4]


(iii) On the grid, draw a histogram to illustrate the data in the table.

 $42.\ 9709_s18_qp_63\ Q:\ 1$

The masses in kilograms of 50 children having a medical check-up were recorded correct to the nearest kilogram. The results are shown in the table.

Mass (kg)	10 – 14	15 – 19	20 – 24	25 – 34	35 – 59
Frequency	6	12	14	10	8

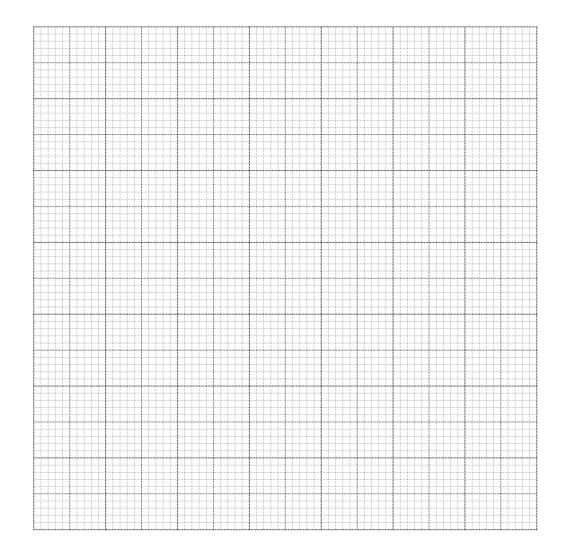
(1)	Find which class interval contains the lower quartile.	[1]
(ii)	On the grid, draw a histogram to illustrate the data in the table.	Г 4 1

$43.\ 9709_s18_qp_63\ Q:\ 4$

Farfield Travel and Lacket Travel are two travel companies which arrange tours abroad. The numbers of holidays arranged in a certain week are recorded in the table below, together with the means and standard deviations of the prices.

	Number of holidays	Mean price (\$)	Standard deviation (\$)
Farfield Travel	30	1500	230
Lacket Travel	21	2400	160

Calculate the mean price of all 51 holidays.	[2]
	•••••
	•••••
	The prices of individual holidays with Farfield Travel are denoted by $\$x_F$ and the price individual holidays with Lacket Travel are denoted by $\$x_L$. By first finding Σx_F^2 and Σx_L^2 ,


 $44.\ 9709_w18_qp_61\ Q:\ 6$

The daily rainfall, x mm, in a certain village is recorded on 250 consecutive days. The results are summarised in the following cumulative frequency table.

Rainfall, x mm	<i>x</i> ≤ 20	<i>x</i> ≤ 30	<i>x</i> ≤ 40	<i>x</i> ≤ 50	<i>x</i> ≤ 70	<i>x</i> ≤ 100
Cumulative frequency	52	94	142	172	222	250

(i) On the grid, draw a cumulative frequency graph to illustrate the data.

[2]

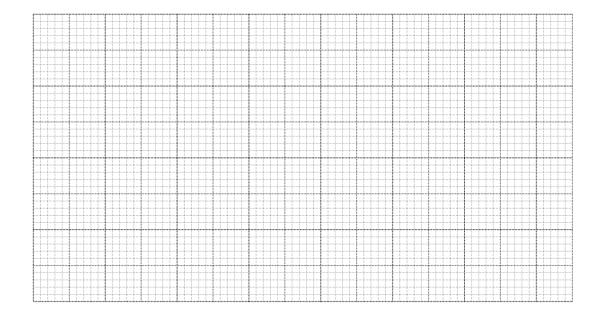
(II)	On 100 of the days, the rainfall was k mm or i	nore. Use your graph to estimate the value of κ . [2]

(iii)	Calculate estimates of the mean and standard deviation of the daily rainfall in this village. [6]

[3]

 $45.\ 9709_w18_qp_62\ Q:\ 2$

The following back-to-back stem-and-leaf diagram shows the reaction times in seconds in an experiment involving two groups of people, A and B.


