

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1 (P1)

February/March 2016

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

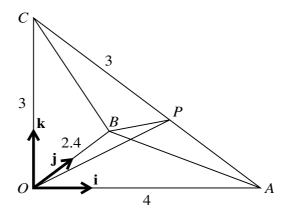
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.


- 1 (i) Find the coefficients of x^4 and x^5 in the expansion of $(1-2x)^5$. [2]
 - (ii) It is given that, when $(1 + px)(1 2x)^5$ is expanded, there is no term in x^5 . Find the value of the constant p.
- 2 A curve for which $\frac{dy}{dx} = 3x^2 \frac{2}{x^3}$ passes through (-1, 3). Find the equation of the curve. [4]
- 3 The 12th term of an arithmetic progression is 17 and the sum of the first 31 terms is 1023. Find the 31st term. [5]
- 4 (a) Solve the equation $\sin^{-1}(3x) = -\frac{1}{3}\pi$, giving the solution in an exact form. [2]
 - (b) Solve, by factorising, the equation $2\cos\theta\sin\theta 2\cos\theta \sin\theta + 1 = 0$ for $0 \le \theta \le \pi$. [4]
- 5 Two points have coordinates A(5, 7) and B(9, -1).
 - (i) Find the equation of the perpendicular bisector of AB. [3]

The line through C(1, 2) parallel to AB meets the perpendicular bisector of AB at the point X.

- (ii) Find, by calculation, the distance *BX*. [5]
- 6 A vacuum flask (for keeping drinks hot) is modelled as a closed cylinder in which the internal radius is $r \, \text{cm}$ and the internal height is $h \, \text{cm}$. The volume of the flask is $1000 \, \text{cm}^3$. A flask is most efficient when the total internal surface area, $A \, \text{cm}^2$, is a minimum.

(i) Show that
$$A = 2\pi r^2 + \frac{2000}{r}$$
. [3]

(ii) Given that r can vary, find the value of r, correct to 1 decimal place, for which A has a stationary value and verify that the flask is most efficient when r takes this value. [5]

The diagram shows a pyramid OABC with a horizontal triangular base OAB and vertical height OC. Angles AOB, BOC and AOC are each right angles. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OB and OC respectively, with OA = 4 units, OB = 2.4 units and OC = 3 units. The point P on CA is such that CP = 3 units.

(i) Show that
$$\overrightarrow{CP} = 2.4\mathbf{i} - 1.8\mathbf{k}$$
. [2]

(ii) Express
$$\overrightarrow{OP}$$
 and \overrightarrow{BP} in terms of i, j and k. [2]

- (iii) Use a scalar product to find angle *BPC*. [4]
- 8 The function f is such that $f(x) = a^2x^2 ax + 3b$ for $x \le \frac{1}{2a}$, where a and b are constants.
 - (i) For the case where $f(-2) = 4a^2 b + 8$ and $f(-3) = 7a^2 b + 14$, find the possible values of a and b.
 - (ii) For the case where a = 1 and b = -1, find an expression for $f^{-1}(x)$ and give the domain of f^{-1} . [5]

9 (a)

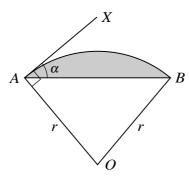


Fig. 1

In Fig. 1, OAB is a sector of a circle with centre O and radius r. AX is the tangent at A to the arc AB and angle $BAX = \alpha$.

(i) Show that angle $AOB = 2\alpha$. [2]

(ii) Find the area of the shaded segment in terms of r and α . [2]

(b)

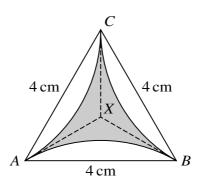
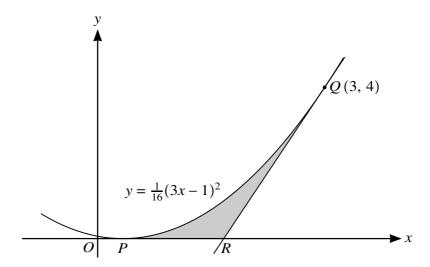



Fig. 2

In Fig. 2, ABC is an equilateral triangle of side 4 cm. The lines AX, BX and CX are tangents to the equal circular arcs AB, BC and CA. Use the results in part (a) to find the area of the shaded region, giving your answer in terms of π and $\sqrt{3}$.

The diagram shows part of the curve $y = \frac{1}{16}(3x - 1)^2$, which touches the x-axis at the point P. The point Q(3, 4) lies on the curve and the tangent to the curve at Q crosses the x-axis at R.

Showing all necessary working, find by calculation

(ii) the
$$x$$
-coordinate of R , [5]

(iii) the area of the shaded region
$$PQR$$
. [6]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CANDIDATE NUMBER				
MATHEMATICS									97	09/12
Paper 1 Pure M	athematics	1 (P1)					Febi	ruary/l	March	າ 2017
							1	hour	45 mi	nutes
Candidates ansv	wer on the	Question	Paper.							
Additional Materials: List of Formulae (MF9)										

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

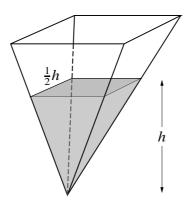
Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

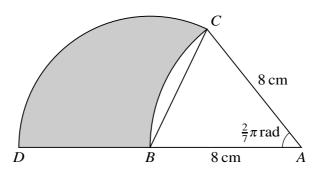
At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

••	• • • •
••	••••
	••••
•••	 ••••
••	••••
	••••
••	• • • •
••	••••
••	••••
•••	• • • •
•	
••	••••
••	• • • •
••	
	••••
••	••••
••	

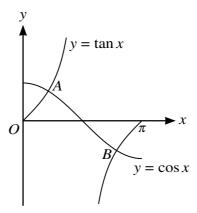
	ansion of $\left(\frac{1}{a}\right)$	χ /							
									••
•••••	,	•	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••	•••
									••
••••••		••••••	••••••	••••••	••••••	••••••	••••••	••••••	••
		•••••							••
•••••	,	•	••••••	••••••	••••••	••••••	••••••	••••••	••
									••
•••••	,	•	••••••	••••••	••••••	••••••	••••••	••••••	••
									••
•••••	,	•	••••••	••••••	••••••	••••••	••••••	••••••	••
• • • • • • • • • • • • • • • • • • • •									••
•••••	,	•	••••••	••••••	••••••	•	••••••	••••••	••
•••••									••
									••
									••
									••
									••
			•••••		•••••				••
•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •			••



The diagram shows a water container in the form of an inverted pyramid, which is such that when the height of the water level is h cm the surface of the water is a square of side $\frac{1}{2}h$ cm.

(i)	Express the volume of water in the container in terms of h .	[1]
	[The volume of a pyramid having a base area A and vertical height h is $\frac{1}{3}Ah$.]	
		•••••

Water is steadily dripping into the container at a constant rate of $20\,\mathrm{cm}^3$ per minute.


	nd the rate, in cm per minute, at which the water level is rising when the height of the wavel is 10 cm.
•••	
•••	
•••	
•••	
•••	
•••	
• • •	
•••	
• • •	
•••	
•••	

In the diagram, AB = AC = 8 cm and angle $CAB = \frac{2}{7}\pi$ radians. The circular arc BC has centre A, the circular arc CD has centre B and ABD is a straight line.

(i)	Show that angle $CBD =$	$\frac{9}{14}\pi$ radians.			[1]
			•••••	 	

Find the perimeter of the shaded region.	[5

The diagram shows the graphs of $y = \tan x$ and $y = \cos x$ for $0 \le x \le \pi$. The graphs intersect at points A and B.

(i)	Find by calculation the x -coordinate of A .	[4]
		••••
		••••
		•••••
		••••
		•••••
		•••••

(ii)	Find by calculation the coordinates of B . [3]

6	Relative to an or	rigin O , the p	osition v	vectors of the	points A	and B ar	e given l	by
---	-------------------	-------------------	-----------	----------------	------------	------------	-----------	----

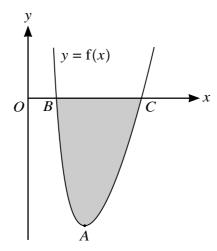
$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j}$	i + 5k	and	$\overrightarrow{OB} = 7\mathbf{i} + 4\mathbf{j} + 3\mathbf{j}$	k
$O_1 - 21 + 3$	$\top J \mathbf{K}$	and	OD = II + II + J	n

Use a scalar product to find angle <i>OAB</i> .	[5]

Find the area of triangle <i>OAB</i> .	[2]

The	e function f is defined for $x \ge 0$ by $f(x) = (4x + 1)^{\frac{3}{2}}$.	
(i)	Find $f'(x)$ and $f''(x)$.	[3
		•••
		•••
		•••
		••••
		••••
		••••
		•••
Γhe	e first, second and third terms of a geometric progression are respectively $f(2)$, $f'(2)$ and $kf''(2)$	١.
(ii)	Find the value of the constant k .	[5]
		•••
		•••
		•••
		••••
		•••

8	The functions	f and	g are	defined	for <i>x</i>	≥ (by
---	---------------	-------	-------	---------	--------------	-----	----


$$f: x \mapsto 2x^2 + 3$$
,
 $g: x \mapsto 3x + 2$.

Show that $gf(x) = 6x^2 + 11$ and obtain an unsimplified expression for $fg(x)$.	[2]
	•••••
	•••••
	•••••
Find an expression for $(fg)^{-1}(x)$ and determine the domain of $(fg)^{-1}$.	[5]
	•••••
	••••••
	Find an expression for $(fg)^{-1}(x)$ and determine the domain of $(fg)^{-1}$.

		•••
		. • •
		.
		•••
(iii)	Solve the equation $gf(2x) = fg(x)$.	3]
		•••
		•••
		•••
		•••
		•••
		•••
		,
		•••

` /	Find the equation of the tangent to the curve at A .	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
he	normal to the curve at A intersects the curve again at B .	
ii)	Find the coordinates of B .	
		•••••
		•••••

The	tangents at A and B intersect each other at C .
(iii)	Find the coordinates of C . [4]

The diagram shows the curve y = f(x) defined for x > 0. The curve has a minimum point at A and crosses the x-axis at B and C. It is given that $\frac{dy}{dx} = 2x - \frac{2}{x^3}$ and that the curve passes through the point $\left(4, \frac{189}{16}\right)$.

(i)	Find the x -coordinate of A .	[2]
(ii)	Find $f(x)$.	[3]

(iii)	Find the x -coordinates of B and C . [4]

[Question $10 \, (iv)$ is printed on the next page.]

 •••••
 •••••
•••••
 •••••
 •••••
 •••••
••••••
••••••
••••••
 •••••
 •••••
 •••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME								
CENTRE NUMBER				CANDIDATE NUMBER				
MATHEMATICS							97	09/12
Paper 1 Pure M	athematics	1 (P1)			Febr	uary/	March	າ 2018
					1	hour	45 mi	inutes
Candidates ansv	ver on the (Question P	Paper.					
Additional Mater	ials: Li	st of Form	ulae (MF9)					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

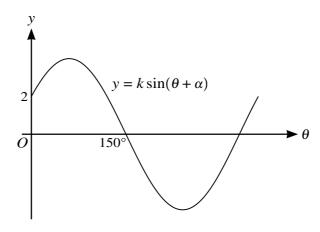
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

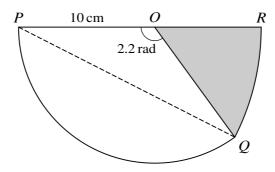
The total number of marks for this paper is 75.

equat	tion of the	ses thro	e.												
		•••••				•••••		•••••							
								•••••							•••••
								•••••				•••••			•••••
•••••		•••••						•••••		•••••		•••••		•••••	
		•••••						•••••				•••••			•••••
												•••••			•••••
•••••		•••••			••••••	•••••		•••••	•••••		•••••	•••••	•••••	•••••	•••••
•••••		•••••				•••••		•••••		•••••	•••••	•••••			•••••
						•••••		•••••				•••••			•••••
•••••		•••••				•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••		•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••		
•••••	•••••	•••••		•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••		
•••••		•••••				•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••		•••••				•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
						•••••		•••••				•••••			•••••
						•••••		•••••				•••••			•••••
•••••	•••••		, 	•••••		•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••
•••••										•••••	•••••	•••••	•••••	•••••	
•••••	•••••	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••
		•••••	· • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	•••••	••••••		•••••			•••••
	•••••	•••••		•••••			••••••	•••••		••••••	•••••	•••••	•••••	•••••	
•••••	•••••	•••••		•••••		•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	
		•••••													

		•••••
(ii)	Hence find the coefficient of x^3 in the expansion of $(2 + 5x)(1 - 2x)^7$.	
(ii)	Hence find the coefficient of x^3 in the expansion of $(2 + 5x)(1 - 2x)^7$.	
(ii)	Hence find the coefficient of x^3 in the expansion of $(2 + 5x)(1 - 2x)^7$.	
(ii)	Hence find the coefficient of x^3 in the expansion of $(2 + 5x)(1 - 2x)^7$.	
(ii)	Hence find the coefficient of x^3 in the expansion of $(2 + 5x)(1 - 2x)^7$.	
(ii)	Hence find the coefficient of x^3 in the expansion of $(2 + 5x)(1 - 2x)^7$.	
(ii)		


- 3 On a certain day, the height of a young bamboo plant was found to be 40 cm. After exactly one day its height was found to be 41.2 cm. Two different models are used to predict its height exactly 60 days after it was first measured.
 - Model A assumes that the daily amount of growth continues to be constant at the amount found for the first day.
 - Model *B* assumes that the daily percentage rate of growth continues to be constant at the percentage rate of growth found for the first day.

(i)	Using model A, find the predicted height in cm of the bamboo plant exactly 60 days after it was first measured. [2]
(ii)	Using model <i>B</i> , find the predicted height in cm of the bamboo plant exactly 60 days after it was first measured. [3]


(i)	Find the exact value of the x -coordinate of A .
(ii)	Find the equation of the perpendicular bisector of AB , giving your answer in the form $y = m$ where m is given exactly and c is an integer.

5	(a)	Express the equation $\frac{5+2\tan x}{3+2\tan x} = 1+\tan x$ as a quadratic equation in $\tan x$ and hence so equation for $0 \le x \le \pi$.	lve the

(b)

The diagram shows part of the graph of $y = k \sin(\theta + \alpha)$, where k and α are constant $0^{\circ} < \alpha < 180^{\circ}$. Find the value of α and the value of k .	ts and [2]
	•••••
	•••••
	•••••

The diagram shows a sector POQ of a circle of radius 10 cm and centre O. Angle POQ is 2.2 radians. QR is an arc of a circle with centre P and POR is a straight line.

(i)	Show that the length of PQ is 17.8 cm, correct to 3 significant figures.	[2]

Find the perimeter of the shaded region.	[4

(i)

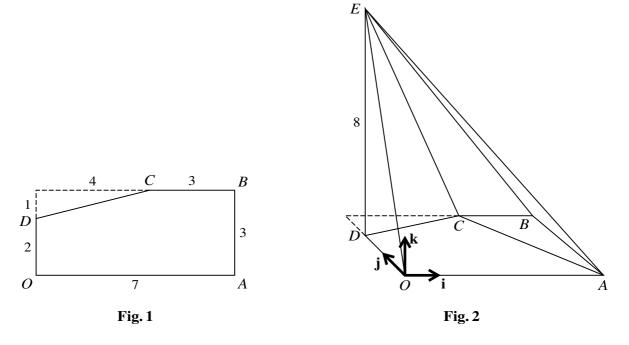


Fig. 1 shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been removed, leaving a 5-sided polygon OABCD. The sides OA, AB, BC and DO have lengths of 7 units, 3 units, 3 units and 2 units respectively. Fig. 2 shows the polygon OABCD forming the horizontal base of a pyramid in which the point E is 8 units vertically above D. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OD and DE respectively.

Find $C\acute{E}$ and the length of CE .	[3]

© UCLES 2018 9709/12/F/M/18

(ii)	Use a scalar product to find angle ECA , giving your answer in the form \cos^{-1} and n are integers.	$\left(\frac{m}{\sqrt{n}}\right)$, where n

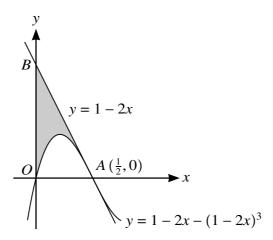
8	A cı	arve has equation $y = \frac{1}{2}x^2 - 4x^{\frac{3}{2}} + 8x$.	
	(i)	Find the <i>x</i> -coordinates of the stationary points.	[5]
			• • • • • •
			•••••
			•••••
			•••••
			•••••
			••••
			••••
			• • • • • •
			•••••
			•••••
			••••
			•••••
			• • • • • •

(ii)	Find $\frac{d^2y}{dx^2}$.	[1]
(iii)	Find, showing all necessary working, the nature of each stationary point.	[2]

Find the set of values	of c for which the	curve and the lin	e meet.	
			•••••	
		•••••	•••••	•••••
			•••••	••••••
•••••			•••••	•••••

e-coordinate of the point at which the tangent touches the curve.	
	•••••
	•••••
	•••••
	•••••

10 Functions f and g are defined by


$$f(x) = \frac{8}{x - 2} + 2 \quad \text{for } x > 2,$$

$$g(x) = \frac{8}{x - 2} + 2 \quad \text{for } 2 < x < 4.$$

(i)	(a)	State the range of the function f.	[1]
	(b)	State the range of the function g.	[1]
	(c)	State the range of the function fg.	[1]
(ii)	Exp	lain why the function gf cannot be formed.	[1]
	•••••		
	•••••		
	•••••		

© UCLES 2018 9709/12/F/M/18

	the set					-					
•••••											
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
•••••		•••••	•••••	•••••		••••••		•••••	•••••	•••••	•••••
•••••	•	••••••	•••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••
•••••		•••••		•••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••
		••••••				••••••	••••••	•	•••••	••••••	••••••
•••••		•••••		•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••
•••••	•	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••
•••••		•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••		••••••	•••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••
•••••		••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••
•••••											

The diagram shows part of the curve $y = 1 - 2x - (1 - 2x)^3$ intersecting the x-axis at the origin O and at $A(\frac{1}{2}, 0)$. The line AB intersects the y-axis at B and has equation y = 1 - 2x.

)	Show that AB is the tangent to the curve at A .	[4]

© UCLES 2018 9709/12/F/M/18

(ii)	Show that the area of the shaded region can be expressed as $\int_0^{\frac{1}{2}} (1-2x)^3 dx$.	[2]
(iii)	Hence, showing all necessary working, find the area of the shaded region.	[3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathe	matics 1 (P1)		February/March 2019
			1 hour 45 minutes
Candidates answer of	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

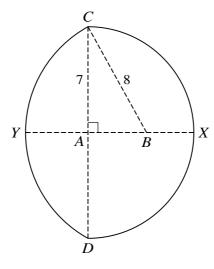
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.


This document consists of 19 printed pages and 1 blank page.

BLANK PAGE

© UCLES 2019 9709/12/F/M/19

 	•••••			•••••	•••••
 	•••••				
 		•••••			
 	••••••	•••••••	••••••	••••••	•••••
 	•••••				
 ,					
	•••••	••••••	•••••	••••••	•••••
 	•••••	•••••		••••••	
 	•••••			•••••	•••••
 	•••••	••••••	•••••	•••••	•••••
 	•••••				
 		•••••			
 	•••••	••••••	••••••	•••••••••••	•••••

$f'(x) = kx^2 - 2x$, where k is a constant. Find the value of k.	[5
	••••••
	•••••
	•••••

YABX is perpendicular to CD , and the arc CYD is part of a circle with centre B and radius 8 cm. It the total area of the region enclosed by the two arcs.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••
	•••••
	••••
	•••••

	6	
4	A curve has equation $y = (2x - 1)^{-1} + 2x$.	
	(i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[3]

ne natule 0	f each station	onary pom	ıt.						
		•••••		•••••					•••••
									•••••
		•••••		•••••					•••••
•••••		•••••		•••••		•••••		•••••	•••••
				•••••					•••••
•••••		•••••		•••••		•••••		•••••	
		•••••		••••					
•••••									
•••••		•••••							
•••••		•••••	••••••	•••••	••••••	•••••	••••••	•••••	• • • • • • •
		•••••		•	••••••	•••••	••••••••		•••••
•••••		•••••	, 	•••••	••••••	••••••	••••••	•••••	•••••
				• • • • • • • • • • • • • • • • • • • •	•••••	•••••			•••••
•••••		•••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••
									•••••
									•••••
				•••••					•••••
•••••		•••••		•••••		•••••		•••••	•••••
•••••		•••••		• • • • • • • • • • • • • • • • • • • •					•••••
									•••••

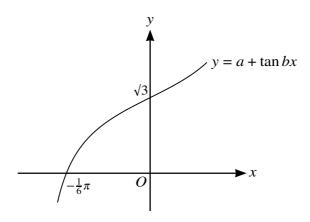
5 Two vectors, **u** and **v**, are such that

$$\mathbf{u} = \begin{pmatrix} q \\ 2 \\ 6 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 8 \\ q - 1 \\ q^2 - 7 \end{pmatrix},$$

where q is a constant.

(i)	Find the values of q for which \mathbf{u} is perpendicular to \mathbf{v} .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

© UCLES 2019 9709/12/F/M/19

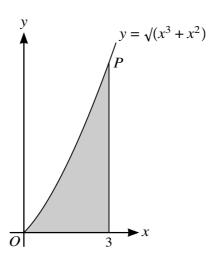

Find the angle between \mathbf{u} and \mathbf{v} when $q = 0$.	I

•••••		•••••	•	••••••	••••••	•	•••••
•••••			•••••	•••••	•••••		•••••
			•••••	•••••	•••••		
						• • • • • • • • • • • • • • • • • • • •	
							•••••
•••••				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
••••••			•				
					•••••		
•••••		••••••	••••••	••••••	••••••	•	•••••
			•••••	•••••	•••••		
		••••••	•••••	••••••	••••••	•	••••••
				•••••			
••••••••••	••••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••			••••••	••••••	••••••	•••••	•••••
						•••••	•••••

p and hence find the values of n and p .	[5

	Solve the equation $3\sin^2 2\theta + 8\cos 2\theta = 0$ for 0°	

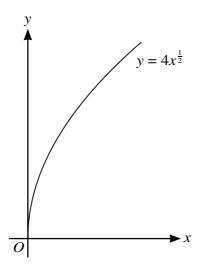
(b)



The diagram shows part of the graph of $y = a + \tan bx$, where x is measured in radians and a and b are constants. The curve intersects the x -axis at $\left(-\frac{1}{6}\pi, 0\right)$ and the y -axis at $(0, \sqrt{3})$. Find the values of a and b .

(i)]	Express $x^2 - 4x + 7$ in the form $(x + a)^2 + b$.	
The f	function f is defined by $f(x) = x^2 - 4x + 7$ for $x < k$, where k is a constant.	
(ii)	State the largest value of k for which f is a decreasing function.	
The v	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	

© UCLES 2019 9709/12/F/M/19


)	The function g is defined by $g(x) = \frac{2}{x-1}$ for $x > 1$. Find an expression for $gf(x)$ and state the range of gf.

The diagram shows part of the curve with equation $y = \sqrt{(x^3 + x^2)}$. The shaded region is bounded by the curve, the *x*-axis and the line x = 3.

(i)	Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the <i>x</i> -axis. [4]

normal to the curve at <i>P</i> crosses the <i>y</i> -axis.	[6

The diagram shows the curve with equation $y = 4x^{\frac{1}{2}}$.

(i)	The straight line with equation $y = x + 3$ intersects the curve at points A and B. Find the length of AB.

(ii)	The tangent to the curve at a point T is parallel to AB . Find the coordinates of T .	[3]
(iii)	Find the coordinates of the point of intersection of the normal to the curve at T with	the line AB .
		[3]

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

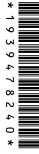
MATHEMATICS

Paper 1 Pure Mathematics 1

9709/12

February/March 2020
1 hour 50 minutes

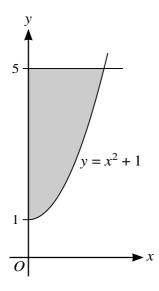
You must answer on the question paper.


You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION


- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

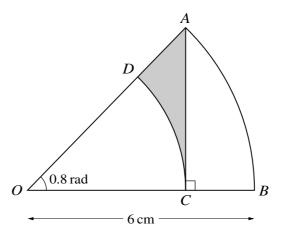
This document has 20 pages. Blank pages are indicated.

The function f is defined by $f(x) = \frac{1}{3x+2} + x^2$ for $x < -1$.										
Determine whether f is an increasing function, a decreasing function or neither.										

	sformat		two:	single	e trans	sform	ations	whic	h have	e been	comb	oined	to giv	ve the	resultin [4
	•••••	•••••		•••••			•••••		•••••	•••••		•••••		•••••	•••••
													••••••		
															•••••
•••••													••••••		
••••													•••••		
••••										• • • • • • • • • • • • • • • • • • • •		•••••	•••••		
	•••••	•••••							•••••	• • • • • • • • • • • • • • • • • • • •		•••••			
													•••••		
													•••••		•••••

The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis.

Find the volume obtained.	[4]


© UCLES 2020 9709/12/F/M/20

Find the <i>x</i>	-coordinate of P .					
••••••		•••••	••••••	•••••••	••••••	,
•••••	•••••		•••••	•••••		
•••••						
•••••	•••••		•••••	••••••	•••••	,
			•••••			
•••••			•••••	•••••	••••••	,
•••••				•••••		
			•••••			
••••••	••••••	•	••••••	••••••	•••••	
•••••				•••••	•••••	

5	Solve	the e	equation
J	SOLVE	uic v	cquanon

-	$\frac{\tan\theta + 3\sin\theta + 2}{\tan\theta - 3\sin\theta + 1} = 2$
for $0^{\circ} \le \theta \le 90^{\circ}$.	[5]

Find the possible values of the constant a .	[3
Hence find the coefficient of $\frac{1}{x^7}$ in the expansion.	[2

The diagram shows a sector AOB which is part of a circle with centre O and radius 6 cm and with angle AOB = 0.8 radians. The point C on OB is such that AC is perpendicular to OB. The arc CD is part of a circle with centre O, where O lies on OA.

Find the area of the shaded region.	[6]

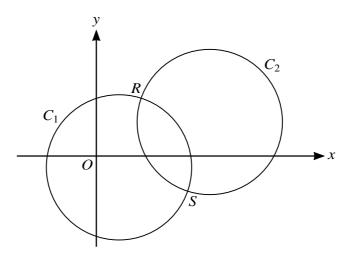
	roman's basic salary for her first year with a particular company is \$30 000 and at the end of the she also gets a bonus of \$600.
(a)	For her first year, express her bonus as a percentage of her basic salary. [1]
	he end of each complete year, the woman's basic salary will increase by 3% and her bonus will ease by \$100.
(b)	Express the bonus she will be paid at the end of her 24th year as a percentage of the basic salary paid during that year. [5]

Express $2x^2 + 12x + 11$ in the form $2(x + a)^2 + b$, where a and b are constants. [2]
function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \le -4$.
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [3]

The function g is defined by g(x) = 2x - 3 for $x \le k$.