	A		В	
(4)	4 2 0 0	20 5 6	7	(3)
(5)	9 8 5 0 0	21 1 2	2 3 7 7	(6)
(8)	9 8 7 5 3 2 2 2	22 1 3	5 6 6 8 9	(7)
(6)	8 7 6 5 2 1	23 4 5	7 8 8 9 9 9	(8)
(3)	8 6 3	24 2 4	5 6 7 8 8	(7)
(1)	0	25 0 2	7 8	(4)

Key: $5 \mid 22 \mid 6$ means a reaction time of 0.225 seconds for A and 0.226 seconds for B

(i)	Find the median and the interquartile range for group A .	[3]		
		• • • • •		

The median value for group B is 0.235 seconds, the lower quartile is 0.217 seconds and the upper quartile is 0.245 seconds.

(ii) Draw box-and-whisker plots for groups A and B on the grid.

					_	
46.	9709	w18	αn	62	(A):	-5

The Quivers Archery club has 12 Junior members and 20 Senior members. For the Junior members, the mean age is 15.5 years and the standard deviation of the ages is 1.2 years. The ages of the Senior members are summarised by $\Sigma y = 910$ and $\Sigma y^2 = 42\,850$, where y is the age of a Senior member in years.

(i)	Find the mean age of all 32 members of the club.	[2]
		•••••
		•••••

•••••
•••••
•••••
 •••••
•••••

 $47.\ 9709_w18_qp_63\ Q:\ 7$

The heights, in cm, of the 11 members of the Anvils athletics team and the 11 members of the Brecons swimming team are shown below.

Anvils	173	158	180	196	175	165	170	169	181	184	172
Brecons	166	170	171	172	172	178	181	182	183	183	192

(i) Draw a back-to-back stem-and-leaf diagram to represent this information, with Anvils on the left-hand side of the diagram and Brecons on the right-hand side. [4]

(ii)	Find the median and the interquartile range for the heights of the Anvils.	[3]	
		•••••	

The heights of the 11 members of the Anvils are denoted by x cm. It is given that $\Sigma x = 1923$ and $\Sigma x^2 = 337\,221$. The Anvils are joined by 3 new members whose heights are 166 cm, 172 cm and 182 cm.

(iii)	Find the standard deviation of the heights of all 14 members of the Anvils.						

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			

48. 9709_m17_qp_62 Q: 1

Twelve values of x are shown below.

1761.6 1758.5 1762.3 1761.4 1759.4 1759.1 1762.5 1761.9 1762.4 1761.9 1762.8 1761.0

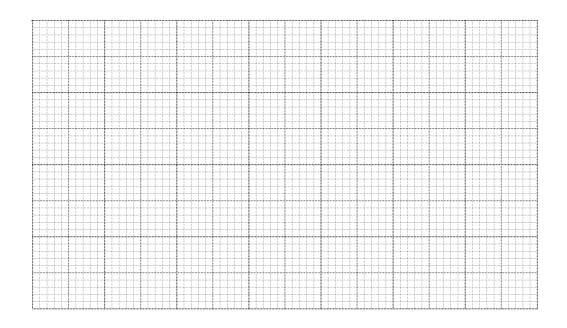
Find the mean and standard deviation of $(x - 1760)$. Hence find the mean and standard deviation of $x = 1760$.

49. 9709_s17_qp_61 Q: 1

Kadijat noted the weights, x grams, of 30 chocolate buns. Her results are summarised by

$$\Sigma(x-k) = 315, \qquad \Sigma(x-k)^2 = 4022,$$

where k is a constant. The mean weight of the buns is 50.5 grams.


(i)	find the value of k .	,]
		•
		•
		•
		•
		•
		•
(ii)	Find the standard deviation of x . [2]	[,
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

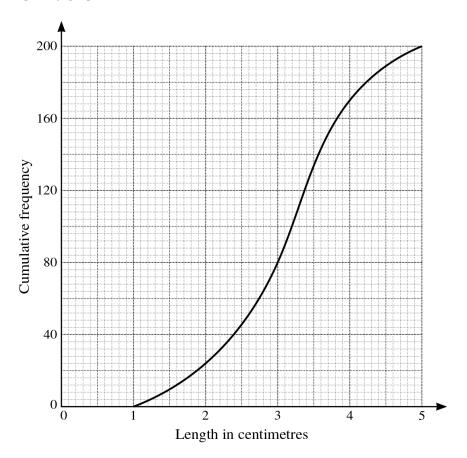
 $50.\ 9709_s17_qp_61\ Q:\ 4$

The times taken, t seconds, by 1140 people to solve a puzzle are summarised in the table.

Time (t seconds)	$0 \leqslant t < 20$	20 ≤ <i>t</i> < 40	40 ≤ <i>t</i> < 60	60 ≤ <i>t</i> < 100	$100 \leqslant t < 140$
Number of people	320	280	220	220	100

[4]

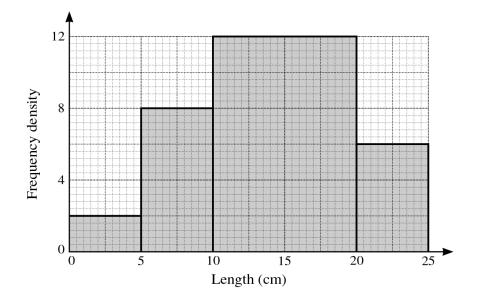
(ii)	Calculate an estimate of the mean of t .	[2]


51. 9709_s17_qp_62 Q: 1

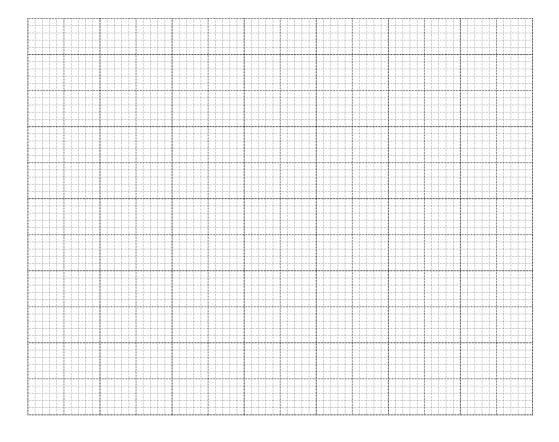
Rani and Diksha go shopping for clothes.

	Rani buys 4 identical vests, 3 identical sweaters and 1 coat. Each vest costs \$5.50 and costs \$90. The mean cost of Rani's 8 items is \$29. Find the cost of a sweater.	[3
		• • • • • • • • • • • • • • • • • • • •
i)	Diksha buys 1 hat and 4 identical shirts. The mean cost of Diksha's 5 items is \$20	
	standard deviation is \$0. Explain how you can tell that Diksha spends \$104 on shirts.	[2

 $52.\ 9709_s17_qp_62\ Q:\ 2$


Anabel measured the lengths, in centimetres, of 200 caterpillars. Her results are illustrated in the cumulative frequency graph below.

(i)	Estimate the median and the interquartile range of the lengths.	[3]
(ii)	Estimate how many caterpillars had a length of between 2 and 3.5 cm.	[1]
(iii)	6% of caterpillars were of length l centimetres or more. Estimate l .	[2]
		•••••