(c)	For the case where $k = -1$, solve the equation $fg(x) = 193$.	[2]
(d)	State the largest value of k possible for the composition fg to be defined.	[1]

	at at $(a, 14)$, where a is a positive constant.	
(a)	Find the value of <i>a</i> .	
(b)	Determine the nature of the stationary point.	


	•••••
	•
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

11	(a)	Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^{\circ} \le x \le 180^{\circ}$.	[4]
			•••••
			•••••
			· • • • • • • •
			· • • • • • •
			· • • • • • •
			•••••
	(b)	Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no solutions.	[2]
			•••••
			•••••

in the interval $0^{\circ} \le x \le 180^{\circ}$, and find these solutions.		
	••••••	
	••••••	

12 A diameter of a circle C_1 has end-points at (-3, -5) and (7, 3).

Find an equation of the circle C_1 .	[3]

The circle C_1 is translated by $\left({8\atop 4} \right)$ to give circle C_2 , as shown in the diagram.

(b)	Find an equation of the circle C_2 .	[2]

The two circles intersect at points R and S.

(c)	Show that the equation of the line RS is $y = -2x + 13$.	[4]
(d)	Hence show that the x-coordinates of R and S satisfy the equation $5x^2 - 60x + 13$	59 = 0. [2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

February/March 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

1	(a)	Find the first three terms in the expansion, in ascending powers of x , of $(1 + x)^5$.	[1]
			•••••
			•••••
			•••••
			•••••
	(b)	Find the first three terms in the expansion, in ascending powers of x , of $(1-2x)^6$.	[2]
			•••••
			•••••
			•••••
	(c)	Hence find the coefficient of x^2 in the expansion of $(1+x)^5(1-2x)^6$.	[2]
			•••••
			•••••
			•••••
			•••••

$(2x-3)^2 - \frac{4}{(2x-3)^2} - 3 = 0.$	

Solve the equation $\frac{\tan \theta + 2\sin \theta}{\tan \theta - 2\sin \theta} = 3$ for $0^{\circ} < \theta < 18$	80°. [4]

······································
•••••
••••••
••••••
•••••

In the diagram, the graph of y = f(x) is shown with solid lines. The graph shown with broken lines is a transformation of y = f(x).

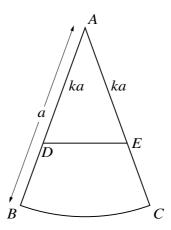
(a)	Describe fully the two single transformations of $y = f(x)$ that have been combined to give the resulting transformation. [4]
(b)	State in terms of y , f and x , the equation of the graph shown with broken lines. [2]

Find the rate	of increase at A	of the x-coord	dinate of the po	oint.	
			•••••	•••••	•••••
					••••••
	••••••	•••••••••••	•••••	•••••	••••••
			•••••	•••••	•••••
					•••••
			•••••		
	•••••				•••••
•••••					

)	Find the equation of the curve.	[4]
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••
		••••••
		••••••
		••••••
		•••••
		••••••
		••••••
		••••••
		•••••

f:
$$x \mapsto x^2 + 2x + 3$$
 for $x \le -1$,
g: $x \mapsto 2x + 1$ for $x \ge -1$.

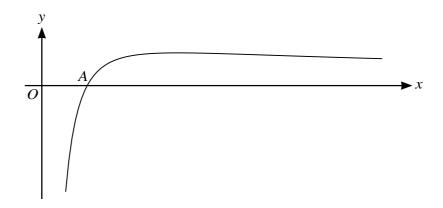
express f	(x) in the form	$(x+a)^2+b$	and state	ine range	Of I.		[3
						 	•••••
						 	•••••
•••••					•••••	 	•••••
		•••••				 	••••••
•••••					•••••	 	•••••
					•••••	 	•••••
•••••						 	•••••
					•••••	 	
•••••					•••••	 	•••••
•••••		•••••	•••••		•••••	 	•••••
		•••••			•••••	 	
		•••••	•••••		•••••	 	
					•••••	 	
						 	•••••
					•••••	 	
					•••••	 	


	••••••		•••••	••••••••••	••••••
		•••••••••••••••••••••••••••••••••••••••	•••••	 •••••	••••••
	•••••			 •••••	
	•••••••••••		•••••	 ••••••	••••••
			•••••	 	••••••
				 	•••••
				 	•••••
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
Solve the equati	on $gf(x) = 13$			 	
Solve the equati	on $gf(x) = 13$				
Solve the equati	on $gf(x) = 13$			 	
Solve the equati	on $gf(x) = 13$				
Solve the equati	on $gf(x) = 13$				
Solve the equati					

Find an equation of the circle.	
	•••••
	•••••

		•••••
(b)	Find an equation of the tangent to the circle at <i>B</i> .	[2]

	the case where the progression is geometric, the sum to infinity is $\frac{1}{\cos \theta}$.	
(i)	Show that the second term is $\cos \theta \sin^2 \theta$.	
		•••
		•••
		•••
		••
		••
		••
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4	••
(ii)		•••
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4	•••
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4	S
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	S
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	S
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	s
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	s
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	s
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	s
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	s
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 figures.	S:


••••••
•••••••

The diagram shows a sector ABC which is part of a circle of radius a. The points D and E lie on AB and AC respectively and are such that AD = AE = ka, where k < 1. The line DE divides the sector into two regions which are equal in area.

(a)	For the case where angle $BAC = \frac{1}{6}\pi$ radians, find k correct to 4 significant figures. [5]

(b)	For the general case in which angle $BAC = \theta$ radians, where $0 < \theta < \frac{1}{2}\pi$, it is given that $\frac{\theta}{\sin \theta}$, > 1
	Find the set of possible values of k .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••
		••••
		•••••
		•••••
		•••••
		••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

The diagram shows the curve with equation $y = 9(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}})$. The curve crosses the *x*-axis at the point *A*.

(a)	Find the <i>x</i> -coordinate of <i>A</i> .	[2]
(b)	Find the equation of the tangent to the curve at A .	[4]

(c)	Find the <i>x</i> -coordinate of the maximum point of the curve.	[2]
(d)	Find the area of the region bounded by the curve, the <i>x</i> -axis and the line $x = 9$.	[4]
()		L ·
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1 (P1)

May/June 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

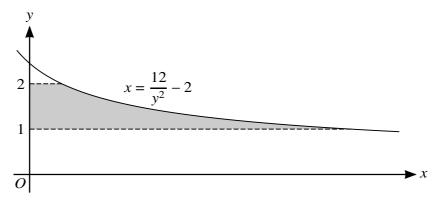
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 75.

1 Find the term independent of x in the expansion of $\left(x - \frac{3}{2x}\right)^6$. [3]

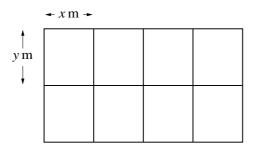
2 Solve the equation
$$3\sin^2\theta = 4\cos\theta - 1$$
 for $0^\circ \le \theta \le 360^\circ$. [4]

3

The diagram shows part of the curve $x = \frac{12}{y^2} - 2$. The shaded region is bounded by the curve, the y-axis and the lines y = 1 and y = 2. Showing all necessary working, find the volume, in terms of π , when this shaded region is rotated through 360° about the y-axis. [5]

4 A curve is such that $\frac{dy}{dx} = 2 - 8(3x + 4)^{-\frac{1}{2}}$.

(i) A point *P* moves along the curve in such a way that the *x*-coordinate is increasing at a constant rate of 0.3 units per second. Find the rate of change of the *y*-coordinate as *P* crosses the *y*-axis.

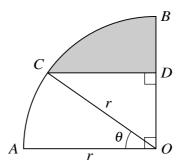

[2]

The curve intersects the y-axis where $y = \frac{4}{3}$.

(ii) Find the equation of the curve.

[4]

5


A farmer divides a rectangular piece of land into 8 equal-sized rectangular sheep pens as shown in the diagram. Each sheep pen measures x m by y m and is fully enclosed by metal fencing. The farmer uses 480 m of fencing.

(i) Show that the total area of land used for the sheep pens, $A \text{ m}^2$, is given by

$$A = 384x - 9.6x^2.$$
 [3]

(ii) Given that x and y can vary, find the dimensions of each sheep pen for which the value of A is a maximum. (There is no need to verify that the value of A is a maximum.) [3]

- 6 (a) Find the values of the constant m for which the line y = mx is a tangent to the curve $y = 2x^2 4x + 8$.
 - (b) The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 + ax + b$, where a and b are constants. The solutions of the equation f(x) = 0 are x = 1 and x = 9. Find
 - (i) the values of a and b, [2]
 - (ii) the coordinates of the vertex of the curve y = f(x). [2]

In the diagram, AOB is a quarter circle with centre O and radius r. The point C lies on the arc AB and the point D lies on OB. The line CD is parallel to AO and angle $AOC = \theta$ radians.

- (i) Express the perimeter of the shaded region in terms of r, θ and π . [4]
- (ii) For the case where r = 5 cm and $\theta = 0.6$, find the area of the shaded region. [3]
- 8 A curve has equation $y = 3x \frac{4}{x}$ and passes through the points A(1, -1) and B(4, 11). At each of the points C and D on the curve, the tangent is parallel to AB. Find the equation of the perpendicular bisector of CD.
- 9 (a) The first term of a geometric progression in which all the terms are positive is 50. The third term is 32. Find the sum to infinity of the progression. [3]
 - (b) The first three terms of an arithmetic progression are $2 \sin x$, $3 \cos x$ and $(\sin x + 2 \cos x)$ respectively, where x is an acute angle.
 - (i) Show that $\tan x = \frac{4}{3}$. [3]
 - (ii) Find the sum of the first twenty terms of the progression. [3]

[Questions 10 and 11 are printed on the next page.]

10 Relative to an origin O, the position vectors of points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ k \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$$

respectively, where k is a constant.

- (i) Find the value of k in the case where angle $AOB = 90^{\circ}$. [2]
- (ii) Find the possible values of k for which the lengths of AB and OC are equal. [4]

The point D is such that \overrightarrow{OD} is in the same direction as \overrightarrow{OA} and has magnitude 9 units. The point E is such that \overrightarrow{OE} is in the same direction as \overrightarrow{OC} and has magnitude 14 units.

- (iii) Find the magnitude of \overrightarrow{DE} in the form \sqrt{n} where n is an integer. [4]
- 11 The function f is defined by $f: x \mapsto 4 \sin x 1$ for $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$.
 - (i) State the range of f. [2]
 - (ii) Find the coordinates of the points at which the curve y = f(x) intersects the coordinate axes. [3]
 - (iii) Sketch the graph of y = f(x). [2]
 - (iv) Obtain an expression for $f^{-1}(x)$, stating both the domain and range of f^{-1} . [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1 (P1)

May/June 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 4 printed pages and 1 insert.

International Examinations

1 Functions f and g are defined by

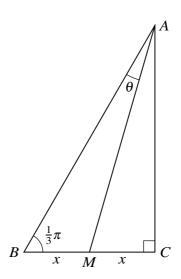
$$f: x \mapsto 10 - 3x, \quad x \in \mathbb{R},$$
$$g: x \mapsto \frac{10}{3 - 2x}, \quad x \in \mathbb{R}, \ x \neq \frac{3}{2}.$$

[3]

Solve the equation ff(x) = gf(2).

- 2 A curve is such that $\frac{dy}{dx} = \frac{8}{(5-2x)^2}$. Given that the curve passes through (2, 7), find the equation of the curve.
- **3** Relative to an origin O, the position vectors of points A and B are given by

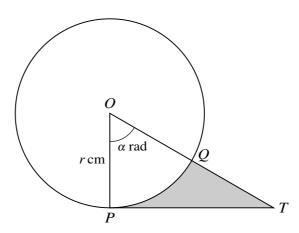
$$\overrightarrow{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$$
 and $\overrightarrow{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.


The point C is such that $\overrightarrow{AB} = \overrightarrow{BC}$. Find the unit vector in the direction of \overrightarrow{OC} . [4]

4 Find the term that is independent of x in the expansion of

(i)
$$\left(x - \frac{2}{x}\right)^6$$
, [2]

(ii)
$$\left(2 + \frac{3}{x^2}\right) \left(x - \frac{2}{x}\right)^6$$
. [4]


5

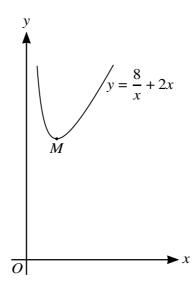
In the diagram, triangle ABC is right-angled at C and M is the mid-point of BC. It is given that angle $ABC = \frac{1}{3}\pi$ radians and angle $BAM = \theta$ radians. Denoting the lengths of BM and MC by x,

(i) find
$$AM$$
 in terms of x , [3]

(ii) show that
$$\theta = \frac{1}{6}\pi - \tan^{-1}\left(\frac{1}{2\sqrt{3}}\right)$$
. [2]

The diagram shows a circle with radius r cm and centre O. The line PT is the tangent to the circle at P and angle $POT = \alpha$ radians. The line OT meets the circle at Q.

- (i) Express the perimeter of the shaded region PQT in terms of r and α . [3]
- (ii) In the case where $\alpha = \frac{1}{3}\pi$ and r = 10, find the area of the shaded region correct to 2 significant figures.


7 (i) Prove the identity
$$\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} = \frac{4}{\sin\theta\tan\theta}$$
. [4]

(ii) Hence solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\sin\theta \left(\frac{1 + \cos\theta}{1 - \cos\theta} - \frac{1 - \cos\theta}{1 + \cos\theta} \right) = 3.$$
 [3]

- 8 Three points have coordinates A(0, 7), B(8, 3) and C(3k, k). Find the value of the constant k for which
 - (i) C lies on the line that passes through A and B, [4]
 - (ii) C lies on the perpendicular bisector of AB. [4]
- 9 A water tank holds 2000 litres when full. A small hole in the base is gradually getting bigger so that each day a greater amount of water is lost.
 - (i) On the first day after filling, 10 litres of water are lost and this increases by 2 litres each day.
 - (a) How many litres will be lost on the 30th day after filling? [2]
 - (b) The tank becomes empty during the nth day after filling. Find the value of n. [3]
 - (ii) Assume instead that 10 litres of water are lost on the first day and that the amount of water lost increases by 10% on each succeeding day. Find what percentage of the original 2000 litres is left in the tank at the end of the 30th day after filling. [4]

[Questions 10 and 11 are printed on the next page.]

The diagram shows the part of the curve $y = \frac{8}{x} + 2x$ for x > 0, and the minimum point M.

- (i) Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y^2 dx$. [5]
- (ii) Find the coordinates of M and determine the coordinates and nature of the stationary point on the part of the curve for which x < 0. [5]
- (iii) Find the volume obtained when the region bounded by the curve, the x-axis and the lines x = 1 and x = 2 is rotated through 360° about the x-axis.
- 11 The function f is defined by $f: x \mapsto 6x x^2 5$ for $x \in \mathbb{R}$.
 - (i) Find the set of values of x for which $f(x) \le 3$. [3]
 - (ii) Given that the line y = mx + c is a tangent to the curve y = f(x), show that $4c = m^2 12m + 16$.

The function g is defined by $g: x \mapsto 6x - x^2 - 5$ for $x \ge k$, where k is a constant.

(iii) Express
$$6x - x^2 - 5$$
 in the form $a - (x - b)^2$, where a and b are constants. [2]

- (iv) State the smallest value of k for which g has an inverse. [1]
- (v) For this value of k, find an expression for $g^{-1}(x)$. [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1 (P1)

May/June 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

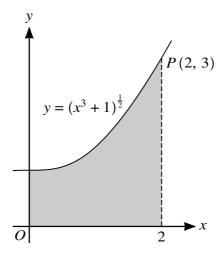
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

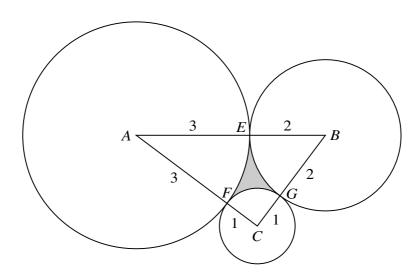
The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 75.

[3]

1 Find the coefficient of x in the expansion of $\left(\frac{1}{x} + 3x^2\right)^5$.

2


The diagram shows part of the curve $y = (x^3 + 1)^{\frac{1}{2}}$ and the point P(2, 3) lying on the curve. Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the *x*-axis.

3 A curve is such that $\frac{dy}{dx} = 6x^2 + \frac{k}{x^3}$ and passes through the point P(1, 9). The gradient of the curve at P is 2.

- (i) Find the value of the constant k. [1]
- (ii) Find the equation of the curve. [4]

The 1st, 3rd and 13th terms of an arithmetic progression are also the 1st, 2nd and 3rd terms respectively of a geometric progression. The first term of each progression is 3. Find the common difference of the arithmetic progression and the common ratio of the geometric progression. [5]

A curve has equation $y = 8x + (2x - 1)^{-1}$. Find the values of x at which the curve has a stationary point and determine the nature of each stationary point, justifying your answers. [7]

The diagram shows triangle ABC where AB = 5 cm, AC = 4 cm and BC = 3 cm. Three circles with centres at A, B and C have radii 3 cm, 2 cm and 1 cm respectively. The circles touch each other at points E, F and G, lying on AB, AC and BC respectively. Find the area of the shaded region EFG.

7 The point P(x, y) is moving along the curve $y = x^2 - \frac{10}{3}x^{\frac{3}{2}} + 5x$ in such a way that the rate of change of y is constant. Find the values of x at the points at which the rate of change of x is equal to half the rate of change of y.

8 (i) Show that $3 \sin x \tan x - \cos x + 1 = 0$ can be written as a quadratic equation in $\cos x$ and hence solve the equation $3 \sin x \tan x - \cos x + 1 = 0$ for $0 \le x \le \pi$. [5]

(ii) Find the solutions to the equation $3 \sin 2x \tan 2x - \cos 2x + 1 = 0$ for $0 \le x \le \pi$. [3]

9 The position vectors of A, B and C relative to an origin O are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 5 \\ p \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix},$$

where p is a constant.

(i) Find the value of p for which the lengths of AB and CB are equal. [4]

(ii) For the case where p = 1, use a scalar product to find angle ABC. [4]

[Questions 10 and 11 are printed on the next page.]

- 10 The function f is such that f(x) = 2x + 3 for $x \ge 0$. The function g is such that $g(x) = ax^2 + b$ for $x \le q$, where a, b and q are constants. The function fg is such that $f(x) = 6x^2 21$ for $x \le q$.
 - (i) Find the values of a and b. [3]
 - (ii) Find the greatest possible value of q. [2]

It is now given that q = -3.

- (iii) Find the range of fg. [1]
- (iv) Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$. [3]
- 11 Triangle ABC has vertices at A(-2, -1), B(4, 6) and C(6, -3).
 - (i) Show that triangle ABC is isosceles and find the exact area of this triangle. [6]
 - (ii) The point D is the point on AB such that CD is perpendicular to AB. Calculate the x-coordinate of D.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS	}					9709/11
Paper 1 Pure M	athematics	1 (P1)			May	y/June 2017
					1 hour	45 minutes
Candidates ansv	wer on the C	Question Pa	aper.			
Additional Mater	ials: Li	st of Formu	lae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

\overline{b} .								
				•••••				
•••••		•••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••	•••••	•••••	•••••	•••••			
••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	••••••	••••••	•••••		••••••	•••••
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •			
•••••		•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••	•••••	•••••	•••••	•••••			•••••
	•••••							
	,				,			
••••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••

2	Relative to an	origin O , the	position	vectors of	points A	and B are	given	by

e position vectors of points
$$A$$
 and B are given $\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$,

and angle $AOB = 90^{\circ}$.

(i)	Find the value of p .	[2]
	e point C is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$.	
- T-1		
	Find the unit vector in the direction of \overrightarrow{BC} .	[4]
		[4]
		[4]
		[4]
	Find the unit vector in the direction of \overrightarrow{BC} .	
	Find the unit vector in the direction of \overrightarrow{BC} .	
	Find the unit vector in the direction of \overrightarrow{BC} .	
	Find the unit vector in the direction of \overrightarrow{BC} .	
	Find the unit vector in the direction of \overrightarrow{BC} .	

[3	$\sin \theta$	$1 + \cos \theta$	$\sin \theta$	the identity	110,6 11
	•••••	•••••			
	•••••	•••••	•••••		•••••
					•••••
	•••••				
	•••••				
	•••••	•••••	•••••	•••••	•••••
					•••••
	•••••				
	•••••				•••••
	•••••				
	•••••				
	••••				
	•••••	•••••			
	•••••	•••••			
	•••••	•••••			
	•••••				
					•••••

	-	sin ₩	$1 + \cos \theta$	$\cos \theta$	$^{\circ} \leqslant \theta \leqslant 360^{\circ}.$	
		•••••				
• • • • • • • • • • • • • • • • • • • •	•••••	•••••				
	•••••	•••••	•••••	••••••	•••••	
•••••						
•••••••	••••••	•••••	•	•••••••••••	•••••	
•••••	•••••	•••••	•••••	••••••	•••••	
		•••••				
	•••••	•••••		••••••	•••••	

	of all the term	ns in the pi	ogiession	•				
					•••••			
••••••	•••••	••••	••••••	••••••	•••••	•••••	•••••	•••••
••••••			•••••	•••••	•••••	•••••	••••••	
••••••	•••••	•••••	••••••		••••••	••••••	••••••	••••••
•••••			••••••	•••••	•••••	•••••	••••••	
••••••				•••••	•••••			
••••••			•••••	•••••	•••••	•••••		
			•••••	•••••	•••••			
••••••	•••••	••••	••••••	••••••	•••••	•••••	•••••	
••••••								
				•••••				
•••••	•••••		••••••	••••••	•••••	•••••	••••••	••••••
•••••			••••••		•••••	•••••	•••••	•••••
	•••••							

increases by 2.5	ool allocates a s % of the amount nount allocated i	allocated the pa	revious year. Ir	n 2005 the scho	
•••••					
•••••					

5	The equation	of a curve	is $y = 2 \cos x$.
---	--------------	------------	---------------------

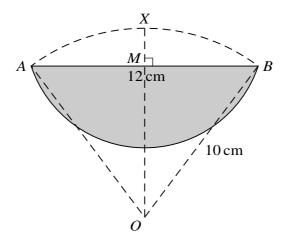
(i)	Sketch the graph of $y = 2\cos x$ for $-\pi \le x \le \pi$, stating the coordinates of the point of intersect	io	n
	with the y-axis.	[2	2]

Points P and Q lie on the curve and have x-coordinates of $\frac{1}{3}\pi$ and π respectively.

(ii)	Find the length of PQ correct to 1 decimal place.	2]
		•••
		•••
		•••
		•••
		•••

The line through P and Q meets the x-axis at H(h, 0) and the y-axis at K(0, k). (iii) Show that $h = \frac{5}{9}\pi$ and find the value of k. [3]

The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are vertical. The height of the prism is h cm and the volume of the prism is 2000 cm^3 .


(i) Express h in terms of x and show that the total surface area of the prism, $A \text{ cm}^2$, is given by $A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}.$

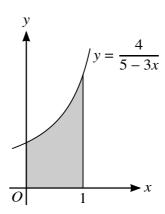
	2	$\sqrt{3}$		
			•••••	
	•••••	•••••	•••••	
	•••••			
	•••••			

)	Determine, showing all necessary working, the nature of this stationary value.

Find the equation of the	curve.		
		•••••	•••••
		••••••	

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

In the diagram, OAXB is a sector of a circle with centre O and radius $10 \, \text{cm}$. The length of the chord AB is $12 \, \text{cm}$. The line OX passes through M, the mid-point of AB, and OX is perpendicular to AB. The shaded region is bounded by the chord AB and by the arc of a circle with centre X and radius XA.


(i)	Show that angle <i>AXB</i> is 2.498 radians, correct to 3 decimal places. [3]
(ii)	Find the perimeter of the shaded region. [3]

		•••
		•••
		•••
		•••
		•••
(888)		
(111)	Find the area of the shaded region.	3]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

) F	ind an expression for $f^{-1}(x)$.
••	
••	
••	
••	
••	
••	
••	

The function g is defined by $g: x \mapsto 4x + a$ for $x \in \mathbb{R}$, where a is a constant.

Find the value of <i>a</i>	for which g	31(-1) = 3.			
	•••••				
••••••		••••••	•••••	•••••••	•••••
•••••		••••••	•••••	•••••	•••••
Find the possible v	alues of a gi	iven that the e	equation $f^{-1}(x) =$	$= g^{-1}(x)$ has tw	o equal roots.
Find the possible v	alues of a gi	iven that the e	equation $f^{-1}(x) =$	$= g^{-1}(x)$ has tw	o equal roots.
Find the possible v	alues of a gi	iven that the e	equation $f^{-1}(x) =$	$= g^{-1}(x)$ has tw	o equal roots.
Find the possible v	alues of a gi	iven that the e	equation $f^{-1}(x) =$	$= g^{-1}(x)$ has tw	o equal roots.
Find the possible v					o equal roots.
Find the possible v					
Find the possible v					
Find the possible v					
Find the possible v					
Find the possible v					
Find the possible v					
Find the possible v					
Find the possible v					

The diagram shows part of the curve $y = \frac{4}{5 - 3x}$.

(i)	Find the equation of the normal to the curve at the point where $x = 1$ in the form $y = mx + c$, where m and c are constants. [5]

The shaded region is bounded by the curve, the coordinate axes and the line x = 1.

	gh 360° about the x -axis.	
•••		••••••
•••		
•••		
•••		•••••
•••		
•••		
•••		
•••		
•••		
•••		
•••		•••••
•••		•••••
•••		•••••
•••		
•••		•••••
•••		
•••		
•••		•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathe	matics 1 (P1)		May/June 2017
			1 hour 45 minutes
Candidates answer of	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

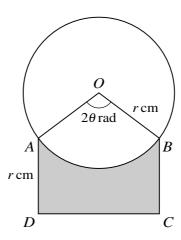
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

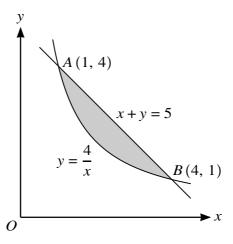

1	(i)	Find the coefficient of x in the expansion of $\left(2x - \frac{1}{x}\right)^5$.	[2]
	(ii)	Hence find the coefficient of x in the expansion of $(1 + 3x^2) \left(2x - \frac{1}{x}\right)^5$.	[4]

The point A has coordinates (-2, 6). The equation of the perpendicular bisector of the line AB is

(1)	Find the equation of AB .	
(ii)) Find the coordinates of B .	
(ii)) Find the coordinates of B .	
(ii)	Find the coordinates of <i>B</i> .	
(ii)	Find the coordinates of <i>B</i> .	
(ii)		

	nce solve the equation $\left(\frac{1}{\cos\theta} - \tan\theta\right)^2 = \frac{1}{2}$, for $0^\circ \le \theta \le 360^\circ$.								
									•••••
••••••	••••••	••••••	••••••	••••••	••••••		••••••	•••••••	•••••
									•••••
••••••		••••••	••••••	••••••	••••••		•••••	••••••	•••••
									•••••
•••••		•••••	••••••	••••••	•••••		•••••	••••••	•••••
									•••••
•••••		•••••	••••••	••••••	•••••		•••••	••••••	•••••
									•••••
••••••	•••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
•••••	•••••	•••••	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••	•••••	•••••	••••••	••••••	••••••		••••••	••••••	•••••
•••••		•••••	••••••	••••••	••••••			••••••	•••••
••••••		•••••	••••••	••••••	•••••			••••••	•••••
•••••		••••••	••••••	•••••	••••••			••••••	•••••
••••••		•••••	••••••	••••••	•••••			••••••	•••••

The diagram shows a circle with radius r cm and centre O. Points A and B lie on the circle and ABCD is a rectangle. Angle $AOB = 2\theta$ radians and AD = r cm.