 $53.\ 9709_s17_qp_63\ Q{:}\ 7$

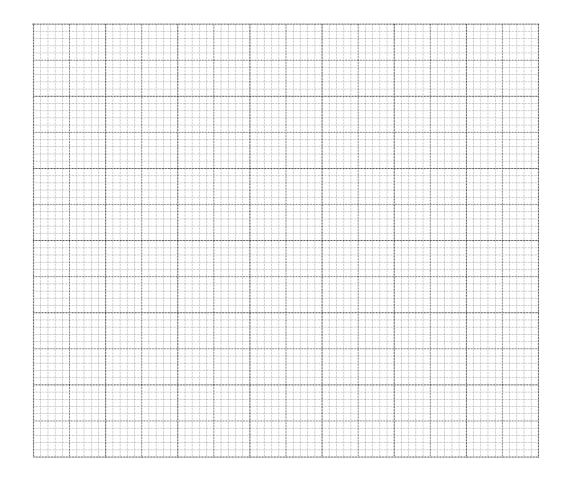
The following histogram represents the lengths of worms in a garden.

Calculate the frequencies represented by each of the four histogram columns.	[2]

(ii) On the grid on the next page, draw a cumulative frequency graph to represent the lengths of worms in the garden. [4]

iii)	Use your graph to estimate the median and interquartile range of the lengths of worms in the garden. [3]	

		estimate (,		C			
•••••	•••••	· • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	••••••
•••••			•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
							• • • • • • • • • • • • • • • • • • • •			
•••••	•••••						• • • • • • • • • • • • • • • • • • • •		••••••	
							• • • • • • • • • • • • • • • • • • • •			
		• • • • • • • • • • • • • • • • • • • •	•••••				• • • • • • • • • • • • • • • • • • • •			
•••••	•••••			· • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••
		• • • • • • • • • • • • • • • • • • • •								
•••••	•••••	,	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••
•••••										
•••••	•••••	••••••	•••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	••••••
•••••	•••••				•••••		• • • • • • • • • • • • • • • • • • • •			
							• • • • • • • • • • • • • • • • • • • •			
•••••							•••••			


 $54.\ 9709_w17_qp_61\ Q:\ 2$

The time taken by a car to accelerate from 0 to 30 metres per second was measured correct to the nearest second. The results from 48 cars are summarised in the following table.

Time (seconds)	3 – 5	6 – 8	9 – 11	12 – 16	17 – 25
Frequency	10	15	17	4	2

(i) On the grid, draw a cumulative frequency graph to represent this information.

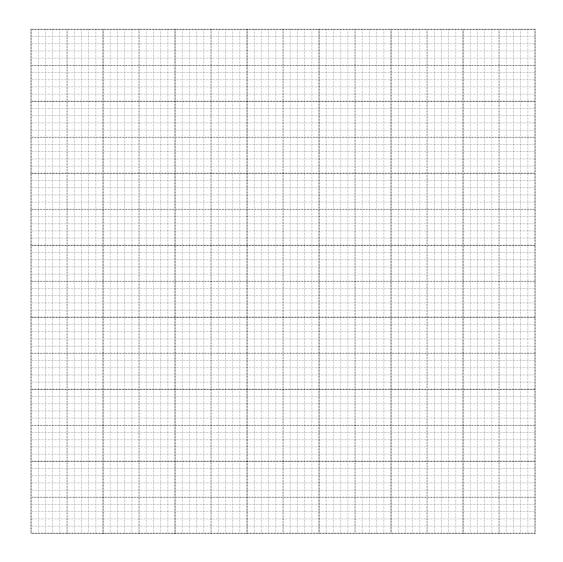
[3]

(ii)	35 of these cars accelerated from 0 to 30 metres per second in a time more than t seconds Estimate the value of t .

55	9709	w 17	an	61	Ω	4
oo.	9709	W 1 (ab	OΙ	Q:	4

The ages of a group of 12 people at an Art class have mean 48.7 years and standard deviation 7.65 years. The ages of a group of 7 people at another Art class have mean 38.1 years and standard deviation 4.2 years.

(i)	Find the mean age of all 19 people. [2]
(ii)	The individual ages in years of people in the first Art class are denoted by x and those in the second Art class by y . By first finding Σx^2 and Σy^2 , find the standard deviation of the ages of all 19 people. [4]


56. 9709_w17_qp_62 Q: 1			
Andy counts the number of emails, x , he receives each day and notes that, over a period of n days, $\Sigma(x-10)=27$ and the mean number of emails is 11.5. Find the value of n . [3]			

57. 9709_w17_qp_62 Q: 2

The circumferences, c cm, of some trees in a wood were measured. The results are summarised in the table.