(i)	Express the perimeter of the shaded region in terms of r and θ .	[3]

5	A curve has equation $y = 3 +$	$\frac{12}{2-x}$.
		$\angle - x$

•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••			•••••					•••••			•••••		
•••••			•••••		•••••		•••••						
													•••
													•••
• • • • • • •	••••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••••	•••••	••••••	•••••	•••
•••••	••••••	••••••	•••••		•••••		•••••	•••••		••••••		•••••	•••
	•••••	••••••	•••••		•••••	••••••	••••••	•••••		•••••		•••••	•••
•••••	•••••	•••••	•••••		•••••		•••••	•••••		•••••		•••••	
•••••	•••••		•••••					•••••				•••••	
			•••••										
								•••••					
			•••••										
•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••
•••••		••••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	• • •
•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••		•••••		•••••	•••
•••••													•••

oi 0.04 U	nits per sec	Joila. Fill	u me rat	e oi cha	nge or tr	ie y-coor	umate W	x = 1	4.	
••••••		••••••	••••••	•••••	•	••••••	•	••••••	••••••	•••••
•••••				•••••					•••••	
•••••		••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		•••••	•••••			•••••				•••••
••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	•••••
•••••			•••••							•••••
•••••	••••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••
			••••••						••••••	•••••
•••••		••••••	••••••	•••••		•••••		•••••	•••••	•••••
•••••		•••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••
•••••			•••••					•••••		•••••
•••••		•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••		•••••	•••••			•••••			•••••	•••••
•••••		••••••	••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
										•••••

The diagram shows the straight line $x + y = 5$ intersecting the curve $y = \frac{4}{x}$ at the points $A(1, 4)$ and $B(4, 1)$. Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the x -axis.

	he progression which must be taken for their sum to exceed 20 000.	
		•••••
•		
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
•		
		••••••

	_	rogressio							
•••••		•••••	•••••	•••••		•••••			•••••
•••••			•••••	•••••		•••••	•••••		
		•	•	•••••		•			
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••
•••••	• • • • • • • • • • • • • • • • • • • •			•••••		•••••	•••••		
••••••	•••••	••••••	••••••	••••••	••••••	••••••		•	•••••
••••••	•••••	•••••	••••••	•••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••	•••••
•••••		•••••		•••••		•••••			
,									

8 Relative to an origin O , the position vectors of three points A , B and C are S	given by
---	----------

 $\overrightarrow{OA} = 3\mathbf{i} + p\mathbf{j} - 2p\mathbf{k}$, $\overrightarrow{OB} = 6\mathbf{i} + (p+4)\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = (p-1)\mathbf{i} + 2\mathbf{j} + q\mathbf{k}$, where p and q are constants.

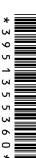
(i)	In the case where $p = 2$, use a scalar product to find angle AOB .	[4]
		••••••

				•••••	•••••					
		•••••								•••••••
						•••••		•••••		
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••	•••••	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
		•••••	•••••	•••••		•••••				
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
								• • • • • • • • • • • • • • • • • • • •		
	••••••	•••••	•••••	•••••	•••••	•••••		•••••		
			•••••	•••••	•••••	•••••				
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
								•••••		
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		

	Find the coordinates of the stationary point of the curve.
	$\mathrm{d}^2\mathrm{v}$
ii)	Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the stationary po

(iii)	Find the values of x at which the line $y = 6$ meets the curve.	[3]
(iv)	State the set of values of k for which the line $y = k$ does not meet the curve.	[1]
		•••••
		••••••
		•••••

(:)		
(1)	Solve the equation $f(x) + 4 = 0$, giving your answer correct to 1 decimal place.	
		••••••
		••••••
(ii)	Find an expression for $f^{-1}(x)$ and find the domain of f^{-1} .	
		••••••


(iii) Sketch, on the same diagram, the graphs of y = f(x) and $y = f^{-1}(x)$. [3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/13
Paper 1 Pure Mathe	matics 1 (P1)		May/June 2017
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

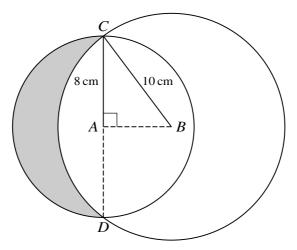
constant a.						
		•••••				
•••••	•••••	•••••	•••••	••••••	•••••	•••••
•••••		•••••			•••••	
••••••	••••••	••••••	••••••	••••••	••••••	•••••
		•••••				
		•••••				
•••••						
		•••••				•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••		•••••				
•••••		•••••	••••••	••••••	••••••	•••••
•••••	•••••	•••••				
•••••						•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
•••••	•••••	•••••	•••••	••••••	••••••	•••••
•••••		•••••				
•••••	•••••	•••••	•••••		•••••	
		•••••				
••••••		•••••	•••••	••••••	•••••	•••••
			/			

(i)	Show that $S = 2 - r$.	[2
ii)	Find the set of possible values that S can take.	[2

4	Relative to an	n origin O , t	he position	vectors of	points A	and B are	e given	bv
•	reciail to to ai		ne position	, cotors or	Pomesia	una D un	51,011	-

$$\overrightarrow{OA} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$.

The point *P* lies on *AB* and is such that $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$.


(i)	Find the position vector of P .	[3]
		•••••
(ii)	Find the distance <i>OP</i> .	[1]
		•••••
(iii)	Determine whether OP is perpendicular to AB . Justify your answer.	[2]
		•••••

•	$\sin \theta + \cos \theta$	$\tan \theta$ may be expressed as \cos^2	$0 - 2 \sin \theta$.
			••••••
			•••••
			• • • • • • • • • • • • • • • • • • • •
			•••••
			•••••
			•••••
			•••••
			••••••

(**)	TT 1 4 4	$2\sin\theta + \cos\theta$	507	
(11)	Hence solve the equation	$\frac{1}{\sin \theta + \cos \theta} =$	$= 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]
		3111 0 + COS 0		
				•••••
	•••••		•••••	•••••
	•••••		•••••	•••••
		•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •	••••••	•••••
		•••••		•••••
			•••••	•••••

••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••
						•••••					•••••	•••••
•••••			•••••	•				••••••	••••••	••••••	•	
•••••			••••••	•••••	•••••	•••••		•••••	••••••	•••••	•••••	•••••
						•••••					•••••	
••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •				••••••	• • • • • • • • • • • • • • • • • • • •	•••••
						•••••						
•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	,
	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••			•••••					•••••	
•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••
	•••••		•••••	•••••		•••••					•••••	•••••
•••••		•••••	••••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••	••••••	
	•••••		•••••			•••••		•••••			•••••	•••••
•••••	•••••		•••••		•••••	•••••					•••••	
						•••••					•••••	•••••
•••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	••••••	••••••	•••••	•••••

The diagram shows two circles with centres A and B having radii 8 cm and 10 cm respectively. The two circles intersect at C and D where CAD is a straight line and AB is perpendicular to CD.

(i)	Find angle <i>ABC</i> in radians. [1]
ii)	Find the area of the shaded region. [6]

	Find an expression for b in terms of a .	
•••		
•••		•••••
•••		
•••		
•••		••••
••		••••••
•••		
•••		
•••		
•••		••••••
 ii) <i>B</i>	R(10, -1) is a third point such that $AP = AB$. Calculate the coordinates of P .	the possible pos
 oi oi	B(10, -1) is a third point such that $AP = AB$. Calculate the coordinates of P .	
of	f <i>P</i> .	
B of	f <i>P</i> .	
of	f <i>P</i> .	
of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
ii) <i>B</i> of	f <i>P</i> .	

function f is defined by $f(x) = 9x^2 - 6x + 6$ for $x \ge p$, where p is a constant.
State the smallest value of p for which f is a one-one function.

(iii)	For this value of p, obtain an expression for $f^{-1}(x)$, and state the domain of f^{-1} .	[4]
(iv)	State the set of values of a for which the equation $f(x) = a$ has no solution	F11
(1V)	State the set of values of q for which the equation $f(x) = q$ has no solution.	[1]

10 (a)

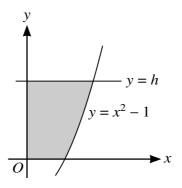


Fig. 1

Fig. 1 shows part of the curve $y = x^2 - 1$ and the line y = h, where h is a constant.

(i)	The shaded region is rotated through 360° about the y-axis . Show that the volume of revolution, V , is given by $V = \pi(\frac{1}{2}h^2 + h)$. [3]
(ii)	Find, showing all necessary working, the area of the shaded region when $h = 3$. [4]

(b)	
	Fig. 2
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is increasing when the height of the water level is 3 cm.
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is

	Find $f'(x)$.	
		•••••
		•••••
S	now given that $f''(0)$, $f'(0)$ and $f(0)$ are the first three terms respectively.	ctively of an ari
gr	ression.	
	Find the value of $f(0)$.	
)		
)		
,		
,		
,		
,		
)		
,		
,		

•••••
••••••
•••••
••••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mather	natics 1 (P1)		May/June 2018
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

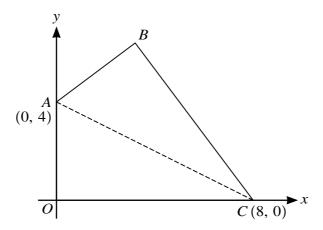
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

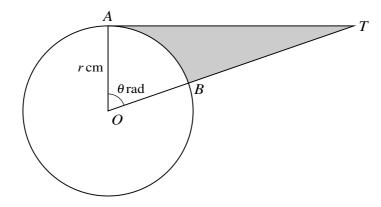

(i)	
	Given that the coefficient of x^2 in the expansion of $(1 + ax + 2x^2)(1 - 2x)^5$ is 12, find the value constant a .

	1			ange of the y-		
		•••••				•••••
••••••					••••••	
••••••		•••••	••••••	••••••	••••••	•••••
					••••••	•••••
						•••••
••••••••••	•••••		••••••	••••••••••	••••••	•••••
••••••	•••••	••••••	••••••	••••••	••••••	
		••••••				

point at which	the curve intersection of the curve intersection.	cts the x -axis.			
	•••••	•••••			•••••
•••••	•••••	•••••	•••••	•••••	•••••
		•••••	•••••		
•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	••••••	•••••

 •••••
•••••
•••••

		tion ($\sin \theta$						
•••••		•••••	•••••	•••••	••••••••••	•••••	••••••	•••••
••••••		••••••	•••••	••••••	••••••	•••••	••••••	••••••
•••••	••••••	••••••	••••••	••••••		••••••	••••••	••••••
		•••••		•••••		•••••	••••••	
•••••		••••••	•••••	•••••		•••••	•••••	•••••
				•••••				
•••••		•••••	•••••	•••••	••••••	••••••	•••••	•••••
•••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••
		••••••		•••••		•••••		•••••



The diagram shows a kite OABC in which AC is the line of symmetry. The coordinates of A and C are (0, 4) and (8, 0) respectively and O is the origin.

(i)	Find the equations of AC and OB .	[4]	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	

6

The diagram shows a circle with centre O and radius r cm. The points A and B lie on the circle and AT is a tangent to the circle. Angle $AOB = \theta$ radians and OBT is a straight line.

(i)	Express the area of the shaded region in terms of r and θ .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

 ••••••
••••••
 ••••••
•••••
 •••••
•••••
•••••
•••••

7	Relative to	an origin O.	the position	vectors of the	points A , B	and C are	given by
,	itelative to	un ongm o,	tile position	vectors or the	pomis 11, D	una c une	51101101

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

(i)	Find \overrightarrow{AC} .	[1]
(ii)	The point M is the mid-point of AC . Find the unit vector in the direction of \overrightarrow{OM} .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

(i)	Find an expression, in terms of p , q and n , for S_n .
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .

Functions I and g are defined for $x \in \mathbb{R}$	9	Functions f and	g are defined for $x \in \mathbb{R}$ 1
--	---	-----------------	--

$$f: x \mapsto \frac{1}{2}x - 2,$$

$$g: x \mapsto 4 + x - \frac{1}{2}x^{2}.$$

(i)	Find the points of intersection of the graphs of $y = f(x)$ and $y = g(x)$.	[3]
		•••••
		•••••
		•••••
(::)		
(II <i>)</i>	Find the set of values of x for which $f(x) > g(x)$.	[2]
(II)	Find the set of values of x for which $f(x) > g(x)$.	[2]
(11)		[2]
(11)	Find the set of values of x for which $f(x) > g(x)$.	[2]
(II)		[2]
(II <i>)</i>		[2]
(II <i>)</i>		[2]
(11)		[2]
(11)		[2]

(iii)	Find an expression for $fg(x)$ and deduce the range of fg.	[4]
	function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \ge k$.	
(iv)	Find the smallest value of <i>k</i> for which h has an inverse.	[2

i) Show that the curve has no stationary points.	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determ	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and the curve by <i>m</i> .	• • • • • • • • • • • • • • • • • • • •
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the gradient of the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine the gradient of the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and the curve by <i>m</i> .	• • • • • • • • • • • • • • • • • • • •
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> .	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determine	
Denoting the gradient of the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the stationary value of m and determined to the curve by m, find the curve by m, fi	
Denoting the gradient of the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and determined to the curve by <i>m</i> , find the stationary value of <i>m</i> and the curve by <i>m</i> , find the stationary value of <i>m</i> and the curve by <i>m</i> , find the stationary value of <i>m</i> and the curve by <i>m</i> .	
	• • • • • • • • • •
	mino
	1111116
	• • • • • • • • • • • • • • • • • • • •
	•••••

(iii)	Showing all necessary working, find the area of the region enclosed by the curve, the x -axis and the line $x = 6$.

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathe	matics 1 (P1)		May/June 2018
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

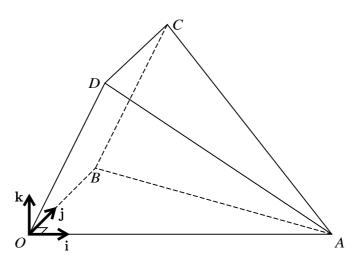
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

				·	2.			e of the cons
							 	•••••
						•••••	 	
			•••••	•••••			 	
				•••••			 	
			•••••				 	
•••••				•••••			 	
•••••							 	
•••••	•••••	•••••	•••••	•••••	•••••	•••••	 	•••••
•••••				•••••		•••••	 	
•••••							 	
•••••		•••••	•••••	•••••		•••••	 	
				•••••			 	
•••••	•••••	•••••	•••••	••••••		•••••	 	
•••••						•••••	 	
•••••			•••••	•••••	••••••	•••••	 	
•••••			•••••	•••••		•••••	 	
•••••			•••••	•••••	••••••	•••••	 	
•••••			•••••	•••••		•••••	 	

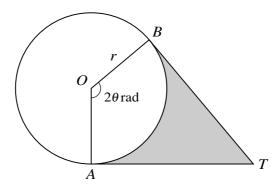
i)	Find the set of values of k for which the whole of the curve lies above the x -axis.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
i)		
i)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
i)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
i)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
i)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
i)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
i)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	
•	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve.	


3

A company producing salt from sea water changed to a new process. The amount of salt obtained

)	Find the amount of salt obtained in the 12th week after the change.	[3]
,		L
		•••••
		•••••
		•••••
		••••••
)	Find the total amount of salt obtained in the first 12 weeks after the change.	[2]
)	Find the total amount of salt obtained in the first 12 weeks after the change.	[2]
)		
)		
)		
)		
)		
)		

Find the value	s of the constants a and b .		
•••••			••••••
			•••••
			•••••
Find the set of	values of k for which the equation $f($	f(x) = k has no solution.	
		f(x) = k has no solution.	
	values of k for which the equation $f(x)$	f(x) = k has no solution.	
	values of k for which the equation $f(x)$	f(x) = k has no solution.	
	values of k for which the equation $f(x)$	f(x) = k has no solution.	
	values of k for which the equation $f(x)$	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	
	values of k for which the equation f	f(x) = k has no solution.	


(i)

The diagram shows a three-dimensional shape. The base OAB is a horizontal triangle in which angle AOB is 90°. The side OBCD is a rectangle and the side OAD lies in a vertical plane. Unit vectors \mathbf{i} and \mathbf{j} are parallel to OA and OB respectively and the unit vector \mathbf{k} is vertical. The position vectors of A, B and D are given by $\overrightarrow{OA} = 8\mathbf{i}$, $\overrightarrow{OB} = 5\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 4\mathbf{k}$.

Express each of the vectors $D\hat{A}$ and $C\hat{A}$ in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[2]

••	 •••••
••	 •••••
••	••••••
••	
••	
••	 •••••
••	•••••
••	
••	
••	 •••••
••	•••••
••	•••••
•	

The diagram shows points A and B on a circle with centre O and radius r. The tangents to the circle at A and B meet at T. The shaded region is bounded by the minor arc AB and the lines AT and BT. Angle AOB is 2θ radians.

In the case where the area of the sector AOB is the same as the area of the shaded region, show that $\tan \theta = 2\theta$.

shaded region.			[3]
			 •••••
			••••••
		•••••	•••••
			••••••
	••••••	••••••	••••••
		•••••	 •••••
		••••••	 •••••

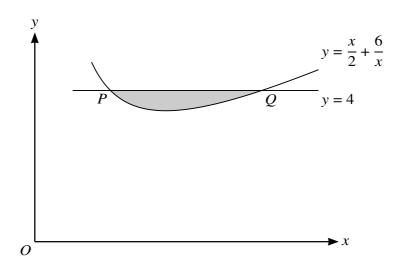
· - /	Express $7 - 2x^2 - 12x$ in the form $a - 2(x + b)^2$, where a and b are constants.	[
		••••
		••••
	State the coordinates of the stationary point on the curve $y = f(x)$.	
,	State the coordinates of the stationary point on the curve $y = 1(x)$.	
		••••
		••••
		••••

The function g is defined by $g: x \mapsto 7 - 2x^2 - 12x$ for $x \ge k$.

State the smallest value of k for which g has an inverse.	[1]
	•••••
	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	For this value of k, find g ⁻¹ (x).

isector of AB is $3x + 2y = k$. Find the values of the constants h and k.	[7]
	•••••
	•••••
	••••••

Find the equation	of the curve.					
••••••	•••••	•••••••••••	••••••	••••••		•••••
						•••••
••••••	•••••	••••••••	••••••	•••••		•••••
	•••••		•••••	••••••	••••••	•••••
	•••••		•••••			
••••••	••••••	•••••••••	••••••	••••••		•••••
						•••••
••••						
			•••••			•••••
						•••••
•••••						•••••
						•••••


(ii)	A point P moves along the curve in such a way that the y -coordinate is increasing at a constate of 0.06 units per second. Find the rate of change of the x -coordinate when P passes through $(2, 5)$.	
		• • • • • • • •
		•••••
		•••••
		•••••
		•••••
(iii)	Show that $\frac{d^2y}{dx} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]
(iii)	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant.	[2]

Solve the equation $2\cos x + 3\sin x = 0$, for $0^{\circ} \le x \le 360^{\circ}$.	[3]

(ii) Sketch, on the same diagram, the graphs of $y = 2\cos x$ and $y = -3\sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

[3]

(iii)	Use your answers to parts (i) and (ii) to find the set of values of x for $0^{\circ} \le x \le 360^{\circ}$ for which $2\cos x + 3\sin x > 0$. [2]
(iii)	
(iii)	
(iii)	
(iii)	
(iii)	$2\cos x + 3\sin x > 0. \tag{2}$
(iii)	$2\cos x + 3\sin x > 0. \tag{2}$
(iii)	$2\cos x + 3\sin x > 0. \tag{2}$
(iii)	$2\cos x + 3\sin x > 0. \tag{2}$
(iii)	$2\cos x + 3\sin x > 0. \tag{2}$

The diagram shows part of the curve $y = \frac{x}{2} + \frac{6}{x}$. The line y = 4 intersects the curve at the points P and Q.

(i)	Show that the tangents to the curve at P and Q meet at a point on the line $y = x$. [6]

hrough 360° about the x-axis. Give your answer in terms of π .	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/13
Paper 1 Pure M	athematics	1 (P1)			Ма	y/June 2018
					1 hour	r 45 minutes
Candidates ansv	ver on the (Question Pa	aper.			
Additional Mater	ials: Li	st of Formu	ılae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

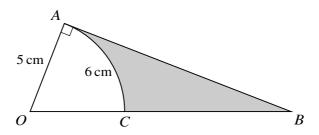
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



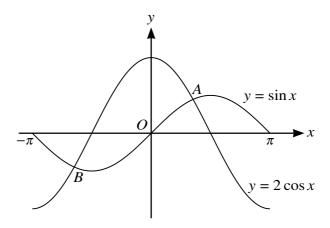
 ••••••
• • • • • • • • • • • • • • • • • • • •
••••••
•••••
 •••••
•••••
••••••
 ••••••
• • • • • • • • • • • • • • • • • • • •

Find the coefficient of $\frac{1}{x}$ in the expansion of $\left(x - \frac{2}{x}\right)^3$.	[3]

percentage of the sum to infinity, giving your answer correct to 2 significant figures.	[5
	••••••
	••••••
	••••••
	•••••
	•••••
	•••••
	••••••
	••••••
	•••••

hat $f'(x) = (3x - 1)^{-\frac{1}{3}}$. Find the y-coordinate of B.	[

The diagram shows a triangle OAB in which angle $OAB = 90^{\circ}$ and $OA = 5$ cm. The arc AC is par of a circle with centre O . The arc has length 6 cm and it meets OB at C . Find the area of the shaded region.

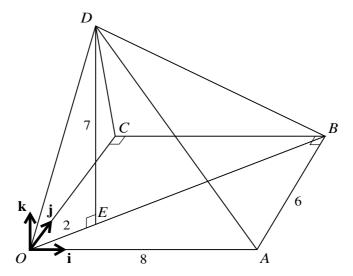

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

The coordinates of points A and B are (-3k-1, k+3) and (k+3, 3k+5) respectively, where k is a

			ving that it is indep		
•••••					
••••					
•••••			•••••	••••••	•••••
					•••••
Find and si	mplify the equa	tion of the pern	endicular hisector (of <i>AB</i>	
Find and si	mplify the equa	tion of the perp	endicular bisector (
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	

7	(a)	(i)	Express $\frac{\tan^2 \theta - 1}{\tan^2 \theta + 1}$ in the form $a \sin^2 \theta + b$, where a and b are constants to be found. [3]
				•••
				•••
				•••
				•••
				•••
				•••
				•••
		(;;)	Hence, or otherwise, and showing all necessary working, solve the equation	
		(11)		
			$\frac{\tan^2\theta - 1}{\tan^2\theta + 1} = \frac{1}{4}$	
			for $-90^{\circ} \le \theta \le 0^{\circ}$.	2]
				•••
				•••
				•••

(b)

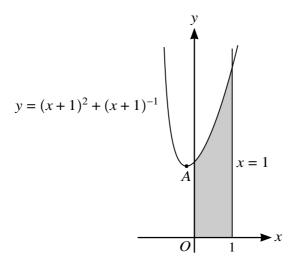


The diagram shows the graphs of $y = \sin x$ and $y = 2\cos x$ for $-\pi \le x \le \pi$. The graphs intersect at the points A and B.

(i)	Find the <i>x</i> -coordinate of <i>A</i> .	[2]
		••••
		••••
		••••
		••••
		••••
		••••
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	
(ii)	Find the y-coordinate of B.	[2]
(ii)	Find the y-coordinate of B.	
(ii)	Find the y-coordinate of B.	

	Find the equation of the tangent at A .
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

(ii)	The function f is defined by $f(x) = x^3 - 9x^2 + 24x - 12$ for $x > k$, where k is a constant. Find the smallest value of k for f to be an increasing function. [2]



The diagram shows a pyramid OABCD with a horizontal rectangular base OABC. The sides OA and AB have lengths of 8 units and 6 units respectively. The point E on OB is such that OE = 2 units. The point E of the pyramid is 7 units vertically above E. Unit vectors E i, E and E are parallel to E0, E0 and E0 respectively.

(i)	i) Show that $\overrightarrow{OE} = 1.6\mathbf{i} + 1.2\mathbf{j}$.	[2]
(ii)	i) Use a scalar product to find angle <i>BDO</i> .	[7]

10	The	one-one function f is defined by $f(x) = (x-2)^2 + 2$ for $x \ge c$, where c is a constant.				
	(i)	State the smallest possible value of c .	[1]			
	In pa	parts (ii) and (iii) the value of c is 4.				
	(ii)	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3]			

Solve the equation $ff(x) = 51$, giving your answer in the form $a + \sqrt{b}$.	
	•••••••••••••••••••••••••••••••••••••••
	••••••
	•••••••••••••••••••••••••••••••••••••••
	••••••

The diagram shows part of the curve $y = (x + 1)^2 + (x + 1)^{-1}$ and the line x = 1. The point A is the minimum point on the curve.

(i)	Show that the x-coordinate of A satisfies the equation $2(x+1)^3 = 1$ and find the exact value of $\frac{d^2y}{dx^2}$ at A. [5]
	$\mathrm{d}x^2$

hrough 360° about the x -axis.	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Math	ematics 1 (P1)		May/June 2019
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials	: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 21 printed pages and 3 blank pages.