Circumference (c cm)	40 < <i>c</i> ≤ 50	50 < c ≤ 80	80 < <i>c</i> ≤ 100	100 < <i>c</i> ≤ 120
Frequency	14	48	70	8

(i) On the grid, draw a cumulative frequency graph to represent the information. [3]

(ii)	Estimate the percentage of trees which have a circumference larger than 75 cm.										
		•••••									

58. 9709_w17_qp_63 Q: 2
Tien measured the arm lengths, x cm, of 20 people in his class. He found that $\Sigma x = 1218$ and the standard deviation of x was 4.2. Calculate $\Sigma(x - 45)$ and $\Sigma(x - 45)^2$. [3]

59. 9709_w17_qp_63 Q: 5

The number of Olympic medals won in the 2012 Olympic Games by the top 27 countries is shown below.

104	88	82	65	44	38	35	34	28
28	18	18	17	17	14	13	13	12
12	10	10	10	9	6	5	2	2

[1]

[4]

[5]

60. 9709 m16 qp 62 Q: 1

For 10 values of x the mean is 86.2 and $\Sigma(x-a) = 362$. Find the value of

(i)
$$\Sigma x$$
, [1]

(ii) the constant
$$a$$
. [2]

A survey was made of the journey times of 63 people who cycle to work in a certain town. The results are summarised in the following cumulative frequency table.

Journey time (minutes)	≤ 10	≤ 25	≤ 45	≤ 60	≤ 80
Cumulative frequency	0	18	50	59	63

- (i) State how many journey times were between 25 and 45 minutes.
- (ii) Draw a histogram on graph paper to represent the data. [4]
- (iii) Calculate an estimate of the mean journey time. [2]

$$62.9709$$
 s16 qp 61 Q: 7

The amounts spent by 160 shoppers at a supermarket are summarised in the following table.

Amount spent $(\$x)$	$0 < x \leqslant 30$	$30 < x \le 50$	$50 < x \le 70$	$70 < x \le 90$	90 < <i>x</i> ≤ 140
Number of shoppers	16	40	48	26	30

- (i) Draw a cumulative frequency graph of this distribution.
- (ii) Estimate the median and the interquartile range of the amount spent. [3]
- (iii) Estimate the number of shoppers who spent more than \$115. [2]
- (iv) Calculate an estimate of the mean amount spent. [2]

$$63.9709_s16_qp_62$$
 Q: 5

The following are the maximum daily wind speeds in kilometres per hour for the first two weeks in April for two towns, Bronlea and Rogate.

Bronlea	21	45	6	33	27	3	32	14	28	24	13	17	25	22
Rogate	7	5	4	15	23	7	11	13	26	18	23	16	10	34

- (i) Draw a back-to-back stem-and-leaf diagram to represent this information.
- (ii) Write down the median of the maximum wind speeds for Bronlea and find the interquartile range for Rogate. [3]
- (iii) Use your diagram to make one comparison between the maximum wind speeds in the two towns. [1]

64. 9709 $s16_qp_63$ Q: 2

A group of children played a computer game which measured their time in seconds to perform a certain task. A summary of the times taken by girls and boys in the group is shown below.

	Minimum	Lower quartile	Median	Upper quartile	Maximum
Girls	5	5.5	7	9	13
Boys	4	6	8.5	11	16

- (i) On graph paper, draw two box-and-whisker plots in a single diagram to illustrate the times taken by girls and boys to perform this task. [3]
- (ii) State two comparisons of the times taken by girls and boys.