BLANK PAGE

For this value of k , find the coefficient of x^2 in the expansion.	
	•••••
	••••••
	••••••
	••••••
	••••••
	[2
	••••••
	••••••
	•••••

The line 4y = x + c, where c is a constant, is a tangent to the curve $y^2 = x + 3$ at the point P on the

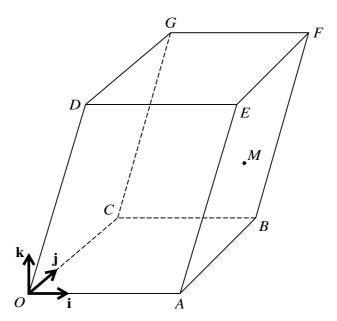
(i)	Find the value of c .	[3
i)	Find the coordinates of P .	[2

of r and A .				
	 	 		•••••
	 	 		•••••
	 	 ••••••	•••••	•••••
	 	 		•••••
	 	 		• • • • • • • • • • • • • • • • • • • •
	 	 		•••••
	 	••••••	•••••	••••••
•••••	 	 ••••••	•••••	• • • • • • • • • • • • • • • • • • • •
	 	 		•••••
	 	 		•••••
	 	 		• • • • • • • • • • • • • • • • • • • •

The diagram shows a trapezium ABCD in which the coordinates of A, B and C are (4, 0), (0, 2) and (h, 3h) respectively. The lines BC and AD are parallel, angle $ABC = 90^{\circ}$ and CD is parallel to the x-axis.

(i)	Find, by calculation, the value of h .	[3]

Hence find the coordinates of D .	


5 The	function f is defined by $f(x) = -2x^2 + 12x - 3$ for $x \in \mathbb{R}$.	
(i)	Express $-2x^2 + 12x - 3$ in the form $-2(x + a)^2 + b$, where a and b are constants.	[2]
(ii)	State the greatest value of $f(x)$.	[1]

The function g is defined by g(x) = 2x + 5 for $x \in \mathbb{R}$.

()	Find the values of x for which $gf(x) + 1 = 0$.	[3
		•••••

•••	
•••	
•••	
•••	
•••	
•••	••••••
•••	
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	
•••	
•••	••••••
•••	
•••	

Hence solve the equation $\left(\frac{1}{\cos x}\right)$	(2x)	3			
	••••••	••••••	••••••	•••••	•••••
	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	••••••	••••••	••••••	••••••	•••••••••
			•••••		•••••
	•	••••••	•		
	••••••	•••••	••••••	•••••	•••••
					•••••
	••••••	•••••	••••••	•••••	•••••
					•••••
	••••••	••••••	••••••	••••••	•••••
		•••••	••••••		•••••
		•••••	•••••		
	•••••	•••••			•••••

The diagram shows a three-dimensional shape in which the base OABC and the upper surface DEFG are identical horizontal squares. The parallelograms OAED and CBFG both lie in vertical planes. The point M is the mid-point of AF.

Unit vectors **i** and **j** are parallel to \overrightarrow{OA} and \overrightarrow{OC} respectively and the unit vector **k** is vertically upwards. The position vectors of \overrightarrow{A} and \overrightarrow{D} are given by $\overrightarrow{OA} = 8\mathbf{i}$ and $\overrightarrow{OD} = 3\mathbf{i} + 10\mathbf{k}$.

(i)	Express each of the vectors \overrightarrow{AM} and \overrightarrow{GM} in terms of i , j and k .	[3]
		••••••

•••••

•••••		•••••		
•••••		••••••		••••••
		•••••		••••••
				•••••
•••••		•••••	•••••	••••••
••••				
•••••		•••••	•••••	•••••
				••••••
••••				
••••••	••••••	•••••	•••••	•••••
				•••••

(b) Two schemes are proposed for increasing the amount of household waste that is recycled each week.

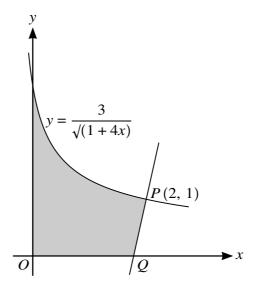
Scheme *A* is to increase the amount of waste recycled each month by 0.16 tonnes.

Scheme B is to increase the amount of waste recycled each month by 6% of the amount recycled in the previous month.

The proposal is to operate the scheme for a period of 24 months. The amount recycled in the first month is 2.5 tonnes.

For each scheme, find the total amount of waste that would be recycled over the 24-mon	th period. [5]
Scheme A	
Scheme B	
	••••••
	•••••

The fu	nction f is defined by $f(x) = 2 - 3\cos x$ for $0 \le x \le 2\pi$.
(i) St	ate the range of f. [2]
•••	
(ii) Sl	setch the graph of $y = f(x)$. [2]


The	function g is defined by $g(x) = 2 - 3\cos x$ for $0 \le x \le p$, where p is a constant.	
(iii)	State the largest value of p for which g has an inverse.	[1]
(iv)	For this value of p , find an expression for $g^{-1}(x)$.	[2]
		••••••••••
		••••••

10	A cı	curve for which $\frac{d^2y}{dx^2} = 2x - 5$ has a stationary point at (3, 6).	
	(i)) Find the equation of the curve.	[6]
			•••••
			•••••
			•••••
			•••••
			••••••
			•••••
			••••••
			••••••

Determine the neture of each of the stationery points
Determine the nature of each of the stationary points.

11

(i)

The diagram shows part of the curve $y = \frac{3}{\sqrt{(1+4x)}}$ and a point P(2, 1) lying on the curve. The normal to the curve at P intersects the x-axis at Q.

Show that the x-coordinate of Q is $\frac{16}{9}$.	[5]

•••••
••••••
•••••
•••••
•••••
•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathe	matics 1 (P1)		May/June 2019
			1 hour 45 minutes
Candidates answer of	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

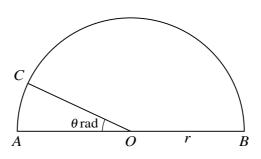
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 18 printed pages and 2 blank pages.


•••••	 						
•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •
•••••	 					•••••	
••••••	••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •
•••••	•••••			•••••		•••••	· • • • • • • • • • • • • • • • • • • •
•••••	 •••••	•••••••••••	•••••			•••••	
••••••	 ••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	 •••••	•••••	•••••	•••••		•••••	· • • • • • • • • • • • • • • • • • • •
•••••	 •••••	•••••	•••••	•••••	••••••	••••••	· • • • • • • • • • • • • • • • • • • •
•••••	 						

and intersect	s the y-axis at th	e point e. 14	na the coord	mates of C.			
•••••		•••••	•••••	•••••	••••••	••••••	· • • • •
•••••		•••••	•••••	•••••	••••••	•••••	• • • •
				•••••		•••••	
						•••••	• • • •
••••••••		••••••	••••••	••••••	•••••••	••••••••••	••••
						•••••	
•••••		•••••	•••••	••••••	••••••	•••••	· • • •
	,						· • • •
•••••		••••••	•••••	•••••	•••••	•••••	
						•••••	
•••••		•••••		•••••		•••••	· • • •
						•••••	
•••••••		•••••••	••••••	••••••	••••••	••••••••	••••
						•••••	
•••••		••••••	•••••	••••••	••••••	••••••	••••
							· • • • •
•••••		•••••	•••••	••••••	•••••	•••••	• • • •

3	A curve is such that	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 -$	$\frac{4}{x^2}$. The point R	P(2, 9) lies on the cur	rve.

Find the equation of the curve.	

Show that $a^2 + b^2$ has a constant value for all value	es of x.
In the case where $\tan x = 2$, express a in terms of b	

The diagram shows a semicircle with diameter AB , centre O and radius r . The point C lies on the circumference and angle $AOC = \theta$ radians. The perimeter of sector BOC is twice the perimeter of sector AOC . Find the value of θ correct to 2 significant figures.

6	The equation of a curve is $y = 3 \cos 2x$ and the equation of a line is 2	3x - 4	_
U	The equation of a curve is $y = 3\cos 2x$ and the equation of a fine is 2	$y + \frac{1}{\pi} = 1$. ر

(i)	State the smallest and largest values of y for both the curve and the line for $0 \le x \le 2\pi$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(ii)	Sketch, on the same diagram, the graphs of $y = 3\cos 2x$ and $2y + \frac{3x}{2} = 5$ for $0 \le x \le 2\pi$.	[3]
()		[-]

(iii)	State the number of solutions of the equation $6\cos 2x = 5 - \frac{3x}{\pi}$ for $0 \le x \le 2\pi$.	[1]
		••••
		••••

7 Functions f and g are defined	by
---------------------------------	----

$$f: x \mapsto 3x - 2, \quad x \in \mathbb{R},$$

 $g: x \mapsto \frac{2x + 3}{x - 1}, \quad x \in \mathbb{R}, \ x \neq 1.$

(Obtain expressions for $f^{-1}(x)$ and $g^{-1}(x)$, stating the value of x for which $g^{-1}(x)$ is not define
•	
•	
•	
•	
•	
•	

Solve the equation $fg(x) = \frac{7}{3}$.	[3

8 The position vectors of points A and B, relative to an origin O, are given by

$$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -2 \\ -6 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix}$,

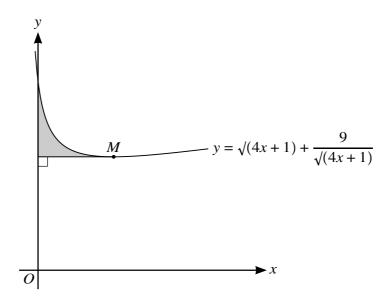
where k is a constant.

(i)	Find the value of k for which angle AOB is 90° .	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)		•••••
(ii)		

The point C is such that $\overrightarrow{AC} = 2\overrightarrow{CB}$.

In the case where $k = 4$, find the unit vector in the direction of \overrightarrow{OC} .	[4]

•••••	 				
•		•••••		••••••	
	 •••••			•••••	
•••••	•••••••	••••••	••••••	••••••••	
•••••	 ••••••			•••••	
•••••	 ••••••	••••••	•••••••••••	•••••	
•••••	 ••••••	•••••	•••••	••••••	
••••	 				
•••••	 	••••••	•••••	•••••	
•••••	 •••••		•••••		
	 •••••	•••••		••••••	
•••••	 •••••	••••••	•••••••••••••••••••••••••••••••••••••••	••••••	



10	(a)		n arithmetic progression, the sum of the first ten terms is equal to the sum of the next first. The first term is a .	<i>i</i> e
		(i)	Show that the common difference of the progression is $\frac{1}{3}a$.	4]
				· • •
				·••
				•••
				•••
				· • •
		(ii)	Given that the tenth term is 36 more than the fourth term, find the value of a .	2]
				· • •
				· • •
				•••
				· • •
				•••
				•••

mai me	e first term is 1	2, find the va	alue of the f	ifth term.			
•••••		••••••	•••••	•••••	•••••••		•••••
		•••••					•••••
• • • • • • • • • • • • • • • • • • • •							
• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••••	••••••	•••••
•••••							•••••
•••••							
•••••		,					
•••••		••••••	••••••		•••••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••							
•••••	•••••		•••••			••••••	•••••
•••••		•••••					
•						•	
•••••						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••		••••••	••••••	•••••			
•••••							
• • • • • • • • • • • • • • • • • • • •							•••••
•••••							

11

(i)

The diagram shows part of the curve $y = \sqrt{(4x+1)} + \frac{9}{\sqrt{(4x+1)}}$ and the minimum point M.

Find expressions for $\frac{dy}{dx}$ and	y dx.	[6]

Find the coordi		 	
			parallel to the <i>x</i> -a
shaded region is			parallel to the <i>x</i> -a
			parallel to the x-a
			parallel to the x-a
			parallel to the x-a
			parallel to the x-a
			parallel to the x-a
			parallel to the x-a
			parallel to the x-a

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		
MATHEMATICS					9709/13
Paper 1 Pure Mathe	ematics 1 (P1)			Ma	y/June 2019
				1 hour	45 minutes
Candidates answer	on the Question Paper	۲.			
Additional Materials	List of Formulae	(MF9)			

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

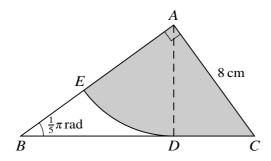
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



This document consists of 19 printed pages and 1 blank page.

© UCLES 2019

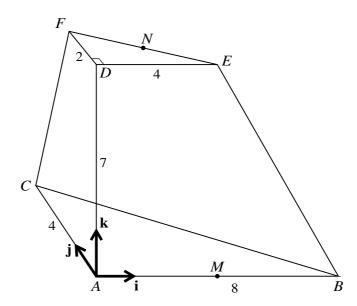
1)	Express $x^2 - 4x + 8$ in the form $(x - a)^2 + b$.	
		•••••
		• • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
)	Hence find the set of values of x for which $f(x) < 9$, giving your answer in exact form.	
)		
)		
)		
)		
)		
)		
)		
)		
i)		

2	(i)	In the binomial expansion of $\left(2x - \frac{1}{2x}\right)^5$, the	the first three terms are $32x^5$ -	
		remaining three terms of the expansion.		[3]
	(ii)	Hence find the coefficient of x in the expansi	on of $(1+4x^2)(2x-\frac{1}{2x})^5$.	[2]

The diagram shows triangle ABC which is right-angled at A. Angle $ABC = \frac{1}{5}\pi$ radians and AC = 8 cm. The points D and E lie on BC and BA respectively. The sector ADE is part of a circle with centre A and is such that BDC is the tangent to the arc DE at D.

(i)	Find the length of AD .	[3]
(ii)	Find the area of the shaded region.	[3]

(i)	Find the greatest value of a and the least value of b which will permit the formation of	
	composite function gf.	[2
		••••
		• • • •
		••••
		••••
		••••
18	now given that the conditions for the formation of gf are satisfied.	
ii)	Find an expression for $gf(x)$.	Г1
	Time an expression for gr(x).	[1
,	Time an expression for gr(x).	
,		
,		[1
	Find an expression for $(gf)^{-1}(x)$.	[2


Two heavyweight boxers decide that they would be more successful if they competed in a lower weight class. For each boxer this would require a total weight loss of 13 kg. At the end of week 1 they have each recorded a weight loss of 1 kg and they both find that in each of the following weeks their weight loss is slightly less than the week before.

Boxer A's weight loss in week 2 is 0.98 kg. It is given that his weekly weight loss follows an arithmetic

progression. (i) Write down an expression for his total weight loss after x weeks. [1] (ii) He reaches his 13 kg target during week n. Use your answer to part (i) to find the value of n. [2]

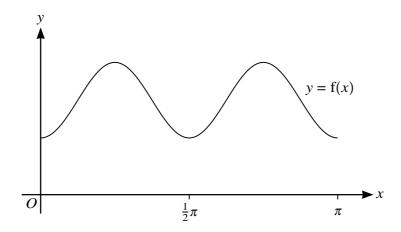
Boxer B's weight loss in week 2 is $0.92 \,\mathrm{kg}$ and it is given that his weekly weight loss follows a geometric progression.

•••••		•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	••••••	
•••••		•••••			•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••			•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
			•••••			•••••					
						•••••					
		•••••									
•••••			•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••		•••••
		•••••			•••••				•••••	••••••	
		•••••			•••••	•••••	••••••			•••••	
							•••••				
					•••••		•				
••••••	•	•••••	•••••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	
			••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••		•••••
		•••••			•••••	•••••	••••••		•••••	••••••	
			••••••			•••••	••••••	•••••			•••••
•••••											
						• • • • • • • • • • • • • • • • • • • •					

The diagram shows a solid figure ABCDEF in which the horizontal base ABC is a triangle right-angled at A. The lengths of AB and AC are 8 units and 4 units respectively and M is the mid-point of AB. The point D is 7 units vertically above A. Triangle DEF lies in a horizontal plane with DE, DF and FE parallel to AB, AC and CB respectively and N is the mid-point of FE. The lengths of DE and DF are 4 units and 2 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} respectively.

Find \overrightarrow{MF} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[1]
	•••••
	•••••
	•••••
Find \overrightarrow{FN} in terms of i and j .	[1]
	•••••
	•••••
Find \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[1]
	•••••
	•••••
	•••••
	Find \overrightarrow{FN} in terms of \mathbf{i} and \mathbf{j} . Find \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .

iv)	Use a scalar product to find angle <i>FMN</i> .	[4]
		••••••


The coordinates of two points A and B are (1, 3) and (9, -1) respectively and D is the mid-point of

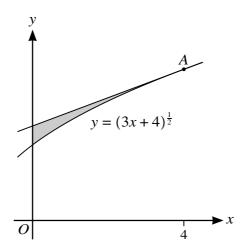
AB.	A point C has coordinates (x, y) , where x and y are variables.	
(i)	State the coordinates of D .	[1]
		•••••
(ii)	It is given that $CD^2 = 20$. Write down an equation relating x and y.	[1]
(iii)	It is given that AC and BC are equal in length. Find an equation relating x and y and sho	
	it can be simplified to $y = 2x - 9$.	[3]
		•••••
		•••••

••••••	 			
	 		•••••	
	 		•••••	
	 •••••	••••••		
	 		•••••	
	 •••••			
	 •••••			
	 		•••••	
•••••	 •••••	•••••	•••••	

th	curve is such that $\frac{dy}{dx} = 3x^2 + ax + b$. The curve has stationary points at $(-1, 2)$ and $(3, k)$ ne values of the constants a , b and k .			
			•	•
•••				•
				•
				•
•••		••		•
•••		••		•
•••		••		•
•••		••		•
•••		•••		•
•••		•••		•
•••		•••		•
•••		••		•
•••		••		•
•••		•••		•
•••		••		•
•••		•••		•
•••		••		•
•••		••		•
•••		••		•
•••		••		
•••		••		
		••	•	•

The function $f: x \mapsto p \sin^2 2x + q$ is defined for $0 \le x \le \pi$, where p and q are positive constants. The diagram shows the graph of y = f(x).

(i)	In terms of p and q , state the range of f.	[2]


(ii) State the number of solutions of the following equations.

(a)
$$f(x) = p + q$$
 [1]

(b)
$$f(x) = q$$
 [1]

(c)
$$f(x) = \frac{1}{2}p + q$$
 [1]

•	•••••
•	
•	•••••
•	••••••
•	•••••
•	•••••
•	
•	 •••••
•	••••••
•	•••••
•	•••••
	 •••••
•	•••••
•	

The diagram shows part of the curve with equation $y = (3x + 4)^{\frac{1}{2}}$ and the tangent to the curve at the point A. The x-coordinate of A is 4.

(i)	Find the equation of the tangent to the curve at A .	[5]
		· • • • •
		••••
		· • • • •

Find, showing all necessary working, the area of the s	
	 •••••
	 •••••••
	 ••••••

[Question 10 (iii) is printed on the next page.]

at which the x -coordinate is increasing. Find the x -coordinate of P .	
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.							

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2020

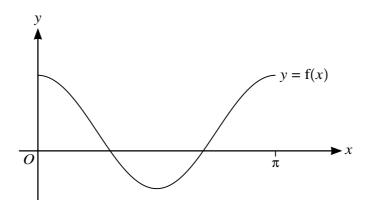
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.


INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Fi	nd the first term and the common difference of the progression.	
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		

2	The coefficient of $\frac{1}{x}$ in the expansion of $\left(kx + \frac{1}{x}\right)^5 + \left(1 - \frac{2}{x}\right)^8$ is 74.						
	Find the value of the positive constant k .	[5]					

selli	ing price of the necklace in the year 2000 was \$36 000.
(a)	Write down an expression for the selling price of the necklace n years later and hence find the selling price in 2008. [3]
(b)	The company that makes the necklace only sells one each year. Find the total amount of money obtained in the ten-year period starting in the year 2000. [2]

The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$.

(a)	State the range of f.	[2]
		•••••••

A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x).

(b)	State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ to $y = g(x)$.	or [2]
		••••
		••••
		••••
		•••••
		••••

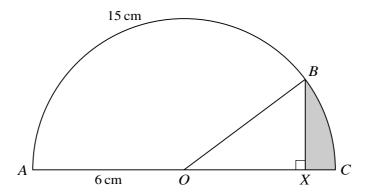
(c)	State the equation of the curve which is the reflection of $y = f(x)$ in the x-axis. Give your ans in the form $y = a \cos 2x + b$, where a and b are constants.	wer

	Given that the line is a tangent to the curve, express m in terms of c .	[3]
,	Given that the line is a tangent to the early, express m in terms of c.	LJ.
		• • • • • • • • • •
		•••••
		••••••
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c	
•	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	urve a
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	

6	Functions	f and	g are	defined	for <i>x</i>	$\in \mathbb{R}$ by
---	-----------	-------	-------	---------	--------------	---------------------

$$f: x \mapsto \frac{1}{2}x - a,$$

$$g: x \mapsto 3x + b,$$


$$g: x \mapsto 3x + b$$

where a and b are constants.

(a)	Given that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b .	[4]
		••••••
		•••••
		•••••
		•••••
		•••••
(b)	Using these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and constants.	d <i>d</i> are [2]
		•••••
		•••••
		•••••
		•••••

•••••
 ••••
••••
 ••••
 ••••
••••
•••••
••••
 •••••
•••••
 •••••
•••••
 •••••
 •••••
•••••
•••••
 •••••

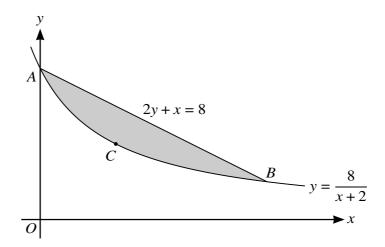
	Hence solve the equation	$\cos \theta$	$1 + \sin \theta$	$\sin \theta$			
••		•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •
••						•••••	· • • • • • • • • • • • • • • • • • • •
••							· • • • • • • • • • • • • • • • • • • •
ĺ							
••		•••••	•••••				· • • • • • • • • • • • • • • • • • • •
••							
••					•••••	• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •
••							
						•••••	· • • • • • • • • • • • • • • • • • • •
••							
			•••••				.
••			•••••				•••••
••						•••••	
••							
••						•••••	.
••							

In the diagram, ABC is a semicircle with diameter AC, centre O and radius 6 cm. The length of the arc AB is 15 cm. The point X lies on AC and BX is perpendicular to AX.

Find the perimeter of the shaded region BXC .	[6]

The equation of a curve is $y = (3 - 2x)^3 + 24x$.

9


(a)	Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••••												
		•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••
•••••		•••••	•••••	•••••	••••••	•••••	•••••				•••••	••••••
•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
											•••••	
•••••	••••••		•••••	••••••	••••••	•••••	•••••		•••••	••••••		•••••
•••••	••••••		•••••	••••••	•••••	•••••	•••••			•••••		•••••
	•••••		•••••	•••••	••••••	•••••	•••••			•••••		•••••
•••••	••••••		•••••	•••••	•••••	•••••	•••••		•••••			•••••
							•••••					
•••••	•••••		•••••		•••••	•••••	•••••		•••••	•••••		•••••
			•••••	•••••	•••••		•••••					•••••
					•••••	•••••	•••••					•••••
termin	e the n	ature (of each	ı static	onary p	oint.						[2
					•••••							
					•••••		•••••					
							•••••					
	ermin	termine the n	termine the nature	termine the nature of each	termine the nature of each station	termine the nature of each stationary p	termine the nature of each stationary point.					

10 The coordinates of the points A and B are (-1, -2) and (7, 4) respectively.

Find the equation of the circle, C , for which AB is a diameter.	
	•••••
	•••••
	•••••
	•••••
	•••••

•••••
•••••
•••••
••••••

The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

(a)	Find, by calculation, the coordinates of A , B and C .	[6]
		••••••
		••••••
		•••••

through 360° about the <i>x</i> -axis	S.					
	•••••	••••••	••••••		••••••	•••••
						••••••
		••••••			•••••	
					•••••	
		••••••	••••••	•••••••••	••••••	•••••
	••••••	•••••	•••••		•••••	••••••
						•••••
		•••••				•••••
						•••••
	•••••	•••••	••••••		•••••	•••••
					•••••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

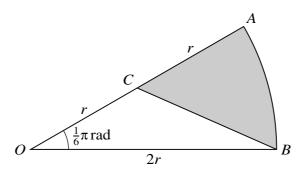
This document has 16 pages. Blank pages are indicated.

(a)	Find the coefficient of x^2 in the expansion of $\left(x - \frac{2}{x}\right)^6$.	[2]
(b)	Find the coefficient of x^2 in the expansion of $(2 + 3x^2) \left(x - \frac{2}{x}\right)^6$.	[3]

		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta=8\tan\theta$.	
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta=8\tan\theta$.	
(b)		

(a)	Find the radius of the balloon after 30 seconds.
(b)	
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.
	Find the rate of increase of the radius after 30 seconds.

Find the value of	<i>n</i> for which the su	n of the first n term	ns is 84.	
				······

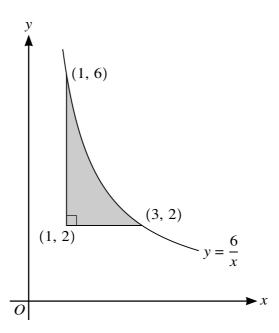

	5	The	func	tion	f	is	define	ed	for	x	\in	\mathbb{R}	by
--	---	-----	------	------	---	----	--------	----	-----	---	-------	--------------	----

 $f: x \mapsto a - 2x$,

where a is a constant.

	Express $ff(x)$ and $f^{-1}(x)$ in terms of a and x .	[4]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a.	[2]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a .	[2]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a .	[2]
(b)		
(b)		
(b)		
(b)		

Given that the line $y = 2x + 3$ is a tangent to the curve, find the value of k .	[3
	•••••
	•••••
	•••••
	•••••
	•••••
now given that $k = 2$.	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants, hence state the coordinates of the vertex of the curve.	and [3
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	
Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants,	



In the diagram, OAB is a sector of a circle with centre O and radius 2r, and angle $AOB = \frac{1}{6}\pi$ radians. The point C is the midpoint of OA.

 		••••••	
 	••••••	••••••	

,	Find the exact perimeter of the shaded region.
	Find the exact area of the shaded region.
	Find the exact area of the shaded region.
	Find the exact area of the shaded region.
	Find the exact area of the shaded region.
	Find the exact area of the shaded region.
	Find the exact area of the shaded region.
	Find the exact area of the shaded region.

(a)

The diagram shows part of the curve $y = \frac{6}{x}$. The points (1, 6) and (3, 2) lie on the curve. The shaded region is bounded by the curve and the lines y = 2 and x = 1.

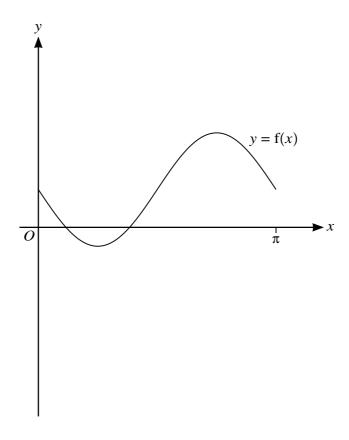
Find the volume generated when the shaded region is rotated through 360° about the y-axis . [5]

line $y = 2x$.	[
	 •••••

9 Functions f and g are such that

$$f(x) = 2 - 3\sin 2x \text{ for } 0 \le x \le \pi,$$

$$g(x) = -2f(x) \text{ for } 0 \le x \le \pi.$$


(a) State the ranges of f and g.

[3]

.....

The diagram below shows the graph of y = f(x).