[2]

65. 9709 s16 qp 63 Q:
$$4$$

The monthly rental prices, \$x, for 9 apartments in a certain city are listed and are summarised as follows.

$$\Sigma(x-c) = 1845$$
 $\Sigma(x-c)^2 = 477450$

The mean monthly rental price is \$2205.

(i) Find the value of the constant c.

[2]

(ii) Find the variance of these values of x.

[2]

(iii) Another apartment is added to the list. The mean monthly rental price is now \$2120.50. Find the rental price of this additional apartment. [2]

The masses, in grams, of components made in factory A and components made in factory B are shown below.

Factory A	0.050 0.061		0.058 0.065	0.058
Factory B	0.056 0.035		0.048 0.058	0.051

- (i) Draw a back-to-back stem-and-leaf diagram to represent the masses of components made in the two factories. [5]
- (ii) Find the median and the interquartile range for the masses of components made in factory B. [3]
- (iii) Make two comparisons between the masses of components made in factory A and the masses of those made in factory B. [2]

The number of people a football stadium can hold is called the 'capacity'. The capacities of 130 football stadiums in the UK, to the nearest thousand, are summarised in the table.

Capacity	3000-7000	8000-12000	13 000-22 000	23 000-42 000	43 000-82 000
Number of stadiums	40	30	18	34	8

- (i) On graph paper, draw a histogram to represent this information. Use a scale of 2 cm for a capacity of 10 000 on the horizontal axis. [5]
- (ii) Calculate an estimate of the mean capacity of these 130 stadiums.

(iii) Find which class in the table contains the median and which contains the lower quartile. [2]

$$68.\ 9709_w16_qp_63\ Q{:}\ 5$$

The tables summarise the heights, h cm, of 60 girls and 60 boys.

Height of girls (cm)	$140 < h \leqslant 150$	$150 < h \leqslant 160$	$160 < h \leqslant 170$	$170 < h \leqslant 180$	$180 < h \leqslant 190$
Frequency	12	21	17	10	0
Height of boys (cm)	$140 < h \leqslant 150$	$150 < h \le 160$	$160 < h \le 170$	$170 < h \leq 180$	$180 < h \le 190$
Frequency	0	20	23	12	5

- (i) On graph paper, using the same set of axes, draw two cumulative frequency graphs to illustrate the data. [4]
- (ii) On a school trip the students have to enter a cave which is 165 cm high. Use your graph to estimate the percentage of the girls who will be unable to stand upright. [3]
- (iii) The students are asked to compare the heights of the girls and the boys. State one advantage of using a pair of box-and-whisker plots instead of the cumulative frequency graphs to do this. [1]

The table summarises the lengths in centimetres of 104 dragonflies.

Length (cm)	2.0 - 3.5	3.5 – 4.5	4.5 – 5.5	5.5 - 7.0	7.0 - 9.0
Frequency	8	25	28	31	12

(i) State which class contains the upper quartile.

[1]

[2]

(ii) Draw a histogram, on graph paper, to represent the data.

[4]

70. 9709_s15_qp_61 Q: 5

The table shows the mean and standard deviation of the weights of some turkeys and geese.

	Number of birds	Mean (kg)	Standard deviation (kg)		
Turkeys	9	7.1	1.45		
Geese	18	5.2	0.96		

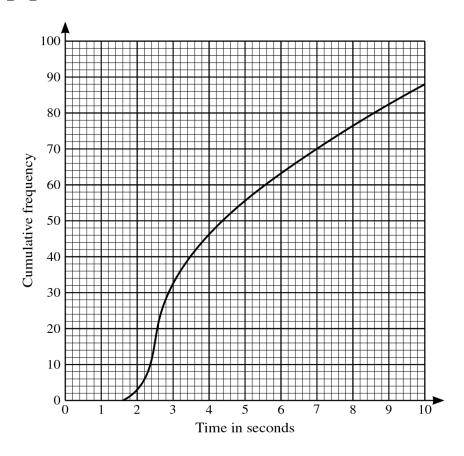
(i) Find the mean weight of the 27 birds.

[2]

(ii) The weights of individual turkeys are denoted by x_t kg and the weights of individual geese by x_g kg. By first finding $\sum x_t^2$ and $\sum x_g^2$, find the standard deviation of the weights of all 27 birds.

[5]

71. $9709_s15_qp_62$ Q: 2


120 people were asked to read an article in a newspaper. The times taken, to the nearest second, by the people to read the article are summarised in the following table.

Time (seconds)	1 – 25	26 – 35	36 – 45	46 – 55	56 – 90
Number of people	4	24	38	34	20

Calculate estimates of the mean and standard deviation of the reading times.

[5]

 $72.\ 9709_s15_qp_62\ Q\hbox{:}\ 3$

In an open-plan office there are 88 computers. The times taken by these 88 computers to access a particular web page are represented in the cumulative frequency diagram.

(i) On graph paper draw a box-and-whisker plot to summarise this information. [4]

An 'outlier' is defined as any data value which is more than 1.5 times the interquartile range above the upper quartile, or more than 1.5 times the interquartile range below the lower quartile.

(ii) Show that there are no outliers. [2]

3

Seventy samples of fertiliser were collected and the nitrogen content was measured for each sample. The cumulative frequency distribution is shown in the table below.

Nitrogen content	≤ 3.5	≤ 3.8	≤ 4.0	≤ 4.2	≤ 4.5	≤ 4.8
Cumulative frequency	0	6	18	41	62	70

- (i) On graph paper draw a cumulative frequency graph to represent the data. [3]
- (ii) Estimate the percentage of samples with a nitrogen content greater than 4.4. [2]
- (iii) Estimate the median. [1]
- (iv) Construct the frequency table for these results and draw a histogram on graph paper. [5]

Robert has a part-time job delivering newspapers. On a number of days he noted the time, correct to the nearest minute, that it took him to do his job. Robert used his results to draw up the following table; two of the values in the table are denoted by a and b.

Time (t minutes)	60 – 62	63 – 64	65 – 67	68 – 71
Frequency (number of days)	3	9	6	b
Frequency density	1	а	2	1.5

(i) Find the values of a and b.

[3]

(ii) On graph paper, draw a histogram to represent Robert's times.

[3]

75.
$$9709_{\mathbf{w}15}_{\mathbf{qp}}_{\mathbf{62}}$$
 Q: 1

For *n* values of the variable *x*, it is given that $\Sigma(x - 100) = 216$ and $\Sigma x = 2416$. Find the value of *n*.

[3]

The weights, in kilograms, of the 15 rugby players in each of two teams, A and B, are shown below.

Team A	97	98	104	84	100	109	115	99	122	82	116	96	84	107	91
Team B	75	79	94	101	96	77	111	108	83	84	86	115	82	113	95

- (i) Represent the data by drawing a back-to-back stem-and-leaf diagram with team A on the left-hand side of the diagram and team B on the right-hand side. [4]
- (ii) Find the interquartile range of the weights of the players in team A. [2]
- (iii) A new player joins team B as a substitute. The mean weight of the 16 players in team B is now 93.9 kg. Find the weight of the new player. [3]

77.
$$9709_{\mathbf{w}15}_{\mathbf{qp}}_{\mathbf{63}}$$
 Q: 1

The time taken, t hours, to deliver letters on a particular route each day is measured on 250 working days. The mean time taken is 2.8 hours. Given that $\Sigma(t-2.5)^2 = 96.1$, find the standard deviation of the times taken.

78.
$$9709_{\text{w}15}_{\text{qp}}63$$
 Q: 6

The heights to the nearest metre of 134 office buildings in a certain city are summarised in the table below.

Height (m)	21 – 40	41 – 45	46 – 50	51 – 60	61 – 80
Frequency	18	15	21	52	28

(i) Draw a histogram on graph paper to illustrate the data.

[4]

(ii) Calculate estimates of the mean and standard deviation of these heights.

[5]