(b) Sketch, on this diagram, the graph of y = g(x). [2]

The function h is such that

$$h(x) = g(x + \pi) \text{ for } -\pi \le x \le 0.$$

(c)	Describe fully a sequence of transformations that maps the curve $y = f(x)$ on to $y = h(x)$.	[3]

10	The equation of a curve is $y = 54x - (2x - 7)^3$.	
	(a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]

					•••••		
					•••••		

Find the coordinates of each of the stationary points on the curve.	[3]
	•••••

(b)

(c)	Determine the nature of each of the stationary points.	[2]
		••••
		••••
		••••

(a)	Find the radius of the circle and the coordinates of C .	[3]
		••••••
		••••••
		••••••
		•••••
	e point $P(1, 2)$ lies on the circle.	
		[3]
	e point $P(1, 2)$ lies on the circle.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	e point $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
	Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]

The point Q also lies on the circle and PQ is parallel to the x-axis.

(c)	Write down the coordinates of Q .	[2]
The	tangents to the circle at P and Q meet at T .	
(d)	Find the coordinates of T .	[3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1360524731

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

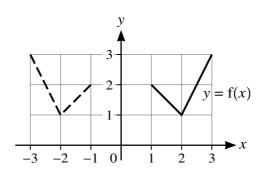
You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

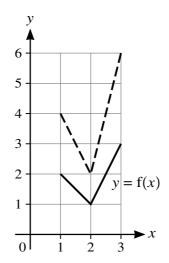
INFORMATION


- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

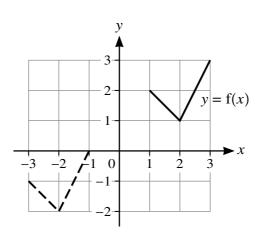
$y = 3x^2 + 2x + 4$ intersect at two distinct points.	

Find the equation	on of the curve.	
••••••		
•••••		
•••••		
••••••		
•••••		
•••••		
••••••		

3 In each of parts (a), (b) and (c), the graph shown with solid lines has equation y = f(x). The graph shown with broken lines is a transformation of y = f(x).


(a)

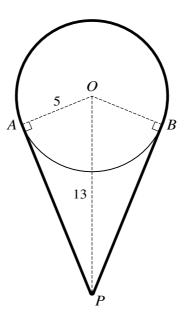
State, in terms of f, the equation of the graph shown with broken lines.


[1]

(b)

State, in terms of f, the equation of the graph shown with broken lines. [1]

(c)



State, in terms of f, the equation of the graph shown with broken lines.

[2]

.....

-,	Expand $(1+a)^5$ in ascending powers of a up to and including the term in a^3 .	[1]
		•••••
)	Hence expand $[1 + (x + x^2)]^5$ in ascending powers of x up to and including the term in simplifying your answer.	x^3 . [3]
	simplifying your unswer.	Ľº.
		•••••

The diagram shows a cord going around a pulley and a pin. The pulley is modelled as a circle with centre O and radius 5 cm. The thickness of the cord and the size of the pin P can be neglected. The pin is situated 13 cm vertically below O. Points A and B are on the circumference of the circle such that AP and BP are tangents to the circle. The cord passes over the major arc AB of the circle and under the pin such that the cord is taut.

Calculate the length of the cord.	[6]

(a)	Find the rate at which the y-coordinate is increasing when $x = 1$.	[4]

(b)	Find the value of x when the y-coordinate is increasing at $\frac{5}{8}$ units per minute.								
		••••••							
		••••••							
		••••••							
		••••••							
		••••••							
		••••							

-	()	C1 .1 .	$\tan \theta$	$\tan \theta$	2	F.4.7
′	(a)	Show that	$\frac{1+\cos\theta}{1+\cos\theta}$	$\frac{1-\cos\theta}{1-\cos\theta}$	$\frac{2}{\sin\theta\cos\theta}.$	[4]
		••••••	••••••••	••••••	•••••••••••	
		•••••	•••••••	••••••	••••••	
		•••••	••••••	••••••	•••••	
		•••••	•••••			
		••••••	••••••	••••••	••••••	
			•••••			
		•••••	••••••	••••••		
		•••••	••••••	••••••	•••••	

			uation $\frac{1}{1}$, 2000			U					
•••••	•••••	•••••	•••••		•••••	••••••			•••••		••••••	•••••
•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••			•••••		•••••			•••••			•••••	
•••••	••••••	•••••	••••••		••••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••
			•••••									
		••••			••••				•••••			
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••
•••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••
•••••			•••••								•••••	•••••
•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••
•••••		•••••	•••••		•••••			•••••			•••••	
•••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••
•••••												
•••••	••••••	••••••	•••••		•••••	••••••	••••••	•••••	•••••	••••••	••••••	•••••
•••••		•••••	•••••		•••••	••••••			•••••		•••••	•••••
	••••	••••			••••							

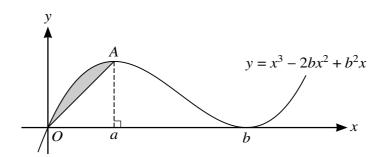
Given that the progression is geometric, find the sum to infinity.

It is now given instead that the progression is arithmetic.

Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.

9 The functions f and	g are defined by
------------------------------	------------------

$$f(x) = x^2 - 4x + 3 \quad \text{for } x > c, \text{ where } c \text{ is a constant,}$$
$$g(x) = \frac{1}{x+1} \quad \text{for } x > -1.$$


(a)	Express $f(x)$ in the form $(x - a)^2 + b$.	[2]
It is	s given that f is a one-one function.	
(b)	State the smallest possible value of c .	[1]

It is now given that c = 5.

Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for gf(x) and state the range of gf.	
Find an expression for gf(x) and state the range of gf.	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for gf(x) and state the range of gf.	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	

LU	(a)	The coordinates of two points A and B are $(-1, 3)$ and $(5, 11)$ respectively.	
		Show that the equation of the perpendicular bisector of AB is $3x + 2y = 11$.	[4]
			•••••

•		
İ	Find an equation of the circle.	
		•••••
		•••••
•		••••••
•		•••••
•		•••••
•		•••••
•		
•		•••••
•		•••••
•		
•		••••••
•		•••••
•		
•		
•		•••••
•		
•		

The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA, where A is the maximum point on the curve. The x-coordinate of A is a and the curve has a minimum point at (b, 0), where a and b are positive constants.

(a)	Show that $b = 3a$.	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

10 0	e found.								
•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •						
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••		•••••
•••••						•••••			
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••									
•••••	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
• • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •			•••••			
•••••	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••									
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••		•••••
• • • • • •		•••••	•••••			•••••			
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••
• • • • • •									

Additional Page

must be clearly shown.									
	••••••								
	••••••								

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2021

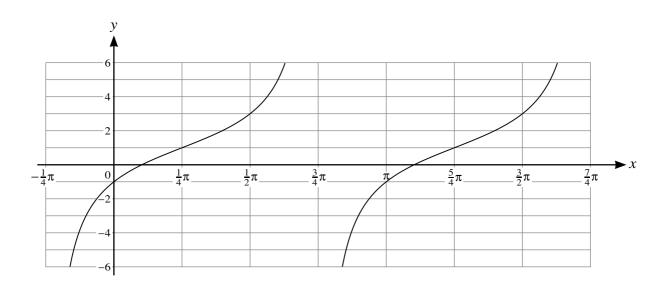
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.


INFORMATION

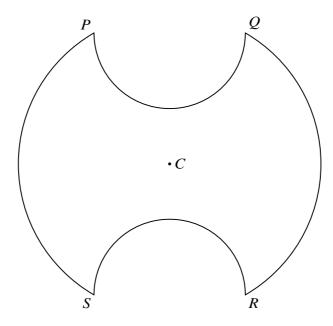
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Fine	d the equa	ation of t	the curv	e.							
•••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••		••••••	· • • • • • • • • • • • • • • • • • • •	••••••
•••••							•••••				
	•••••										
•••••	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••											
•••••	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••	•••••			••••••					•••••		
•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •	••••••
				••••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••		•••••
•••••	•••••	•••••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••••
	•••••				•••••		•••••				•••••
•••••											

Find the 60th term of the	progression		[5]
and the ooth term of the	progression.		ر~.
		•••••	
		•••••	 ······································

i ma the mst	three terms i	1				
			•••••			•••••
•••••						
••••••		•••••	••••••		••••••	•••••
•••••						
	•••••		••••••			•••••
•••••				•••••		•••••
Hence find the	ne coefficient	of x^2 in the exp	oansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		•••••
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5.$		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(3-2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5$.		

The diagram shows part of the graph of $y = a \tan(x - b) + c$.


Given that $0 < b < \pi$, state the values of the constants a , b and c .	[3]

Given that k is negative, find the sum to infinity of the progression.	[4]
	•••••

Find the value	of k .				
		•••••	•••••	•••••	
		•••••	•••••		
		•••••	•••••		
		••••••	•••••	•••••	
	•••••	••••••			 •••••

	Prove the identity $\frac{1 - 2\sin^2\theta}{1 - \sin^2\theta} \equiv 1 - \tan^2\theta$.	[2]
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

Hence solve the equat	$1 - \sin^2 \theta$			
				•••••
		•••••••••••	•••••••••••	
•••••			•••••	•••••
••••••		•••••••••••	••••••	•••••
••••••		•••••	••••••	•••••
			••••••	

The diagram shows a symmetrical metal plate. The plate is made by removing two identical pieces from a circular disc with centre C. The boundary of the plate consists of two arcs PS and QR of the original circle and two semicircles with PQ and RS as diameters. The radius of the circle with centre C is 4 cm, and PQ = RS = 4 cm also.

(a)	Show that angle $PCS = \frac{2}{3}\pi$ radians.	[2]
		•••••
(b)	Find the exact perimeter of the plate.	[3]
		•••••
		•••••
		•••••

9 Functions f and g are defined as follows:

$$f(x) = (x-2)^2 - 4 \text{ for } x \ge 2,$$

 $g(x) = ax + 2 \text{ for } x \in \mathbb{R},$

where a is a constant.

(a)	State the range of f.	[1]
(b)	Find $f^{-1}(x)$.	[2]
(c)	Given that $a = -\frac{5}{3}$, solve the equation $f(x) = g(x)$.	[3]

(d)	Given instead that $ggf^{-1}(12) = 62$, find the possible values of a .	[5]

(a)	Find the x -coordinates of the points A and B where the circle intersects the x -axis.	[2
		•••••
		•••••
		•••••
		••••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
b)	Find the point of intersection of the tangents to the circle at A and B .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
b)		
b)		
b)		
b)		
(b)		
(b)		
b)		
b)		
(b)		

		16
11	The	equation of a curve is $y = 2\sqrt{3x+4} - x$.
	(a)	Find the equation of the normal to the curve at the point $(4, 4)$, giving your answer in the form $y = mx + c$. [5]
	(b)	Find the coordinates of the stationary point. [3]

(c)	Determine the nature of the stationary point.	[2]
		•••••
(d)	Find the exact area of the region bounded by the curve, the x-axis and the lines $x = 0$ and $x = 0$: 4. [4]
		•••••
		•••••
		••••
		••••
		•••••
		••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

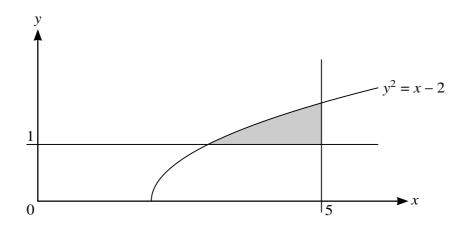
Express $16x^2 - 24x + 10$ in the form $(4x + a)^2 + b$.	
	cuy one root
Find the value of this root.	city one root
Find the value of this root.	cuy one root
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	ctry one root
Find the value of this root.	
Find the value of this root.	ctry one root.
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	ctly one root.

2 (a)	The graph of $y = f(x)$ is transformed to the graph of $y = 2f(x - 1)$.							
	Describe fully the two single transformations which have been combined to give the resulting transformation. [3]							
(b)	The curve $y = \sin 2x - 5x$ is reflected in the y-axis and then stretched by scale factor $\frac{1}{3}$ in the x-direction.							
	Write down the equation of the transformed curve. [2]							

	A(2, k)	B(2.9, 2.8025)	C(2.99, 2.9800)	D(2.999, 2.9980)	E(3, 3)
(a)	Find k , given	ving your answer co	rrect to 4 decimal plac	es.	[1]
(b)	Find the g	gradient of AE , giving	g your answer correct	to 4 decimal places.	[1]
	gradients ectively.	of BE , CE and DE	, rounded to 4 decin	nal places, are 1.9748,	, 1.9975 and 1.9997
(c)		ing a reason for your		lues of the four gradier	nts suggest about the
	•••••				

$\left(2x + \frac{k}{x^2}\right)^5$ is q .	
Given that $p = 6q$, find the possible values of k .	

The function f is defined by $f(x) = 2x^2 + 3$ for $x \ge 0$.


5

(a)	Find and simplify an expression for $ff(x)$.	[2]
(b)	Solve the equation $ff(x) = 34x^2 + 19$.	[4]
		•••••

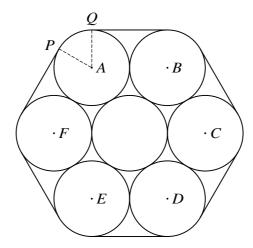
_		
F	Find the values of p and q .	
•		
•		
•		••••••
•		
•		
•		
•		
•		
•		
•		•••••
•		
•		
•		•••••
•		
•		
•		
•		
•		
•		•••••
•		
•		

(a)	Show that l is the tangent to the circle at A . [2]
(b)	Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at A . [3]

ı, 1	8 and $b + 3$ respectively.	
(a)	Find the values of a and b .	I
		••••••
(b)	Find the sum of the first 20 terms of the arithmetic progression.	
		•••••
		••••••

The diagram shows part of the curve with equation $y^2 = x - 2$ and the lines x = 5 and y = 1. The shaded region enclosed by the curve and the lines is rotated through 360° about the *x*-axis.

Find the volume obtained.	[6]



10	(0)	Duarra tha idantity	$1 + \sin x$	$1 - \sin x$	_ 4 tan <i>x</i>		r <i>4</i> 1
10	(a)	Prove the identity	$\frac{1-\sin x}{}$	$\frac{1+\sin x}{1+\sin x}$	$\equiv \frac{1}{\cos x}$.		[4]
		•••••		••••••	•••••		
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
		•••••		••••••	•••••		
		•••••		•••••	••••••		
				•••••			
				•••••			
				•••••			
		•••••		•••••			
			• • • • • • • • • • • • • • • • • • • •	••••••	•••••		

_	Hence solve the equation	$1 - \sin x$	$1 + \sin x$	$= 8 \tan x \text{ for } 0$	$\leq x \leq \frac{1}{2}\pi$.	
•				•••••	•••••	•••••
•		•••••	••••••	•••••	•••••	•••••
•				•••••		•••••
•		••••••	••••••	•••••	•••••	•••••
				•••••		•••••
•		•••••	••••••	•••••	•••••	•••••
•						
•		•••••	••••••	•••••	•••••	•••••
•			••••••	•••••	•••••	•••••
•		•••••	•••••••	••••••	••••••	•••••
			• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•			•			
•						
				•••••		•••••
,						
•						
•			•••••			
•						

11	The stati	e gradient of a curve is given by $\frac{dy}{dx} = 6(3x - 5)^3 - kx^2$, where k is a constant. The curve has a tionary point at $(2, -3.5)$.						
	(a)	Find the value of k . [2]						
	<i>a</i> >	F: 1d 6d						
	(D)	Find the equation of the curve. [4]						

(c)	Find $\frac{d^2y}{dx^2}$.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(d)	Determine the nature of the stationary point at $(2, -3.5)$.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••

The diagram shows a cross-section of seven cylindrical pipes, each of radius 20 cm, held together by a thin rope which is wrapped tightly around the pipes. The centres of the six outer pipes are A, B, C, D, E and F. Points P and Q are situated where straight sections of the rope meet the pipe with centre A.

(a)	Show that angle $PAQ = \frac{1}{3}\pi$ radians.	[2]
		••••
(b)	Find the length of the rope.	[4]

		•••••
		•••••
		•••••
		•••••
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
-	Find the area of the complete region enclosed by the rope.	
-	Find the area of the complete region enclosed by the rope.	
-	Find the area of the complete region enclosed by the rope.	
-	Find the area of the complete region enclosed by the rope.	
-	Find the area of the complete region enclosed by the rope.	
-	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	
	Find the area of the complete region enclosed by the rope.	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

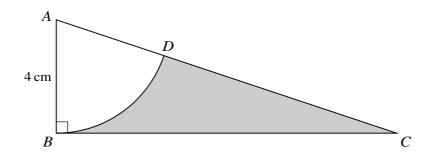
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

Find $f(x)$.							
		•••••	•••••	•••••	•••••		••••
							••••
							••••
							••••
							•••••
							••••
	••••••••••	•••••	••••••	•••••		••••••	••••
		••••••	••••••	••••••		••••••	••••
		•••••	••••••	••••••	•••••	•••••	••••
••••••	••••••				•••••••••••••••••••••••••••••••••••••••	•••••	•••••
			•••••	••••••			••••
		•••••	•••••	•••••			•••••
			•••••	••••••	•••••••••••••••••••••••••••••••••••••••		•••••
			•••••	••••••			••••
							••••
							•••••
					•••••		••••

alue of the constant a .	ind the maximum possible valu


	possible value touches the c		onstant <i>m</i>	, and the	correspon	ding coord	linates of tl	ne points at
•••••			•••••			•••••		
						•••••		
•••••								
••••		•••••	•••••	•••••	••••••	•••••		•••••
	•••••••••••••••••••••••••••••••••••••••		•••••		•••••			•••••
•••••		•••••	•••••	•••••	••••••	•••••		••••••
•••••								
•••••			•••••	•••••		•••••		
•••••				•••••	••••••	•••••		
•••••			•••••		•••••	•••••		
				•••••				
•••••					•••••	•••••		

4	(a)	Charr	that the	e equation
4	(a)	SHOW	mai me	: eauanon

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k,$$

	where k is a constant, may be expressed as
	$\frac{1+\cos x}{1-\cos x} = k. ag{2}$
(b)	Hence express $\cos x$ in terms of k . [2]
(c)	Hence solve the equation $\frac{\tan x + \sin x}{\tan x - \sin x} = 4 \text{ for } -\pi < x < \pi.$ [2]

© UCLES 2021 9709/13/M/J/21

The diagram shows a triangle ABC, in which angle $ABC = 90^{\circ}$ and AB = 4 cm. The sector ABD is part of a circle with centre A. The area of the sector is 10 cm^2 .

(a)	Find angle <i>BAD</i> in radians.	[2]
(b)	Find the perimeter of the shaded region.	[4]

6 Functions f and g are both defined for $x \in \mathbb{R}$	and are	given b	Эy
--	---------	---------	----

$$f(x) = x^2 - 2x + 5,$$

$$g(x) = x^2 + 4x + 13.$$

(a)	By first expressing each of $f(x)$ and $g(x)$ in completed square form, express $g(x)$ in the form $f(x+p)+q$, where p and q are constants.
(b)	Describe fully the transformation which transforms the graph of $y = f(x)$ to the graph of $y = g(x)$

7	(a)	Write down the first four terms of the expansion, in ascending powers of x , of $(a-x)^6$. [2]
	(b)	Given that the coefficient of x^2 in the expansion of $\left(1 + \frac{2}{ax}\right)(a-x)^6$ is -20 , find in exact form
		the possible values of the constant a . [5]

8 Functions f and g are defined as follows:

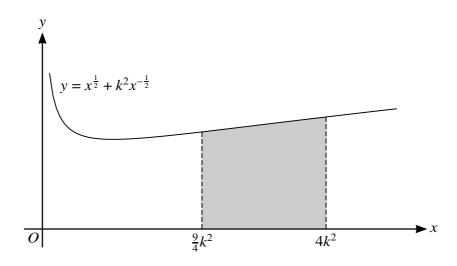
f:
$$x \mapsto x^2 - 1$$
 for $x < 0$,
g: $x \mapsto \frac{1}{2x+1}$ for $x < -\frac{1}{2}$.

Solve the equation $fg(x) = 3$.	[4]

© UCLES 2021

1	Find an expression for $(fg)^{-1}(x)$.	
		••••••

Find the possible values of the common ratio.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••


(b) An arithmetic progression P has first term a and common difference d. An arithmetic progression

	$\frac{5\text{th term of }P}{12\text{th term of }Q}$	$=\frac{1}{3}$ and	Sum of first	$\frac{5 \text{ terms of } P}{5 \text{ terms of } Q} =$	$\frac{2}{3}$.	
Find the val	ue of a and the v	value of d .				
						•••••
						•••••
•••••			•••••		•••••	•••••
						•••••
•••••			•••••	••••••	•••••	•••••
						•••••
						•••••
						•••••
						•••••
		••••••				•••••
						•••••
					•••••	•••••
					•••••	•••••

10	1 011	A = (-2, 3), B = (3, 0) and $C = (0, 3)$ lie on the circumference of a circle with centre D .	ats $A(-2, 3)$, $B(3, 0)$ and $C(6, 5)$ lie on the circumference of a circle with centre D .				
	(a)	Show that angle $ABC = 90^{\circ}$.	[2]				
			••••••				
			••••••				
	(b)	Hence state the coordinates of D .	[1]				
			•••••				
	(c)	Find an equation of the circle.	[2]				
			••••••				
			•••••				
			••••••				
			•••••				

The point E lies on the circumference of the circle such that BE is a diameter. (d) Find an equation of the tangent to the circle at E.

l)	Find an equation of the tangent to the circle at E .	[5]
		•••••
		•••••
		•••••

The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

(a)	Find the coordinates of the minimum point of the curve, giving your answer in terms of k . [4]

The tangent at the point on the curve where $x = 4k^2$ intersects the y-axis at P. [4] (b) Find the y-coordinate of P in terms of k. The shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and $x = 4k^2$. (c) Find the area of the shaded region in terms of k. [3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1 (P1)

October/November 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

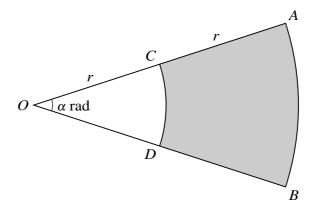
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

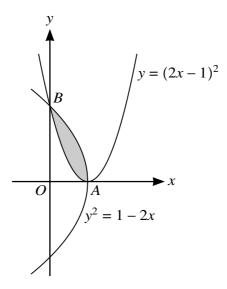


International Examinations

(ii) Hence, or otherwise, find the set of values of x for which
$$x^2 + 6x + 2 > 9$$
. [2]

2 Find the term independent of x in the expansion of
$$\left(2x + \frac{1}{2x^3}\right)^8$$
. [4]

In the diagram OCA and ODB are radii of a circle with centre O and radius 2r cm. Angle $AOB = \alpha$ radians. CD and AB are arcs of circles with centre O and radii r cm and 2r cm respectively. The perimeter of the shaded region ABDC is 4.4r cm.


(i) Find the value of
$$\alpha$$
. [2]

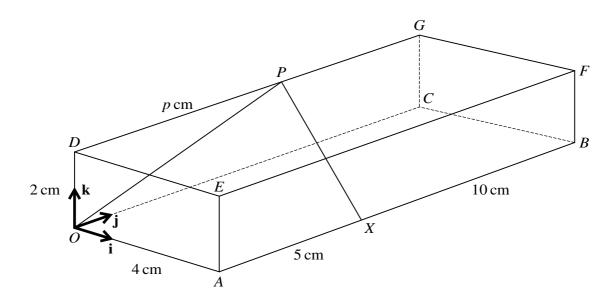
- (ii) It is given that the area of the shaded region is $30 \,\mathrm{cm}^2$. Find the value of r. [3]
- 4 C is the mid-point of the line joining A(14, -7) to B(-6, 3). The line through C perpendicular to AB crosses the y-axis at D.
 - (i) Find the equation of the line CD, giving your answer in the form y = mx + c. [4]
 - (ii) Find the distance AD. [2]
- 5 The sum of the 1st and 2nd terms of a geometric progression is 50 and the sum of the 2nd and 3rd terms is 30. Find the sum to infinity. [6]

6 (i) Show that
$$\cos^4 x = 1 - 2\sin^2 x + \sin^4 x$$
. [1]

(ii) Hence, or otherwise, solve the equation $8 \sin^4 x + \cos^4 x = 2 \cos^2 x$ for $0^\circ \le x \le 360^\circ$. [5]

© UCLES 2016 9709/11/O/N/16

The diagram shows parts of the curves $y = (2x - 1)^2$ and $y^2 = 1 - 2x$, intersecting at points A and B.


- (i) State the coordinates of A. [1]
- (ii) Find, showing all necessary working, the area of the shaded region. [6]
- **8** The functions f and g are defined by

$$f(x) = \frac{4}{x} - 2 \quad \text{for } x > 0,$$

$$g(x) = \frac{4}{5x + 2} \quad \text{for } x \ge 0.$$

- (i) Find and simplify an expression for fg(x) and state the range of fg. [3]
- (ii) Find an expression for $g^{-1}(x)$ and find the domain of g^{-1} . [5]

[Questions 9, 10 and 11 are printed on the next page.]

The diagram shows a cuboid OABCDEFG with a horizontal base OABC in which OA = 4 cm and AB = 15 cm. The height OD of the cuboid is 2 cm. The point X on AB is such that AX = 5 cm and the point P on DG is such that DP = p cm, where P is a constant. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

- (i) Find the possible values of p such that angle $OPX = 90^{\circ}$. [4]
- (ii) For the case where p = 9, find the unit vector in the direction of \overrightarrow{XP} . [2]
- (iii) A point Q lies on the face CBFG and is such that XQ is parallel to AG. Find \overrightarrow{XQ} . [3]
- 10 A curve has equation y = f(x) and it is given that $f'(x) = 3x^{\frac{1}{2}} 2x^{-\frac{1}{2}}$. The point A is the only point on the curve at which the gradient is -1.
 - (i) Find the *x*-coordinate of *A*. [3]
 - (ii) Given that the curve also passes through the point (4, 10), find the y-coordinate of A, giving your answer as a fraction.
- 11 The point P(3, 5) lies on the curve $y = \frac{1}{x-1} \frac{9}{x-5}$.
 - (i) Find the x-coordinate of the point where the normal to the curve at P intersects the x-axis. [5]
 - (ii) Find the x-coordinate of each of the stationary points on the curve and determine the nature of each stationary point, justifying your answers. [6]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/11/O/N/16

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1 (P1)

October/November 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

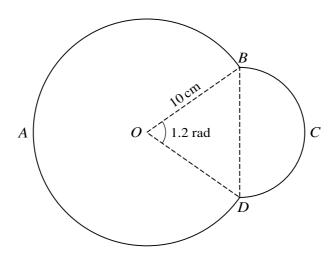
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 75.

This document consists of 3 printed pages, 1 blank page and 1 insert.

International Examinations

- 1 A curve is such that $\frac{dy}{dx} = \frac{8}{\sqrt{(4x+1)}}$. The point (2, 5) lies on the curve. Find the equation of the curve.
- 2 (i) Express the equation $\sin 2x + 3\cos 2x = 3(\sin 2x \cos 2x)$ in the form $\tan 2x = k$, where k is a constant.
 - (ii) Hence solve the equation for $-90^{\circ} \le x \le 90^{\circ}$. [3]
- 3 A curve has equation $y = 2x^2 6x + 5$.
 - (i) Find the set of values of x for which y > 13.
 - (ii) Find the value of the constant k for which the line y = 2x + k is a tangent to the curve. [3]
- 4 In the expansion of $(3-2x)\left(1+\frac{x}{2}\right)^n$, the coefficient of x is 7. Find the value of the constant n and hence find the coefficient of x^2 .
- The line $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are positive constants, intersects the x- and y-axes at the points A and B respectively. The mid-point of AB lies on the line 2x + y = 10 and the distance AB = 10. Find the values of a and b.

The diagram shows a metal plate ABCD made from two parts. The part BCD is a semicircle. The part DAB is a segment of a circle with centre O and radius $10 \, \text{cm}$. Angle BOD is $1.2 \, \text{radians}$.

(i) Show that the radius of the semicircle is 5.646 cm, correct to 3 decimal places. [2]

(ii) Find the perimeter of the metal plate. [3]

(iii) Find the area of the metal plate. [3]

© UCLES 2016 9709/12/O/N/16

7 The equation of a curve is $y = 2 + \frac{3}{2x - 1}$.

(i) Obtain an expression for
$$\frac{dy}{dx}$$
. [2]

(ii) Explain why the curve has no stationary points. [1]

At the point P on the curve, x = 2.

- (iii) Show that the normal to the curve at *P* passes through the origin. [4]
- (iv) A point moves along the curve in such a way that its x-coordinate is decreasing at a constant rate of 0.06 units per second. Find the rate of change of the y-coordinate as the point passes through P. [2]
- 8 (a) A cyclist completes a long-distance charity event across Africa. The total distance is 3050 km. He starts the event on May 1st and cycles 200 km on that day. On each subsequent day he reduces the distance cycled by 5 km.
 - (i) How far will he travel on May 15th? [2]
 - (ii) On what date will he finish the event? [3]
 - (b) A geometric progression is such that the third term is 8 times the sixth term, and the sum of the first six terms is $31\frac{1}{2}$. Find
 - (i) the first term of the progression, [4]
 - (ii) the sum to infinity of the progression. [1]
- **9** Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ 5 \end{pmatrix}.$$

- (i) Use a scalar product to find angle AOB. [4]
- (ii) Find the vector which is in the same direction as \overrightarrow{AC} and of magnitude 15 units. [3]
- (iii) Find the value of the constant p for which $p\overrightarrow{OA} + \overrightarrow{OC}$ is perpendicular to \overrightarrow{OB} . [3]
- 10 A function f is defined by $f: x \mapsto 5 2\sin 2x$ for $0 \le x \le \pi$.
 - (i) Find the range of f. [2]
 - (ii) Sketch the graph of y = f(x). [2]
 - (iii) Solve the equation f(x) = 6, giving answers in terms of π . [3]

The function g is defined by $g: x \mapsto 5 - 2\sin 2x$ for $0 \le x \le k$, where k is a constant.

- (iv) State the largest value of k for which g has an inverse. [1]
- (v) For this value of k, find an expression for $g^{-1}(x)$. [3]

© UCLES 2016 9709/12/O/N/16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/12/O/N/16

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1 (P1)

October/November 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

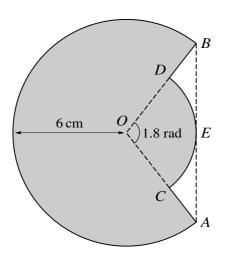
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

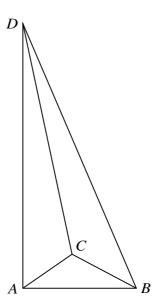
The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 75.

This document consists of 4 printed pages and 1 insert.

International Examinations

- 1 Find the set of values of k for which the curve $y = kx^2 3x$ and the line y = x k do not meet. [3]
- The coefficient of x^3 in the expansion of $(1 3x)^6 + (1 + ax)^5$ is 100. Find the value of the constant a.
- 3 Showing all necessary working, solve the equation $6 \sin^2 x 5 \cos^2 x = 2 \sin^2 x + \cos^2 x$ for $0^{\circ} \le x \le 360^{\circ}$.
- 4 The function f is such that $f(x) = x^3 3x^2 9x + 2$ for x > n, where n is an integer. It is given that f is an increasing function. Find the least possible value of n. [4]


The diagram shows a major arc AB of a circle with centre O and radius 6 cm. Points C and D on OA and OB respectively are such that the line AB is a tangent at E to the arc CED of a smaller circle also with centre O. Angle COD = 1.8 radians.

- (i) Show that the radius of the arc *CED* is 3.73 cm, correct to 3 significant figures. [2]
- (ii) Find the area of the shaded region. [4]
- 6 Three points, A, B and C, are such that B is the mid-point of AC. The coordinates of A are (2, m) and the coordinates of B are (n, -6), where m and n are constants.
 - (i) Find the coordinates of C in terms of m and n.

The line y = x + 1 passes through C and is perpendicular to AB.

(ii) Find the values of m and n. [5]

© UCLES 2016 9709/13/O/N/16

The diagram shows a triangular pyramid ABCD. It is given that

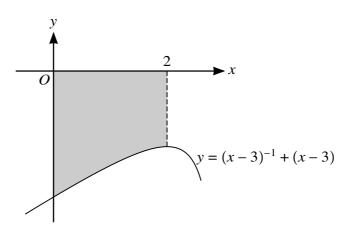
$$\overrightarrow{AB} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$$
, $\overrightarrow{AC} = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and $\overrightarrow{AD} = \mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$.

- (i) Verify, showing all necessary working, that each of the angles DAB, DAC and CAB is 90° . [3]
- (ii) Find the exact value of the area of the triangle *ABC*, and hence find the exact value of the volume of the pyramid. [4]

[The volume V of a pyramid of base area A and vertical height h is given by $V = \frac{1}{3}Ah$.]

- 8 (i) Express $4x^2 + 12x + 10$ in the form $(ax + b)^2 + c$, where a, b and c are constants. [3]
 - (ii) Functions f and g are both defined for x > 0. It is given that $f(x) = x^2 + 1$ and $fg(x) = 4x^2 + 12x + 10$. Find g(x).
 - (iii) Find $(fg)^{-1}(x)$ and give the domain of $(fg)^{-1}$. [4]
- 9 (a) Two convergent geometric progressions, P and Q, have the same sum to infinity. The first and second terms of P are 6 and 6r respectively. The first and second terms of Q are 12 and -12r respectively. Find the value of the common sum to infinity. [3]
 - (b) The first term of an arithmetic progression is $\cos \theta$ and the second term is $\cos \theta + \sin^2 \theta$, where $0 \le \theta \le \pi$. The sum of the first 13 terms is 52. Find the possible values of θ . [5]

[Questions 10 and 11 are printed on the next page.]


10 A curve is such that $\frac{dy}{dx} = \frac{2}{a}x^{-\frac{1}{2}} + ax^{-\frac{3}{2}}$, where a is a positive constant. The point $A(a^2, 3)$ lies on the curve. Find, in terms of a,

- (i) the equation of the tangent to the curve at A, simplifying your answer, [3]
- (ii) the equation of the curve. [4]

It is now given that B(16, 8) also lies on the curve.

- (iii) Find the value of a and, using this value, find the distance AB. [5]
- 11 A curve has equation $y = (kx 3)^{-1} + (kx 3)$, where k is a non-zero constant.
 - (i) Find the *x*-coordinates of the stationary points in terms of *k*, and determine the nature of each stationary point, justifying your answers. [7]

(ii)

The diagram shows part of the curve for the case when k = 1. Showing all necessary working, find the volume obtained when the region between the curve, the *x*-axis, the *y*-axis and the line x = 2, shown shaded in the diagram, is rotated through 360° about the *x*-axis. [5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/13/O/N/16

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME											
CENTRE NUMBER						CANDIDAT NUMBER	TE [
MATHEMATICS										97	709/11
Paper 1 Pure Ma	thematic	s 1 (P ′	l)				Oc	tobe	r/Nov	embe	er 2017
								1	hour	45 m	inutes
Candidates answe	er on the	Questi	on Pa	per.							
Additional Materia	ıls: L	ist of F	ormul	ae (MF9))						

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

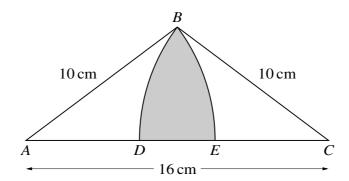
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

(4, 0)).									
•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
										• • • • • • • • • • • • • • • • • • • •
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
	•••••	•••••		•••••			•••••		• • • • • • • • • • • • • • • • • • • •	
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••				•••••			•••••			•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••		•••••		••••••	•••••	•••••	•••••	•••••
										•••••
•••••	•••••	•••••		•••••		••••••	••••••		••••••	•••••


 				•••••
 •••••	•••••		•••••	••••••
 				•••••
 •••••		•••••	•••••	
 ••••••	•••••	•••••	••••••	••••••
 				•••••
 				•••••
 				•••••
 				•••••
 •••••			••••••	•••••
 •••••		•••••	••••••	•••••
 		•••••	•••••	
 ••••••	••••••		••••••	•••••
 				•••••
 				•••••

Fi	and the value of r .	
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		

same sum of the first n terms. Find the value of n .	
	••••••
	•••••
	•••••
	••••••

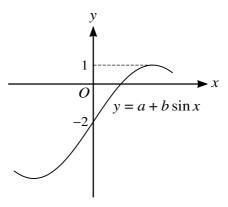
V cn	chines in a factory make cardboard cones of base radius r cm and vertical height h cm. The volume m^3 , of such a cone is given by $V = \frac{1}{3}\pi r^2 h$. The machines produce cones for which $h + r = 18$.
(i)	Show that $V = 6\pi r^2 - \frac{1}{3}\pi r^3$. [1]
(ii)	Given that r can vary, find the non-zero value of r for which V has a stationary value and show that the stationary value is a maximum. [4

		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	
(iii)		
(iii)		
(iii)		

The diagram shows an isosceles triangle ABC in which AC = 16 cm and AB = BC = 10 cm. The circular arcs BE and BD have centres at A and C respectively, where D and E lie on AC.

(1)	Show that angle $BAC = 0.6435$ radians, correct to 4 decimal places. [1]
(ii)	Find the area of the shaded region. [5]

The points A(1, 1) and B(5, 9) lie on the curve $6y = 5x^2 - 18x + 19$.


6

Show that the equation of the perpendicular bisector of AB is $2y = 13 - x$.	[4]

The perpendicular bisector of AB meets the curve at C and D.

Find, by calculation, the distance CD , giving your answer in the form $\sqrt{\left(\frac{p}{q}\right)}$, where p and	q
integers.	
	•••
	••
	••
	••
	٠.
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

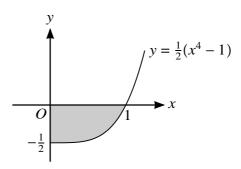
7 (a)

The diagram shows part of the graph of $y = a + b \sin x$. Find the values of the constants a and b . [2]

(b) (i) Show that the equality	(b)	the equat	atior
--------------------------------	------------	-----------	-------

(i)	Show that the equation				
	$(\sin\theta + 2\cos\theta)(1 + \sin\theta - \cos\theta) = \sin\theta(1 + \cos\theta)$				
	may be expressed as $3\cos^2\theta - 2\cos\theta - 1 = 0$. [3]				
(;;)	Hence solve the equation				
(11)	$(\sin \theta + 2\cos \theta)(1 + \sin \theta - \cos \theta) = \sin \theta(1 + \cos \theta)$				
	for $-180^{\circ} \le \theta \le 180^{\circ}$. [4]				

of R in terms of \mathbf{p} and \mathbf{q}	, simpinging your unsw	ci.	


values of a and b , showing all necessary working.	l
	••••••
	•••••

9 F	unctions	f and	g are	defined	for $x >$	3 by
-----	----------	-------	-------	---------	-----------	------

$$f: x \mapsto \frac{1}{x^2 - 9},$$

$$g: x \mapsto 2x - 3.$$

(i)	Find and simplify an expression for $gg(x)$.	[2]
		•••••
(ii)	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[4]
		•••••
		•••••
		•••••
		••••

(iii)	Solve the equation $fg(x) = \frac{1}{7}$. [4]

The diagram shows part of the curve $y = \frac{1}{2}(x^4 - 1)$, defined for $x \ge 0$.

• г	Find, showing all necessary working, the area of the shaded region.	[3
•		•••••
•		
•		
•		•••••
•		
		•••••
	Find, showing all necessary working, the volume obtained when the shaded region through 360° about the <i>x</i> -axis.	
		[4
	through 360° about the <i>x</i> -axis.	
	through 360° about the <i>x</i> -axis.	
	through 360° about the <i>x</i> -axis.	
	through 360° about the <i>x</i> -axis.	
	through 360° about the <i>x</i> -axis.	

(iii)	Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the <i>y</i> -axis. [5]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathen	natics 1 (P1)	Oc	tober/November 2017
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

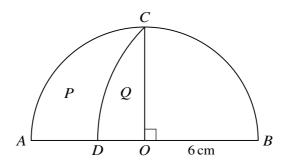
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



	rm independe			(150	,		
••••••	•••••	•••••			•••••		•••••
•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		•••••		•••••		•••••	
				•••••			
••••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••	•••••		•••••		•••••	
••••••	••••••••	•••••••••	•••••	•••••	••••••	••••••	••••••
					•••••		
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	•••••		•••••			
••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
				,			
	•••••	•••••		•••••		•••••	

2	A function	f is defined	$bvf \cdot r \mathrel{\sqsubseteq}$	$4-5x$ for $x \in \mathbb{R}$
<i>≟</i>	ATUIICUOII	I IS UCITICU		$T = J \lambda 101 \lambda \subseteq \mathbb{N}$

(i)	Find an expression for $f^{-1}(x)$ and find the point of intersection of the graphs of $y = f(x)$ and $y = f^{-1}(x)$.

The sum of the first n terms of an arithmetic progression is $\frac{1}{2}n(3n+7)$. Find the 1st to common difference of the progression.						

The diagram shows a semicircle with centre O and radius $6\,\mathrm{cm}$. The radius OC is perpendicular to the diameter AB. The point D lies on AB, and DC is an arc of a circle with centre B.

(i)	Calculate the length of the arc DC .	[3]

(ii`) Find	the	value	of
•		, 11114	uic	, ai ac	$\mathbf{o}_{\mathbf{I}}$

$\frac{\text{area of region } P}{\text{area of region } Q},$	
giving your answer correct to 3 significant figures.	[4]
	••••••
	•••••

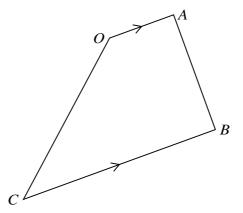
$2\cos^2 2x + 3\cos 2x + 1 = 0.$	[3]
	L.
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • •
	• • • • • • • •
	• • • • • • • •
	• • • • • • • •
	•••••

		 	•••••				
••••••	•••••	 ••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••		 •••••	•••••	•••••		•••••	
•••••		 ••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		 	•••••	•••••	•••••	•••••	•••••
		 			•••••	•••••	•••••
••••••		 ••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		 •••••	•••••	•••••			•••••
		 					•••••
••••••	•••••	 •••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
		 •••••	•••••	•••••			•••••

(i)	Find the values of the constants a and b .	[3]
(ii)	Evaluate ff(0).	[2]

The function g is defined by $g: x \mapsto c + d \sin x$ for $x \in \mathbb{R}$. The range of g is give Find the values of the constants c and d .	[3]
	•••••

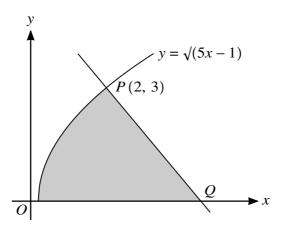
Points A and B lie on the curve $y = x^2 - 4x + 7$. Point A has coordinates (4, 7) and B is the stationary


In	the case where L passes through the mid-point of AB , find the value of m .
••••	
• • • •	
• • • •	
••••	
••••	
• • • •	
••••	
••••	
• • • •	
••••	
• • • •	
• • • •	
••••	
••••	

 •
 •••••
 ••••••
••••••
 •••••
 •••••
•••••
••••••
 •

8	A curve is such that	$t \frac{\mathrm{d}y}{\mathrm{d}x} = -x^2 + 5x - 4x$
---	----------------------	--

Find the <i>x</i> -coordinate of each of the stationary points of the curve.	[2]
	•••••
	•••••
Obtain an expression for $\frac{d^2y}{dx^2}$ and hence or otherwise find the nature of each of points.	the stationary
	•••••••
	Obtain an expression for $\frac{d^2y}{dx^2}$ and hence or otherwise find the nature of each of


	•••••	•••••	•••••												
							••••	•••••							
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	••••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	••••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	••••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	••••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • •	•••••	•••••		•••••	•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • •	•••••	•••••		•••••	•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • •	•••••	•••••		•••••	•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••			•••••	•••••	•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
					•••••				• • • • • • • •					. 	

The diagram shows a trapezium OABC in which OA is parallel to CB. The position vectors of A and B relative to the origin O are given by $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}$.

(i)	Show that angle OAB is 90°.	[3]
The	magnitude of \overrightarrow{CB} is three times the magnitude of \overrightarrow{OA} .	
(ii)	Find the position vector of <i>C</i> .	[3]

(iii)	Find the exact area of the trapezium $OABC$, giving your answer in the form $a\sqrt{b}$, where a and b
()	
	are integers. [3]

The diagram shows part of the curve $y = \sqrt{(5x-1)}$ and the normal to the curve at the point P(2, 3). This normal meets the *x*-axis at Q.

(i)	Find the equation of the normal at <i>P</i> .	[4]

••••••
••••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/13
Paper 1 Pure Mathen	natics 1 (P1)	Octo	ober/November 2017
			1 hour 45 minutes
Candidates answer or	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

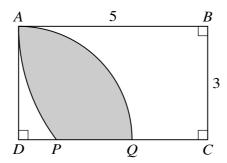
xceeds 3000. Calculate the least possible value of n .	[4
	••••••
	••••••

d	listinct points.
••	
•	
• •	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
• •	

Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $	Find the term inde	•	, (<i>x</i> /	
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $		••••••	•••••		•••••
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $		•••••	•••••		
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					•••••
Find the value of a for which there is no term independent of x in the expansion of $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	e value of a for which there is no term independent of x in the expansion of $ (1 + ax^2) \left(\frac{2}{x} - 3x\right)^6. $					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$		•••••	•••••	•••••	
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					•••••
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$					
		Find the value of α	\imath for which there	e is no term indep	endent of x in the	e expansion of
		Find the value of α				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				e expansion of
		Find the value of a				
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$(1+ax^2)\left(\frac{2}{x}-3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		
				$1 + ax^2 \left(\frac{2}{x} - 3x\right)^6$		

value of k f	for which f i	s a decreas	sing funct	ion.	,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		nt. Find the la
••••••			•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
			•••••		•••••	•••••		
•••••		•••••	•••••	•••••	•••••	••••••		
•••••		•••••	•••••		•••••	•••••		
					•••••			
•••••		•••••			•••••	•••••		
								•••••
•••••		· • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	••••••	•••••
			•••••	••••••	•••••	••••••	•••••	
•••••					•••••	••••••		
					•••••	••••••		
•••••					•••••	••••••		

l)	Snow that the equation -	$\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0 \text{ may be expressed as } 5\cos^2 \theta - \cos \theta - 4$	i = 0. [3]
			•••••
			•••••
			•••••
			••••••
			•••••
			•••••
			••••••
			••••••
			•••••
			•••••

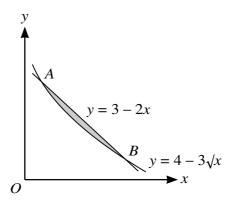

		$\cos \theta + 4$	
(ii)	Hence solve the equation	$\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0 \text{ for } 0^{\circ} \leqslant \theta \leqslant 360^{\circ}.$	[4]
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •

The functions f and g are defined by

$$f(x) = \frac{2}{x^2 - 1} \text{ for } x < -1,$$

$$g(x) = x^2 + 1 \text{ for } x > 0.$$

i)	Find an expression for $f^{-1}(x)$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••


			••••••			•••••				••••••
						•••••				
•••••	••••••	••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••	•	••••••	••••••	••••••	•••••		•	••••••	• • • • • • • • • • • • • • • • • • • •
						•••••				
				•••••		•••••			•••••	
•••••			••••••	•••••	••••••	•••••			•••••	
•••••	•••••		••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
						•••••			•••••	
			••••••	•••••	••••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •
				•••••	•••••	•••••	•••••	•••••	•••••	

The diagram shows a rectangle ABCD in which AB = 5 units and BC = 3 units. Point P lies on DC and AP is an arc of a circle with centre B. Point Q lies on DC and AQ is an arc of a circle with centre D.

(1)	Show that angle $ABP = 0.6435$ radians, correct to 4 decimal places.	.1]
		•••
		•••
(ii)	Calculate the areas of the sectors BAP and DAQ .	[3]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

		• • • • • • • • • • • • • • • • • • • •
		
(m)	Calculate the area of the shaded region.	[3]
		• • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • • • • • • • • • • • • • • •

The diagram shows parts of the graphs of y = 3 - 2x and $y = 4 - 3\sqrt{x}$ intersecting at points A and B.

(i)	Find by calculation the x -coordinates of A and B .	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

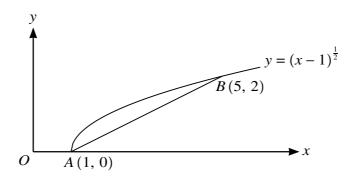
•••••
••••••
•••••

9	Relative to an	origin O ,	the position	vectors of the	points A ,	B and C a	are given b	οу

$$\overrightarrow{OA} = \begin{pmatrix} 8 \\ -6 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -10 \\ 3 \\ -13 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}.$$

A fourth point, D, is such that the magnitudes $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ and $|\overrightarrow{CD}|$ are the first, second and third terms respectively of a geometric progression.

Find the magnitudes $ \overrightarrow{AB} $, $ \overrightarrow{BC} $ and $ \overrightarrow{CD} $.	[5]


of the point D .	[4

.,	Find, in terms of a and b , the non-zero value of x for which the curve has a stationary podetermine, showing all necessary working, the nature of the stationary point.

at $x = 1$ is 9. Find $f(x)$.	(-2, -3) and that the gradient	[6
	 	•••••
	 	•••••
	 	•••••
	 	••••••
	 	•••••
	 	•••••
	 	•••••
	 	•••••

(i)

(ii)

The diagram shows the curve $y = (x - 1)^{\frac{1}{2}}$ and points A(1, 0) and B(5, 2) lying on the curve.

Find the equation of the line AB, giving your answer in the form $y = mx + c$.	[2]
	•••••
	•••••
	•••••
Find, showing all necessary working, the equation of the tangent to the curve which is AB .	parallel to [5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

(iii)	Find the perpendicular distance between the line AB and the tangent parallel to AB . Give your answer correct to 2 decimal places. [3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mathen	natics 1 (P1)	Oct	ober/November 2018
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

		•••••		••••••	•••••		 ••••
		•••••		•••••••			 ••••
	•••••	•••••	••••••	••••••	•••••		
		•••••	•••••	•••••			
••••••		••••••			••••••		 ••••
••••••					••••••		 ••••
							 ••••
••••••		•••••	••••••	••••••			 ••••
		•••••					
	•••••	•••••••	•••••	•••••			 ••••
••••••		•••••			•••••	••••••	 •••••
					•••••		 ••••
				••••••	•••••		
		•••••	••••••	••••••			 ••••
		•••••					
••••••	•••••	••••••			•••••	••••••	 ••••

constant b	for which t	he line m	eets the	curve.							[4
	•••••	•••••		•••••			•••••		•••••	•••••	
•••••		•••••	•	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
										•••••	
	•••••	•••••		•••••			• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••										•••••	
•••••••	••••••	•••••	•••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•	•••••	••••••	•
							•••••			•••••	• • • • • • • • • • • • • • • • • • • •
••••••		•••••	•••••	••••••	••••••		•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
										•••••	
		•••••					•••••		•••••	•••••	• • • • • • • •
•••••••••	••••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • •
										•••••	
••••••	••••••	•••••		•••••	•••••		•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
										•••••	
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•	••••••	•••••	••••••		••••••	•••••	•••••	• • • • • • •
							•••••			•••••	• • • • • • • • • • • • • • • • • • • •

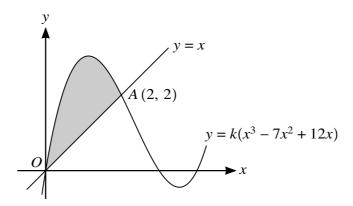
Two points A and B have coordinates (3a, -a) and (-a, 2a) respectively, where a is a positive

(i)	Find the equation of the line through the origin parallel to AB .	
		•••••••
		•••••
·••\		
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)		
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	

(-)	For the case where the series is an arithmetic progression, find the sum of the first 80 terms.	[3
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
i)		[2
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
	For the case where the series is a geometric progression, find the sum to infinity.	[2
)	For the case where the series is a geometric progression, find the sum to infinity.	[2
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
)	For the case where the series is a geometric progression, find the sum to infinity.	[2
)	For the case where the series is a geometric progression, find the sum to infinity.	[2
ii)	For the case where the series is a geometric progression, find the sum to infinity.	[2

5 (i) Show that the equation

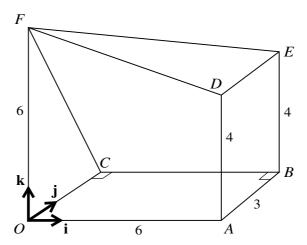
	$\frac{\cos\theta-4}{\sin\theta}$ –	$\frac{4\sin\theta}{5\cos\theta-2}$	= 0	
may be expressed as $9\cos^2\theta$	$\theta - 22\cos\theta +$	-4 = 0.		[3]
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			


© UCLES 2018

(ii) Hence solve the equation	ion
-------------------------------	-----

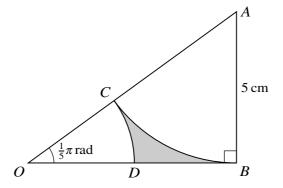
	$\cos \theta - 4$	$4 \sin \theta$	- 0		
	$\sin \theta$	$-\frac{4\sin\theta}{5\cos\theta-2} =$	= 0		
for $0^{\circ} \le \theta \le 360^{\circ}$.					[3]
	••••••••	•••••••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••
			•••••	•••••	
	•••••	•••••	•••••	•••••	••••••
			•••••	•••••	
				•••••	
	•••••	•••••	••••••	•••••	••••••••••••
		•••••	•••••		
	•••••	•••••	•••••	•••••	
	•••••	•••••	•••••		

(i)	Find the value of a .	[2
		•••
		•••
		••
		•••
i)	Find the equation of the curve.	 [·
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[-
i)	Find the equation of the curve.	
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4


		••
		· •
		••
		••
		••
		••
		•
		. .
		. •
		• •
(iii)	Determine, showing all necessary working, the nature of the stationary point. [2]	2]
		••
		••
		•

The diagram shows part of the curve with equation $y = k(x^3 - 7x^2 + 12x)$ for some constant k. The curve intersects the line y = x at the origin O and at the point A(2, 2).

(i)	Find the value of k .	[1]
(ii)	Verify that the curve meets the line $y = x$ again when $x = 5$.	[2]


Find, showing all necessary working, the area of the shaded region.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and 4 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OF respectively.

(i)	Find \overrightarrow{DF} .	[1]
(ii)	Find the unit vector in the direction of \overrightarrow{EF} .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••

ii)	Use a scalar product to find angle <i>EFD</i> .	[4]
		••••••
		•••••••••••

The diagram shows a triangle OAB in which angle ABO is a right angle, angle $AOB = \frac{1}{5}\pi$ radians and $AB = 5$ cm. The arc BC is part of a circle with centre A and meets OA at C . The arc CD is part of a circle with centre O and meets OB at OB . Find the area of the shaded region.

10	A curve l	has equation $y = \frac{1}{2}(4x - 3)^{-1}$. The point A on the curve has coordinates $(1, \frac{1}{2})$.						
	(i) (a)	Find and simplify the equation of the normal through A .	[5]					
			,					
			••••••					
			••••••					
			•••••					
			••••••					

	••••••	••••••			•••••	•••••	••••••
							•••••
	••••••	•••••••••	•••••	•••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
				•••••			•••••
	•••••	•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••					• • • • • • • • • • • • • • • • • • • •
А ро	oint is movin	g along the	curve in su	ch a way tha	t as it passes	through A its β	x-coordina
A po	oint is moving	g along the rate of 0.3 u	curve in su	ch a way tha	t as it passes t	through A its g	x-coordina rdinate at
A po	oint is moving easing at the	g along the rate of 0.3 u	curve in su	ch a way tha	t as it passes te rate of chang	through A its y	x-coordina rdinate at
A po	oint is moving easing at the	g along the rate of 0.3 u	curve in suunits per sec	ch a way tha cond. Find th	t as it passes te rate of chang	through A its g	x-coordina rdinate at
A podecr	oint is moving easing at the	g along the rate of 0.3 i	curve in su- units per sec	ch a way tha cond. Find th	t as it passes te rate of chan	through A its g	x-coordina rdinate at
A po	oint is moving easing at the	g along the rate of 0.3 i	curve in su- units per sec	ch a way tha cond. Find th	t as it passes to e rate of chang	through A its g	x-coordina rdinate at
A podecr	oint is moving easing at the	g along the rate of 0.3 i	curve in su	ch a way tha	t as it passes to e rate of chang	through A its ge of its y-cool	x-coordina rdinate at
A podecr	oint is moving easing at the	g along the rate of 0.3 i	curve in su	ch a way tha	t as it passes to e rate of change	through A its ge of its y-cool	x-coordina rdinate at
A podecr	oint is moving easing at the	g along the rate of 0.3	curve in su	ch a way tha	t as it passes te rate of chang	through A its ge of its y-cool	x-coordina rdinate at
A podecr	pint is moving easing at the	g along the rate of 0.3	curve in suanits per sec	ch a way tha	t as it passes te rate of chang	through A its ge of its y-coor	x-coordina rdinate at
A podecr	pint is moving easing at the	g along the rate of 0.3 i	curve in su	ch a way tha	t as it passes te rate of chang	through A its ge of its y-coor	x-coordina rdinate at
A podecr	pint is moving easing at the	g along the rate of 0.3 i	curve in su	ch a way tha	t as it passes the rate of change	through A its y ge of its y-coor	x-coordina rdinate at
A podecr	pint is moving easing at the	g along the rate of 0.3 i	curve in suanits per sec	ch a way tha	t as it passes the rate of change	through A its 2 ge of its y-coor	x-coordina rdinate at
A podecr	pint is moving easing at the	g along the rate of 0.3	curve in suanits per sec	ch a way tha	t as it passes the rate of change	through A its y ge of its y-coor	x-coordina rdinate at
A podecr	pint is moving easing at the	g along the rate of 0.3 i	curve in suanits per sec	ch a way tha	t as it passes the rate of change	through A its 2	x-coordina rdinate at
A podecr	oint is moving easing at the	g along the rate of 0.3	curve in suanits per sec	ch a way tha	t as it passes to e rate of change	through A its 2 ge of its y-coor	x-coordina rdinate at

11	(a)	The	one-one function f is defined by $f(x) = (x-3)^2 - 1$ for $x < a$, where a is a constant.
		(i)	State the greatest possible value of a . [1]
		(ii)	It is given that a takes this greatest possible value. State the range of f and find an expression for $f^{-1}(x)$. [3]

(b)	The function g is defined by $g(x) = (x-3)^2$ for $x \ge 0$.									
	(i)	Show that $gg(2x)$ can be expressed in the form $(2x-3)^4 + b(2x-3)^2 + c$, where b and c are constants to be found. [2]								
	(ii)	Hence expand $gg(2x)$ completely, simplifying your answer. [4]								

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					ANDIDATE JMBER			
MATHEMATICS							9709/	12
Paper 1 Pure Ma	ıthema	itics 1 (P	1)		0	ctober/No	ovember 20	18
						1 ho	ur 45 minut	es
Candidates answ	er on t	he Quest	ion Pape	∍r.				
Additional Materia	als:	List of F	ormulae	∍ (MF9)				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

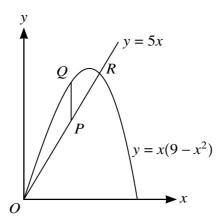
Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

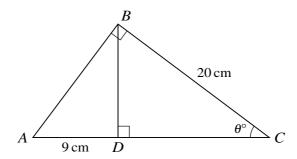
•••••		•••••	•••••	••••••	•••••		•••••	•••••
•••••								
•••••	•••••	•••••		•••••				•••••
••••••	••••••••	••••••	••••••	••••••		•	•••••	
•••••			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	••••••	••••••	••••••	•••••			•••••	•••••
								•••••
•••••	•••••	••••••		•••••			•••••	•••••
•••••								•••••
•••••	•••••	•••••		•••••	•••••			
•••••	••••••••	••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••								
•••••	••••••	•••••	••••••	•••••		•	•••••	•••••
				•••••		•••••		•••••
•••••	••••••	•••••	••••••	••••••	•••••		•••••	•••••

2	Showing all necessary working, find $\int_{1}^{4} \left(\sqrt{x} + \frac{2}{\sqrt{x}} \right) dx$.	[4]
		••••••
		••••••
		••••••
		••••••
		••••••

The diagram shows part of the curve $y = x(9 - x^2)$ and the line y = 5x, intersecting at the origin O and the point P. Point P lies on the line y = 5x between O and P and the P-coordinate of P is P-coordinate of P is P-coordinate of P-c

(i)	Express the length of PQ in terms of t , simplifying your answer.	[2]
		••••
		••••
		••••
(** \		
(11)	Given that t can vary, find the maximum value of the length of PQ .	[3]
		••••
		••••
		••••
		••••
		••••
		••••

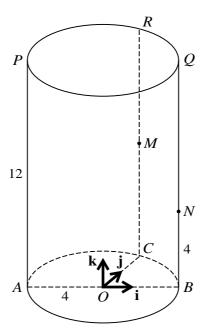
4 Functions f and g are defined by


$$f: x \mapsto 2 - 3\cos x$$
 for $0 \le x \le 2\pi$,
 $g: x \mapsto \frac{1}{2}x$ for $0 \le x \le 2\pi$.

(i)	Solve the equation $fg(x) = 1$.	[3]
(ii)	Sketch the graph of $y = f(x)$.	[3]

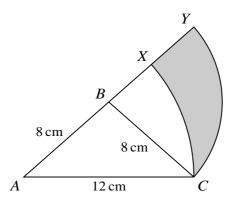
The first three terms of an arithmetic progression are 4, x and y respectively. The first three terms of

Find the value of x and the value of y .	


Find the fourth term of each progression.	[3]

The diagram shows a triangle ABC in which BC = 20 cm and angle $ABC = 90^{\circ}$. The perpendicular from B to AC meets AC at D and AD = 9 cm. Angle $BCA = \theta^{\circ}$.

(i)	By expressing the length of <i>BD</i> in terms of θ in each of the triangles <i>ABD</i> and <i>DBC</i> , show that $20 \sin^2 \theta = 9 \cos \theta$. [4]


Hence, showing all necessary working, calculate θ .	
	•••••
	••••••
	•••••
	•••••
	••••••

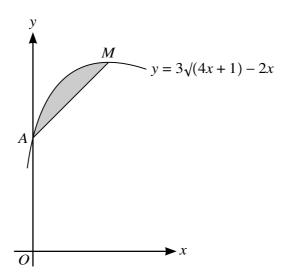
The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius 4 units. Points A, B and C lie on the circumference of the base such that AB is a diameter and angle $BOC = 90^{\circ}$. Points P, Q and R lie on the upper surface of the cylinder vertically above A, B and C respectively. The height of the cylinder is 12 units. The mid-point of CR is M and N lies on BQ with BN = 4 units.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to OB and OC respectively and the unit vector \mathbf{k} is vertically upwards.

Evaluate $\overrightarrow{PN} \cdot \overrightarrow{PM}$ and hence find angle MPN .	[7]

The diagram shows an isosceles triangle ACB in which AB = BC = 8 cm and AC = 12 cm. The arc XC is part of a circle with centre A and radius 12 cm, and the arc YC is part of a circle with centre B and radius 8 cm. The points A, B, X and Y lie on a straight line.

(i)	Show that angle $CBY = 1.445$ radians, correct to 4 significant figures.	[3]
		•••••
		,
		•••••
		· • • • •
		•••••
		•••••



)	Express $2x^2 - 12x + 7$ in the form $2(x + a)^2 + b$, where a and b are constants.	[2
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••
		••••••
		•••••
		•••••
) ;	State the range of f.	
		•••••

The	function g is defined by $g: x \mapsto 2x^2 - 12x + 7$ for $x \le k$.	
(iii)	State the largest value of k for which g has an inverse.	[1]
(iv)	Given that g has an inverse, find an expression for $g^{-1}(x)$.	[3]
		•••••
		•••••

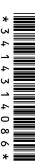
	e set of val	lues of k f	for which	the line does	not meet th	ne curve.	
•••••	••••••	••••••	••••••		••••••	••••••	•••••
•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••
		•••••	•••••				
	•••••						
••••••	••••••	••••••	•••••••		••••••	••••••	•••••
•••••	•••••	••••••	••••••		••••••	•••••	•••••
••••••	••••••	••••••	••••••		••••••	••••••	••••••
•••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••
		•••••					
ha casa x	where $k = 1$	5 the cur	rva interce	ects the line	at points A	and R	
				ects the line	at points A	and B .	
	where $k = 1$ e coordinat			ects the line	at points A	and <i>B</i> .	
				ects the line	at points A	and B.	
				ects the line	at points A	and <i>B</i> .	
				ects the line	at points A	and <i>B</i> .	
				ects the line	at points A	and <i>B</i> .	
				ects the line	at points A	and B.	
				ects the line	at points A	and B.	
				ects the line	at points A	and B.	

		•••••
(iii)	Find the equation of the perpendicular bisector of the line joining A and B .	[3]

The diagram shows part of the curve $y = 3\sqrt{(4x+1)} - 2x$. The curve crosses the y-axis at A and the stationary point on the curve is M.

(i)	Obtain expressions for $\frac{dy}{dx}$ and	$\int y \mathrm{d}x.$	[5]
			••••••
			•••••

1) 11	and the coordinates of M .	
•••		•••••
		•••••
		•••••
•••		
		••••
		••••
•••		
) Fi	ind, showing all necessary working, the area of the shaded region.	
•••		•••••
•••		•••••
		•••••
		•••••
•••		
•••		•••••


Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/13
Paper 1 Pure Math	ematics 1 (P1)	Oc	tober/November 2018
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials	: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

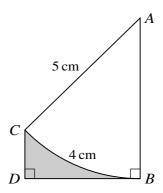
Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

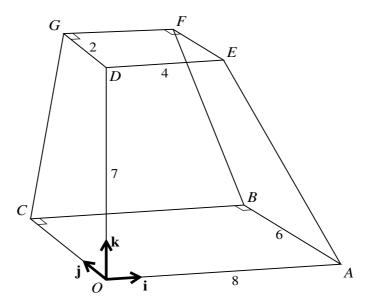
At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	,
•••	
•••	

working	g, whether f is a	an increasing	g function,	a decreasin	ig function	or neither.		
•••••	••••••	••••••	••••••	•••••••	•••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••					•••••	
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
•••••								
•••••	••••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••					•••••	
•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••					•••••	
•		••••••	•	••••••	••••••	•	•	
•••••		•••••						
•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••
•••••		•••••					•••••	
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
•••••							•••••	
••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••								
• • • • • • • • • • • • • • • • • • • •	•••••	•••••			•••••			• • • • • • • • • • • • • • • • • • • •


The diagram shows an arc BC of a circle with centre A and radius 5 cm. The length of the arc BC is 4 cm. The point D is such that the line BD is perpendicular to BA and DC is parallel to BA.

(i)	Find angle <i>BAC</i> in radians.	[1]
ii)	Find the area of the shaded region <i>BDC</i> .	[5]

(i) Fi	nd the equation of BC and the x -coordinate of C .	
••••		
••••		
••••		
••••		
••••		
••••		
••••		
ii) Fi	nd the distance AC , giving your answer correct to 3 decimal places.	

and th	arithmetic progression the first n terms is 14	420. Find <i>n</i> and <i>a</i> .	
•••••			••••••
•••••			
•••••			
•••••			•••••
•••••			
•••••			•••••
•••••			•••••
•••••			
•••••			•••••
•••••			••••••
•••••			

The diagram shows a solid figure OABCDEFG with a horizontal rectangular base OABC in which OA = 8 units and AB = 6 units. The rectangle DEFG lies in a horizontal plane and is such that D is 7 units vertically above O and DE is parallel to OA. The sides DE and DG have lengths 4 units and 2 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively. Use a scalar product to find angle OBF, giving your answer in the form $\cos^{-1}\left(\frac{a}{b}\right)$, where a and b are integers.

[6]

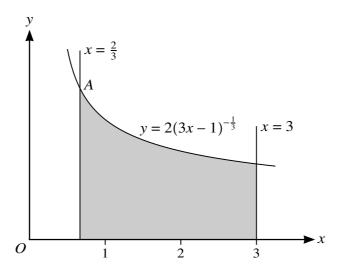
7	(i)	Show that $\tan \theta + 1 = \tan \theta - 1 = 2(\tan \theta - \cos \theta)$	[3]
,	(1)	Show that $\frac{\tan \theta + 1}{1 + \cos \theta} + \frac{\tan \theta - 1}{1 - \cos \theta} = \frac{2(\tan \theta - \cos \theta)}{\sin^2 \theta}$.	[3]

(ii) Hence, showing all necessary working, solve the equation

$\frac{\tan\theta + 1}{1 + \cos\theta} + \frac{\tan\theta - 1}{1 - \cos\theta} = 0$	
for $0^{\circ} < \theta < 90^{\circ}$.	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	•••••
	•••••
	••••
	••••
	••••
	••••
	••••

A curve passes through (0, 11) and has an equation for which $\frac{dy}{dx} = ax^2 + bx - 4$, where a and b are

Find the equation of	the curve in term	ns of a and b .			
		••••••	••••••		
••••••		•••••	•••••	•••••	,
					· • • • • • • • • • • • • • • • • • • •
			•••••		
•••••		•••••	•••••		· • • • • • • • • • • • • • • • • • • •
					· • • • • • • • • • • • • • • • • • • •
		•••••	•••••		
		•••••	•••••	••••••	,
					••••••
		•••••	•••••		
					· • • • • • • • • • • • • • • • • • • •


© UCLES 2018 9709/13/O/N/18

		••••••	 	•••••	••••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •
			 						••••••
•••••••		••••••	 •••••••	•••••	•••••		•••••	•••••	•
••••••	• • • • • • • • • • • • • • • • • • • •	••••••	 	•••••	•••••		•••••	•••••	
•••••	•••••	••••••	 ••••••	•••••	•••••	•••••	•••••	•••••	
•••••	•••••	••••••	 	•••••	•••••		•••••	•••••	
	•••••	•••••	 	•••••	•••••		•••••	•••••	
•••••		••••••	 •••••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••••		••••••	 	•••••	•••••		•••••	•••••	
•••••		••••••	 ••••••	•••••	•••••	•••••	•••••	•••••	
		••••••	 	•••••	•••••		•••••	•••••	•••••
		•••••	 	•••••	•••••		•••••	•••••	
		•••••	 						

Show that, for all values of k , the	curve and the line meet.	[

© UCLES 2018 9709/13/O/N/18

point where the line touches the curve.	[4

The diagram shows part of the curve $y = 2(3x - 1)^{-\frac{1}{3}}$ and the lines $x = \frac{2}{3}$ and x = 3. The curve and the line $x = \frac{2}{3}$ intersect at the point A.

through 36	50° about the x	-axis.	, the volum	e obtained	when the sh	aded region is rotated [5
•••••			•••••			
•••••			•••••			

© UCLES 2018 9709/13/O/N/18

Find the equation	of the normal	to the curve a	t A, giving yo	ur answer in th	e form $y = mx$	+ <i>c</i> . [5]
						•••••
•••••		•••••		••••••	••••••	•••••
						•••••
	•••••	•••••			•••••	•••••
						•••••
					••••	
	•••••	•••••			••••••	••••••
		•••••				•••••
•••••	•••••	•••••	•••••	••••••	••••••	••••••
						•••••
		•••••				•••••
		•••••			••••••	•••••
						•••••
						•••••
		•••••				•••••

The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function. (iii) For this value of k find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .			
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			•••••
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			•••••
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			•••••
The function f is defined by $f(x) = 2x^2 - 12x + 11$ for $x \le k$. (ii) State the largest value of the constant k for which f is a one-one function.			•••••
(ii) State the largest value of the constant <i>k</i> for which f is a one-one function.			•••••
(ii) State the largest value of the constant <i>k</i> for which f is a one-one function.			
(ii) State the largest value of the constant <i>k</i> for which f is a one-one function.			
(ii) State the largest value of the constant <i>k</i> for which f is a one-one function.			
(ii) State the largest value of the constant <i>k</i> for which f is a one-one function.			
	(11)	State the largest value of the constant k for which f is a one-one function.	
			•••••
(iii) For this value of k find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .			•••••
(iii) For this value of k find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .			
(m) For this value of k find all expression for 1 (x) and state the domain of 1 .	(:::)	For this value of k find an expression for $f^{-1}(x)$ and state the domain of $f^{-1}(x)$	
	(III <i>)</i>	For this value of κ find an expression for $\Gamma^{-}(x)$ and state the domain of Γ^{-} .	

© UCLES 2018

		•••••			
		•••••			•••••
•••••		•••••	•••••		•••••
	•••••	•••••			
With k now t	defined by $g(x) = x + \frac{1}{2}$ aking the value 1, fin so be formed, and fi	d the largest valu	e of the constant p for $fg(x)$ whenever	which allows the cover this composite f	mposi functio
•••••					
					•••••
•••••	•••••	•••••	•••••		•••••
	•••••	•••••			
		•••••			•••••
•••••	•••••	•••••	•••••		•••••
					•••••
•••••		•••••			•••••
•••••	•••••	•••••	•••••		•••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mathen	natics 1 (P1)	Octo	ber/November 2019
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 20 printed pages.

[Turn over

	term independen		,	,		
	•••••	••••••				
••••••	••••••	•••••••••••	•••••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••		
••••••	•••••	•••••	•••••	•••••	•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	••••••
	•••••	•••••	•••••	•••••		
••••••	•••••	•••••	••••••	•••••	••••••	· • • • • • • • • • • • • • • • • • • •
••••••		••••••		•••••		
	•••••	•	•		••••••	
•••••						••••••
	•••••	•••••				
••••••	•••••	•••••	•••••	•••••		••••••
•••••	••••••	••••••	•••••	•••••	•••••	•

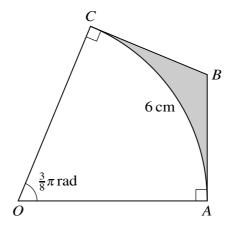
Find the lea	ast possible v	alue of n .						
,	•••••		•••••	•••••			•••••	••••••
••••••	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••	•••••	••••••
	•••••							
	•••••		•••••	•••••			• • • • • • • • • • • • • • • • • • • •	
•			••••••					
•••••	•••••		•••••	•••••			•••••	
	•••••			•••••				
• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •
			•••••	•••••				
•••••	•••••	•	••••••	••••••	••••••	•	• • • • • • • • • • • • • • • • • • • •	•
• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
							•••••	
	•••••							

•••••••••••••••••••••••••••••••••••••••
•••••••

·	
1)	Find the distance she must run on day 1 in order to achieve this. Give your answer in km correct to 1 decimal place.
)	Find the total distance she runs over the 21 days.

7	
(ii) Hence, showing all necessary working, solve the equation	
$4\tan(2x - 20^\circ) + 3\cos(2x - 20^\circ) + \frac{1}{\cos(2x - 20^\circ)} = 0$	
for $0^{\circ} \leqslant x \leqslant 180^{\circ}$.	[4]

[
•••••
 ••••••
•••••
•••••


7 Functions f and g are defined by

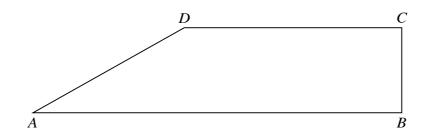
$$f: x \mapsto \frac{3}{2x+1} \quad \text{for } x > 0,$$
$$g: x \mapsto \frac{1}{x} + 2 \quad \text{for } x > 0.$$

(i)	Find the range of f and the range of g.	[3]
		•••••
		,
		•••••
		· • • • • • •
		•••••
		•••••
		•••••
		•••••

© UCLES 2019

i)	Find an expression for $fg(x)$, giving your answer in the form $\frac{ax}{bx+c}$, where a, b and c are integer	ers. [2]
		••••
		•••••
i)	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii).	[3]
		••••
		••••
		••••
		•••••
		••••

The diagram shows a sector OAC of a circle with centre O. Tangents AB and CB to the circle meet at B. The arc AC is of length 6 cm and angle $AOC = \frac{3}{8}\pi$ radians.

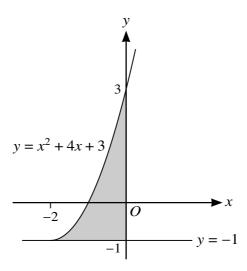

(i)	Find the length of <i>OA</i> correct to 4 significant figures.	[2]
		•••••
		•••••
(ii)	Find the perimeter of the shaded region.	[2]
		•••••
		•••••

© UCLES 2019 9709/11/O/N/19

ii)	Find the area of the shaded region.	[4]

F	find the equation of the curve.
••	
••	
••	
••	
••	
••	
••	
••	
••	

Find $\frac{d^2y}{dx^2}$.	[2]
Find the coordinates of the stationary point on the curve and, showing all determine the nature of this stationary point.	necessary working, [4]
	Find the coordinates of the stationary point on the curve and, showing all


Relative to an origin O, the position vectors of the points A, B, C and D, shown in the diagram, are given by

$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}.$$

(i)	Show that AB is perpendicular to BC .	[3]
(ii)	Show that <i>ABCD</i> is a trapezium.	[3]

© UCLES 2019 9709/11/O/N/19

(iii)	Find the area of <i>ABCD</i> , giving your answer correct to 2 decimal places. [3]

The diagram shows a shaded region bounded by the y-axis, the line y = -1 and the part of the curve $y = x^2 + 4x + 3$ for which $x \ge -2$.

(i)	Express $y = x^2 + 4x + 3$ in the form $y = (x + a)^2 + b$, where a and b are constants. Hence, for $x \ge -2$, express x in terms of y. [4]

otated through 360	about the y-ax	XIS.			[6
••••••	•••••	•••••	•••••••••••	•••••	 •
			•••••		
	••••••		•••••		 •
			••••••		
 			•••••		
••••••	••••••	•••••	••••••••••	•••••	
					 ••••••
			•••••		
	••••••		•••••		 ••••••
			••••••		

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathe	matics 1 (P1)	Oct	ober/November 2019
			1 hour 45 minutes
Candidates answer of	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

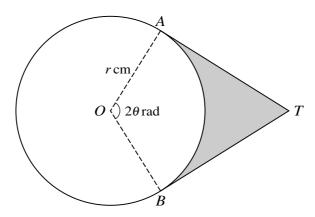
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

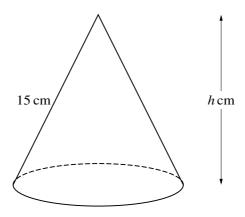
International Education


BLANK PAGE

© UCLES 2019 9709/12/O/N/19

1	The coefficient of x^2 in the expansion of $(4 + ax)\left(1 + \frac{x}{2}\right)^6$ is 3. Find the value of the constant a. [4]

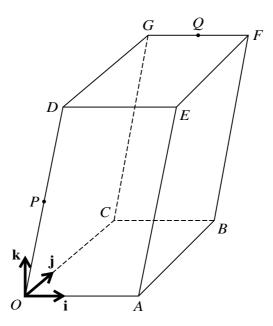
line through	M which is par	allel to the lin	$e^{\frac{x}{3}} + \frac{y}{2} = 1.$			
	•••••	•••••	••••••••••••	••••••	••••••	••••••
•••••••••••	•••••	•••••				
					••••••	
	•••••	•••••	•••••		•••••	
		••••	•••••			
••••••••	•••••	•••••	••••••	••••••	•••••	•••••
	•••••	•••••	•••••	•••••		•••••
••••••	•••••	•••••	••••••••	•••••	•••••	••••••


A curve is such that $\frac{dy}{dx} = \frac{k}{\sqrt{x}}$, where k is a constant. The poincurve. Find the equation of the curve.	

The diagram shows a circle with centre O and radius r cm. Points A and B lie on the circle and angle $AOB = 2\theta$ radians. The tangents to the circle at A and B meet at T.

Express the perimeter of the shaded region in terms of r and θ .	[3]
	•••••

••••••
 •••••


The diagram shows a solid cone which has a slant height of $15\,\mathrm{cm}$ and a vertical height of $h\,\mathrm{cm}$.

(i)	Show that the volume, $V \text{ cm}^3$, of the cone is given by $V = \frac{1}{3}\pi(225h - h^3)$. [2]
	[The volume of a cone of radius r and vertical height h is $\frac{1}{3}\pi r^2 h$.]

Given that h can vary, find the value of h for which V has a stationary value. all necessary working, the nature of this stationary value.	[5]
	•••••

	ll necessary working.
•	
•	
••	
•	
•	
••	
••	
••	
••	
••	
••	
••	

(1)	Express $f(x)$ in the form $a\cos^2 x + b$, where a and b are constants.	
		•••••
(ii)	Find the range of f.	
		•••••
		•••••
		••••••
		•••••
		•••••
		•••••

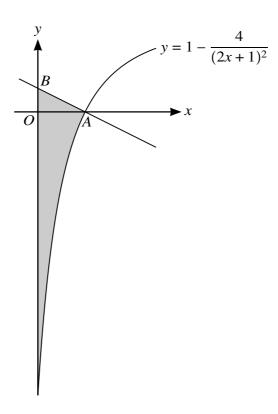
The diagram shows a three-dimensional shape OABCDEFG. The base OABC and the upper surface DEFG are identical horizontal rectangles. The parallelograms OAED and CBFG both lie in vertical planes. Points P and Q are the mid-points of OD and GF respectively. Unit vectors \mathbf{i} and \mathbf{j} are parallel to \overrightarrow{OA} and \overrightarrow{OC} respectively and the unit vector \mathbf{k} is vertically upwards. The position vectors of A, C and D are given by $\overrightarrow{OA} = 6\mathbf{i}$, $\overrightarrow{OC} = 8\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 10\mathbf{k}$.

(i)	Express each of the vectors \overrightarrow{PB} and \overrightarrow{PQ} in terms of i , j and k .	[4]

(ii)	Determine whether P is nearer to Q or to B .	[2]
		••••••
		••••••
		••••••
		•••••
(iii)	Use a scalar product to find angle BPQ .	[3]

(1)	Find the distance she runs on the last day of the 21-day period.	[1
		•••••
(ii)	Find the total distance she runs in the 21-day period.	[2
		••••••

	e first, second and third terms of a geometric progression are x , $x - 3$ and $x - 5$	
(i)	Find the value of x .	[2]
		•••••
ii)	Find the fourth term of the progression.	[2]
		•••••
		••••••
iii)	Find the sum to infinity of the progression.	[2]
		• • • • • • • • • • • • • • • • • • • •
		••••
		•••••


9 Functions f and g are defined by

$$f(x) = 2x^2 + 8x + 1 \quad \text{for } x \in \mathbb{R},$$

$$g(x) = 2x - k \quad \text{for } x \in \mathbb{R},$$

where k is a constant.

	<i>z</i>). [3
	•••••
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	[3
	••••••

In the case where k	1, 1110 g 1(11)			
•••••	•••••		•••••	••••••
•••••			•••••	••••••
•••••	•••••	•••••	••••••	••••••
•				
Express $f(x)$ in the		b, where a and b are co		
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$		nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the
Express $f(x)$ in the	e form $2(x+a)^2 + b^2$	p, where a and b are co	nstants, and hence s	tate the

The diagram shows part of the curve $y = 1 - \frac{4}{(2x+1)^2}$. The curve intersects the *x*-axis at *A*. The normal to the curve at *A* intersects the *y*-axis at *B*.

(i)	Obtain expressions for	$\frac{dy}{dx}$ and \int	y dx.		[4]
				 	••••••
	•••••	• • • • • • • • • • • • • • • • • • • •		 	• • • • • • • • • •

(ii)	Find the coordinates of B.	[4]
		•••••
		•••••
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]
(iii)	Find, showing all necessary working, the area of the shaded region.	[4]

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/13
Paper 1 Pure M	athematics	1 (P1)		0	ctober/Nove	mber 2019
					1 hour	45 minutes
Candidates ansv	wer on the C	Question Pa	aper.			
Additional Mater	ials: Li	st of Formu	ılae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

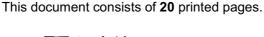
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

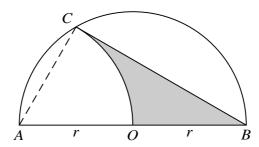

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

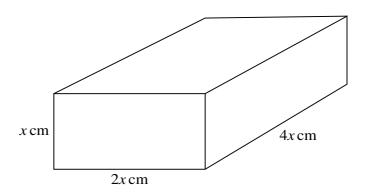
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



(i)	Expand $(1 + y)^6$ in ascending powers of y as far as the term in y^2 .	[1]
		,
(ii)	In the expansion of $(1 + (px - 2x^2))^6$ the coefficient of x^2 is 48. Find the value of constant p .	the positive
		•••••


скргов	sion for g	(x) and stat	e the dom	am or g	•				
•••••	••••••	•••••		•	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
		,							
•••••	•••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••	••••••	••••••	,	, 	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	••••••	•••••	••••••	•	••••••	••••••	••••••	••••••	••••••
•••••									
••••••	•••••				•••••	•••••	••••••	•••••	•••••
••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	••••••				•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••			••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
			,						
•••••	•••••				•••••	•••••	••••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••				•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
							 	,	

a < x < b. Find the least possible value of a and the greatest possible value of b .	[-

The diagram shows a semicircle ACB with centre O and radius r. Arc OC is part of a circle with centre A.

(i)	Express angle CAO in radians in terms of π .	[1]
		•••••
		•••••
		•••••
(ii)	Find the area of the shaded region in terms of r , π and $\sqrt{3}$, simplifying your answer.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

The dimensions of a cuboid are x cm, 2x cm and 4x cm, as shown in the diagram.

		2	2	
(•\	Show that the surface are	- C / 1 41	- 1	
(1)	Show that the surface are	a Nem-and the vo	allime v cm° are	connected by the relation
\ . ,	Show that the surface are	abem and me ve	diamic v ciii aic	connected by the relation

$S=7V^{\frac{2}{3}}.$	[3]

rate of increase of the volume at this instant.	
	•••••
	•••••
	•••••
	•••••
	•••••

•	A line has equation $y = 3kx - 2k$ and a curve has equation $y = x^2 - kx + 2$, where k is a constant.
	(i) Find the set of values of k for which the line and curve meet at two distinct points. [4]

tangents meet on the x-axis.		[3]

` /	Show that the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ can be expressed as $3x^2 - 4x + 1 = 0$, where $x = \cos^2\theta$.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

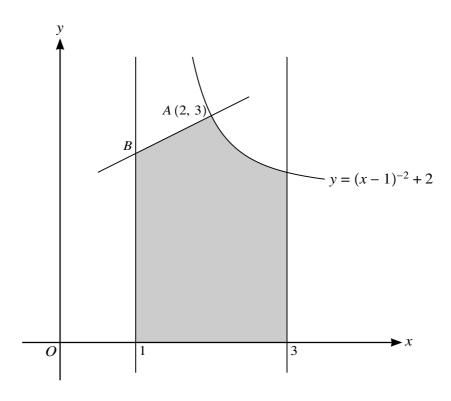
Hence solve the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ for $0^\circ \le \theta \le 180^\circ$.	[5]
	••••••
	••••••

Find the set of values of x for which f is decreasing.	
	•••••

It is now given that $f(1) = -3$. Find $f(x)$.	[4]

(i)	Show that <i>k</i> satisfies the equation $7k^2 - 48k + 36 = 0$.	
(ii)) Find, showing all necessary working, the exact values of the common ratio	corresponding
(ii)) Find, showing all necessary working, the exact values of the common ratio each of the possible values of k .	o correspondin
(ii)	each of the possible values of k .	
(ii)		
(ii)	each of the possible values of k .	
(ii)	each of the possible values of k .	
(ii)	each of the possible values of k .	
(ii)	each of the possible values of k .	
(ii)	each of the possible values of k .	
(ii)	each of the possible values of k .	
(ii)	each of the possible values of k .	

One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.
One of these ratios gives a progression which is convergent. Find the su	um to infinity.


10	Relative to a	an origin O.	the position	vectors of the	points A, B	and X are	given b	V
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, position	, • • • • • • • • • • • • • • • • • • •	p 0 111 to 1 1, 2		5-,	J

$$\overrightarrow{OA} = \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 10 \\ 2 \\ 11 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OX} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}.$$

r ma zizi ana s	show that AXB is a	straight line.			
					•••••
••••••		•••••	••••••	•••••	•••••
••••••	······································	•••••	•••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••
••••••				•••••	•••••
					•••••
	•••••		•••••		

The position vector of a point C is given by $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -8 \\ 3 \end{pmatrix}$.

(ii)	Show that CX is perpendicular to AX .	[3]
(iii)	Find the area of triangle ABC .	[3]
(iii)	Find the area of triangle <i>ABC</i> .	[3]
(iii)	Find the area of triangle <i>ABC</i> .	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle <i>ABC</i> .	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)		

The diagram shows part of the curve $y = (x - 1)^{-2} + 2$, and the lines x = 1 and x = 3. The point A on the curve has coordinates (2, 3). The normal to the curve at A crosses the line x = 1 at B.

(i)	Show that the normal AB has equation $y = \frac{1}{2}x + 2$.	[3]

is rotated through 360° about the <i>x</i> -axis.	[8]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2020

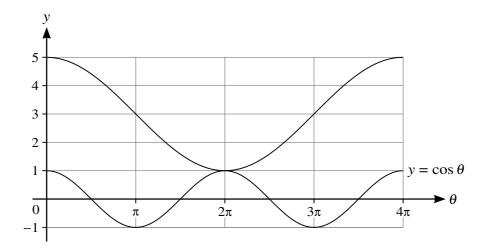
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.


INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

$y = 2x^2 + 5$ do not meet.					
	•••••				
					••••••
	••••••		•••••	•••••	•
	•••••				
	•••••••••	••••••	••••••	••••••	•
	••••••••	••••••	•••••	•••••	••••••

Find the equation of the cur	7e				
rind the equation of the cur	/E.				
	•••••				
	•••••	•••••	••••••	•••••	•••••
	•••••			•••••	••••••
	•••••		••••••	•••••	•••••
	•••••	•••••	•••••••	•••••	
	•••••			•••••	
	•••••	•••••	•••••••	•••••	••••••
	•••••			•••••	
	•••••				

Find the	e rate at whi	ich the radi	ius of the	balloon i	s increas	ing when	the radius i	s 10 cm.	
••••••	•••••		•••••	•••••	•••••	••••••	•••••		•••••
••••••	•••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••
•••••	•••••	••••••	•••••	•••••	•••••	•••••		•••••	•••••
		••••••	•••••	•••••	•••••	•••••		•••••	•••••
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••
	•••••								
	•••••								
••••••	•••••		••••••	•••••	••••••	•••••	••••••	•••••	••••••
••••••	•••••		••••••	•••••	••••••	•••••	•••••		••••••
••••••			••••••		••••••	•••••	•••••		••••••
•••••									
							•••••		
	•••••							•••••	•••••
		•••••	•••••						•••••
,									
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••		••••••

In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$.

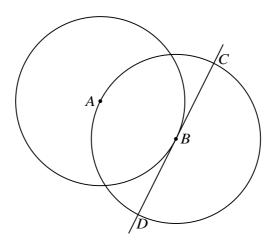
Find, in terms of a cosine function, the equation of the upper curve.	[3]

In tl	he expansion of $\left(2x^2 + \frac{a}{x}\right)^6$, the coefficients of x^6 and x^3 are equal.	
(a)	Find the value of the non-zero constant a.	[4]
		••••••
(b)	Find the coefficient of x^6 in the expansion of $(1-x^3)\left(2x^2+\frac{a}{x}\right)^6$.	[1]

© UCLES 2020

5

Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$.	[

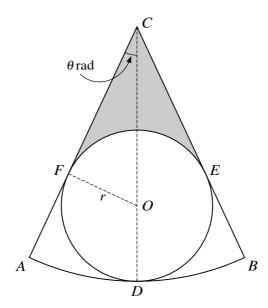

	•••••
	•••••
	•••••
	•••••

	e solve the ed	1 –	$\sin \theta = 1$	$+\sin\theta$	-, -			
•••••							•••••	•••••
•••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••	••••••
•••••		•••••				•••••		•••••
•			•		•			
•••••			•••••	•••••				•••••
•••••	•••••							•••••
•••••	••••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••
•••••								•••••
•••••	••••••••	•••••••	•••••	••••••	•••••	••••••••••	•••••••	••••••
•••••	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••		•••••	••••••			•••••	••••••
	•••••	•••••				• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••••		•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••								
			•••••	•••••			••••	
•••••	•••••							

Show that $r = 2R - 1$.	
	••••••
	••••••

It is now given that the 3rd term of the first progression is equal to the 2nd term of the second progression.

b)	Express S in terms of a .	[4]


The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are (-1, 4) and the coordinates of B are (3, 2).

(a)	Find the equation of the tangent <i>CBD</i> .	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

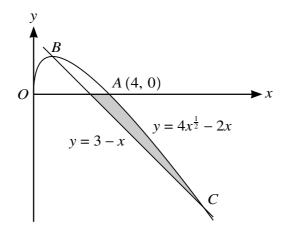
•••••		•••••		•••••		•••••	•••••	
			••••					
••••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••	•••••				
••••••	•••••							
						•••••		
Find, by cal	culation, th	ne <i>x</i> -coor	dinates of	$^{\prime}C$ and D .				
Find, by cal	culation, th	ne x-coor	dinates of	C and D .				
Find, by cal	culation, th	ne <i>x</i> -coor	dinates of	$^{\prime}C$ and D .				
Find, by cal	culation, th	ne <i>x</i> -coor	dinates of	C and D.				
Find, by cal	culation, th	ne <i>x</i> -coor	dinates of	C and D.				
Find, by cal	culation, th	ne x-coor	dinates of	C and D.				
Find, by cal	culation, th	ne <i>x</i> -coor	dinates of	C and D.				
Find, by cal	culation, th	ne x-coor	dinates of	C and D.				
Find, by cal	culation, th	ne x-coor	dinates of	C and D.				
Find, by cal	culation, th	ne x-coor	dinates of	C and D.				
Find, by cal	culation, th	ne x-coor	dinates of	C and D.				
Find, by cal	culation, th	ne x-coor	dinates of	C and D.				

(a)

The diagram shows a sector CAB which is part of a circle with centre C. A circle with centre O and radius r lies within the sector and touches it at D, E and F, where COD is a straight line and angle ACD is θ radians.

Find CD in terms of r and $\sin \theta$.	[3]

It is now given that r = 4 and $\theta = \frac{1}{6}\pi$.


	[
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	
Find the area of the shaded region in terms of π and $\sqrt{3}$.	

11	The	func	tions	f	and	g	are	defined	by

$$f(x) = x^2 + 3$$
 for $x > 0$,
 $g(x) = 2x + 1$ for $x > -\frac{1}{2}$.

(a)	Find an expression for $fg(x)$.	[1]
(b)	Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$.	[4]
		•••••
		••••••
		••••••

	••••••
	•••••
	••••••
	••••••
	••••••
	••••••
	•••••
	••••••
	••••••
	•••••
	•••••

The diagram shows a curve with equation $y = 4x^{\frac{1}{2}} - 2x$ for $x \ge 0$, and a straight line with equation y = 3 - x. The curve crosses the *x*-axis at A(4, 0) and crosses the straight line at B and C.

(a)	Find, by calculation, the x -coordinates of B and C .	[4]
		•••••
		•••••
		•••••
		•••••
(b)	Show that B is a stationary point on the curve.	[2]
		•••••

•	 •••••
•	
•	
•	•••••
•	
•	
•	•••••
٠	•••••
•	•••••
•	 •••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

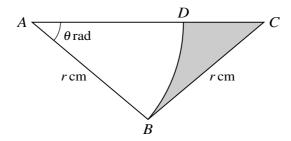
BLANK PAGE

-	The coefficient of x^3 in the expansion of $(1 + kx)(1 - 2x)^5$ is 20.	
	Find the value of the constant k .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Find the sum to infinity of the progression	ren
Find the sum to infinity of the progression.	[5]

Show that, for all value	es of m , the line interest of m , the line interest of m .	rsects the curve at	two distinct points.	[5]

$S_n = n^2 + 4n.$					
The <i>k</i> th term in the progression is greater than 200.					
Find the smallest possible value of k .	[5]				


5 Functions f and g are defined by

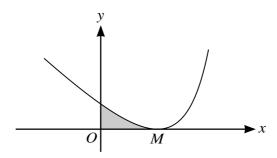
$$f(x) = 4x - 2$$
, for $x \in \mathbb{R}$,
 $g(x) = \frac{4}{x+1}$, for $x \in \mathbb{R}$, $x \neq -1$.

(a)	Find the value of $fg(7)$.	[1]
(b)	Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.	[5]

5	(a)	Prove the identity $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) \equiv \frac{1}{\tan x}$.	[4]
	(b)	Hence solve the equation $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2\tan^2 x$ for $0^\circ \le x \le 180^\circ$.	[2]

(a)	A point moves along the curve in such a way that the <i>x</i> -coordinate is increasing of 0.12 units per second.	g at a constant rate
	Find the rate of increase of the <i>y</i> -coordinate when $x = 4$.	[3]
a >		5.43
(b)	Find the equation of the curve.	[4]

In the diagram, ABC is an isosceles triangle with AB = BC = r cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.


(a)	Express the area of the shaded region in terms of r and θ .	[3]
		••••••
		••••••

•••••				 		•••••	•••••	
•••••				 	•••••		•••••	
•••••				 	•••••		•••••	
••••••				 				
•••••				 		•••••	•••••	
•••••				 		•••••		
•••••			••••••			•••••		
•••••	••••••	••••••	••••••	 	•••••	••••••	•••••	•
				 		•••••		
•••••			••••••			•••••		
•••••				 		•••••	•••••	
				 		•••••	•••••	
				 			•••••	

)	Find the equation of the circle.	[3]
		•••••
	Int C is such that AC is a diameter of the circle. Point D has coordinates $(5, 16)$. Show that DC is a tangent to the circle.	[4]
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	

The other tangent from D to the circle touches the circle at E.

•	
•	
•	
•	•••••
•	 ••••••
•	
•	••••••
•	•••••
•	••••••
•	
•	• • • • • • • • • • • • • • • • • • • •

The diagram shows part of the curve $y = \frac{2}{(3-2x)^2} - x$ and its minimum point M, which lies on the x-axis.

(a)	Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y dx$	[6]

••••••								• • •
••••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	
	•••••			•••••		•••••		
	•••••	•••••				•••••		
••••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••••	• • •
•••••	•••••	•••••	••••••••					
Find the	area of the	shaded re	egion bound	led by the c	curve and the	e coordinate	axes.	•••
Find the	area of the	shaded re	gion bound	led by the c	curve and the	e coordinate	axes.	
Find the	area of the	shaded re	egion bound	led by the c	curve and the	e coordinate	axes.	
Find the	area of the	shaded re	egion bound	led by the c	curve and the	e coordinate	axes.	
Find the	area of the	shaded re	egion bounc	led by the c	curve and the	e coordinate	axes.	
Find the	area of the	shaded re	gion bound	led by the c	curve and the	e coordinate	axes.	
Find the	area of the	shaded re	egion bound	led by the c	curve and the	coordinate	axes.	
Find the	area of the	shaded re	egion bound	led by the c	curve and the	e coordinate	axes.	
Find the	area of the	shaded re	egion bound	led by the c	curve and the	coordinate	axes.	
Find the	area of the	shaded re	egion bound	led by the c	curve and the	coordinate	axes.	
Find the	area of the	shaded re	gion bound	led by the c	curve and the	coordinate	axes.	
Find the	area of the	shaded re	gion bound	led by the c	curve and the	coordinate	axes.	
Find the	area of the	shaded re	gion bound	led by the c	curve and the	coordinate	axes.	

		10	
11	A c	curve has equation $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.	
	(a)	State the greatest and least values of <i>y</i> .	[2]
	(b)	Sketch the graph of $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.	[2]
	(c)	By considering the straight line $y = kx$, where k is a constant, state the number equation $3 \cos 2x + 2 = kx$ for $0 \le x \le \pi$ in each of the following cases.	per of solutions of the
		(i) $k = -3$	[1]
		(ii) $k = 1$	[1]
		(iii) $k = 3$	[1]
		(III) $\kappa = 3$	[1]

Functions f, g and h are defined for $x \in \mathbb{R}$ by

$$f(x) = 3\cos 2x + 2,$$

$$g(x) = f(2x) + 4,$$

$$h(x) = 2f\left(x + \frac{1}{2}\pi\right).$$

(d)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

(a)	Express $x^2 + 6x + 5$ in the form $(x + a)^2 + b$, where a and b are constants.	
		•••••
		••••••
		••••••
		••••••
(b)	The curve with equation $y = x^2$ is transformed to the curve with equation $y = x^2$	+6x+5.
(b)	The curve with equation $y = x^2$ is transformed to the curve with equation $y = x^2$ Describe fully the transformation(s) involved.	+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6x + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6x + 5.

2

The	e function f is defined by $f(x) = \frac{2}{(x+2)^2}$ for $x > -2$.	
(a)	Find $\int_{1}^{\infty} f(x) dx$.	[3]
(b)	The equation of a curve is such that $\frac{dy}{dx} = f(x)$. It is given that the point curve.	(-1, -1) lies on the
	Find the equation of the curve.	[2]

Solve the equation $3 \tan^2 \theta + 1 = \frac{2}{\tan^2 \theta}$ for $0^\circ < \theta < 180^\circ$.	[5]

3

A curve has equation $y = 3x^2 - 4x + 4$ and a straight line has equation $y = mx + m - 1$, where m is a constant.					
Find the set of values of m for which the curve and the line have two distinct points of intersection. [5]					

5

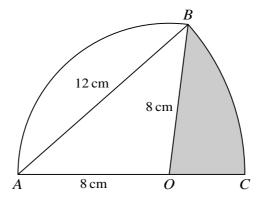
In the expansion of $(a + bx)^7$, where a and b are non-zero constants, the coefficients of x, x^2 and x^4

Find the value of	$f(\frac{a}{b})$.			
		•••••	 	
		•••••	 	
		•••••	 	
		•••••	 	
		•••••	 	
		•••••	 	
		•••••	 	

The	e function f is defined by $f(x) = \frac{2x}{3x-1}$ for $x > \frac{1}{3}$.	
(a)	Find an expression for $f^{-1}(x)$.	[3]
(b)	$\frac{2}{x}$	
(6)	Show that $\frac{2}{3} + \frac{2}{3(3x-1)}$ can be expressed as $\frac{2x}{3x-1}$.	[2]
(6)	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	[2]
(6)	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	[2]
(1)	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	[2]
(b)	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	[2]
(b)	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	[2]
(b)	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	[2]
	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	
	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$.	
	Show that $\frac{1}{3} + \frac{1}{3(3x-1)}$ can be expressed as $\frac{1}{3x-1}$. State the range of f.	

The first and second terms of an arithmetic progression are $\frac{1}{\cos^2 \theta}$ and $-\frac{\tan^2 \theta}{\cos^2 \theta}$, respectively, where

ο.	a . 1	COS O	COS O	
	$\theta < \frac{1}{2}\pi$. Show that the common difference is $-\frac{1}{\cos^4 \theta}$.			[4]
(a)	Show that the common difference is $-\frac{1}{\cos^4 \theta}$.			[+]
				••••
				••••
				••••
				••••
				••••
				••••


7

[3]

8	The equation of a curve is $y = 2x + 1 + 1$	$\frac{1}{2x+1}$	for $x > -\frac{1}{2}$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2x + 1	

C	$\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$									
•••••		••••		••••••	•••••	•••••		•••••	•••••	•••••
					•••••					
	••••••	•••••	••••••	•••••						•••••
		•••••		••••••				•••••		•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••									
										•••••
		•••••								
•••••	••••••	•••••	••••••	••••••	•••••	••••••	•	••••••	••••••	••••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••		•••••	•••••	••••••
•••••		•••••		•••••	•••••	••••••	••••••	••••••	••••••	•••••
•••••	•••••			•••••	•••••	•••••	••••••	•••••	•••••	•••••
	••••••	•••••	••••••	••••••				•••••		•••••
				•••••	•••••			•••••		

			•••••						•••••
			•••••						•••••
			•••••		•••••	•••••	•••••	•••••	•••••
									• • • • • •
		••••••	••••••	•	•••••			••••••	•••••
••••••	•••••	••••••	•••••	•••••••	••••••	••••••		•••••	•••••
			•••••						•••••
			•••••						•••••
			•••••						•••••
			•••••						
	••••••	••••••	••••••	•	•••••••			••••••	•••••
••••••	•••••	••••••	•••••	•••••••	••••••	••••••		•••••	•••••
			•••••						•••••
			•••••					•••••	•••••
								•••••	•••••
								•••••	

In the diagram, arc AB is part of a circle with centre O and radius 8 cm. Arc BC is part of a circle with centre A and radius 12 cm, where AOC is a straight line.

(a)	Find angle <i>BAO</i> in radians.	[2]

b)	Find the area of the shaded region.	[4]
		•••••
c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	
c)		
c)		
c)		

		14	
10	A cı	arve has equation $y = \frac{1}{k}x^{\frac{1}{2}} + x^{-\frac{1}{2}} + \frac{1}{k^2}$ where $x > 0$ and k is a positive constant.	
	(a)	It is given that when $x = \frac{1}{4}$, the gradient of the curve is 3.	
		Find the value of k .	[4]
			.
			.
			· • • •
			.
			· • • •
			.
			•••
			•••
			••••

•••••	 •••••	•••••	

(b)	It is given instead that $\int_{\frac{1}{4}k^2}^{k^2} \left(\frac{1}{k} x^{\frac{1}{2}} + x^{-\frac{1}{2}} + \frac{1}{k^2} \right) dx = \frac{13}{12}.$
	Find the value of k . [5]

A circle with centre C has equation $(x - 8)^2 + (y - 4)^2 = 100$.								
(a)	Show that the point $T(-6, 6)$ is outside the circle.	[3						
		•••••						
		••••••						
	σ tangents from T to the circle are drawn.							
	σ tangents from T to the circle are drawn.							
	Show that the angle between one of the tangents and CT is exactly 45° .	[2						
	σ tangents from T to the circle are drawn.	[2						
	Show that the angle between one of the tangents and CT is exactly 45° .	[2						
	Show that the angle between one of the tangents and CT is exactly 45° .	[2						
	Show that the angle between one of the tangents and CT is exactly 45° .	[2						
	Show that the angle between one of the tangents and CT is exactly 45°.	[2						
	Show that the angle between one of the tangents and CT is exactly 45°.	[2						
	Show that the angle between one of the tangents and CT is exactly 45°.	[2						

The two tangents touch the circle at A and B.

)	Find the equation of the line AB, giving your answer in the form $y = mx + c$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
)	Find the x -coordinates of A and B .	[3]
)		
)		[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
))	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.						
	••					
	••					
	••					
	••					
	••					
	••					
	••					
	••					
	••					
	••					
	••					
	••					
	••					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.