

Dynamic Learning is an online subscription solution that supports teachers and students with high
quality content and unique tools. Dynamic Learning incorporates elements that all work together to give
you the ultimate classroom and homework resource.

Teaching and Learning titles include interactive resources, lesson planning tools, self-marking tests
and assessment. Teachers can:

 ● Use the Lesson Builder to plan and deliver lessons
 ● Share lessons and resources with students and colleagues
 ● Track student’s progress

Teachers can also combine their own trusted resources alongside those from Cambridge International
AS & A Level Computer Science Online Teacher’s Guide which has a whole host of informative and
interactive resources including:

 ● Teaching notes and guidance
 ● Schemes of work
 ● Extra activities and exam-style questions
 ● Answers to questions in the Student’s Book

Cambridge International AS & A Level Computer Science is available as a Whiteboard
eTextbook which is an online interactive version of the printed textbook that enables teachers to:

 ● Display interactive pages to their class
 ● Add notes and highlight areas
 ● Add double-page spreads into lesson plans

Additionally the Student eTextbook of Cambridge International AS & A Level Computer Science
is a downloadable version of the printed textbook that teachers can assign to students so they can:

 ● Download and view on any device or browser
 ● Add, edit and synchronise notes across two devices
 ● Access their personal copy on the move

To find out more and sign up for free trials visit: www.hoddereducation.com/dynamiclearning

http://www.hoddereducation.com/dynamiclearning

Cambridge
International AS & A Level

Computer
Science

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 1 4/30/19 7:42 AM

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 2 4/30/19 7:42 AM

This page intentionally left blank

Cambridge
International
AS & A Level

David Watson
Helen Williams

Computer
Science

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 3 4/30/19 7:42 AM

Unless otherwise acknowledged, the questions, example answers and comments that appear in this book were
written by the authors. In examinations, the way marks are awarded may be different. Questions from the
Cambridge International AS & A Level Computer Science papers are reproduced by permission of Cambridge
Assessment International Education. Cambridge Assessment International Education bears no responsibility for
the example answers to questions taken from its past question papers which are contained in this publication.

The publishers would like to thank the following who have given permission to reproduce the following material
in this book:

Page 181 Extract from IEEE Code of Ethics. Reprinted with permission of IEEE with the copyright notice © Copyright
2018 IEEE; Pages 181–3 Copyright © 1999 by the Institute for Electrical and Electronics Engineers, Inc. and the
Association for Computing Machinery, Inc.; Page 187 eBay software pirates stump up $100,000 – https://www.
theregister.co.uk/2006/11/24/ebay_pirates_payup/. Reprinted with permission of Out-Law.com, the news service of
international law firm Pinsent Masons; Page 218 Map data © 2018 Google, Imagery © 2018 Landsat/Copernicus.

Photo credits

Figures 1.1 and 1.2 © David Watson; Figure 1.3 © Sébastien Delaunay/stock.adobe.com; Figure 2.18 © Forgem/
Shutterstock.com; Figure 3.1 tl © studio306fotolia/stock.adobe.com; tr © Chavim/stock.adobe.com; bl © pozdeevvs/
stock.adobe.com; br © Sergey Yarochkin/stock.adobe.com; Figure 3.4 © Mau Horng/stock.adobe.com; Figure 3.5
© science photo/stock.adobe.com; Figure 3.9 © Maksym Dykha/Shutterstock.com; Figure 3.10 © Hurst Photo/
Shutterstock.com; Figure 3.11 © philipus/stock.adobe.com; Figure 3.12 © belekekin/ Shutterstock.com;
Figure 4.4 l © cybertrone/stock.adobe.com, c © Tungphoto/Shutterstock.com, r © Luminis/Shutterstock.com;
Figure 5.1 l © Stuart Brady (Public Domain) via Wikipedia Commons; r © Jiri Hera/stock.adobe.com; Figure 6.3
© Andrey Burmakin/stock.adobe.com; Figure 6.4 © bkilzer/stock.adobe.com; Figure 7.2 l © Pres Panayotov/
Shutterstock.com; c © James Balog/Getty Images; r © caluian/stock.adobe.com; Figure 18.19 © seewhatmitchsee/
123rf.com; Figure 18.21 b © Garmon/stock.adobe.com; t © Christian Musat/stock.adobe.com; ct © Ammit/stock.
adobe.com; cb © Martina Berg/stock.adobe.com; Figure 18.24 Harshal/stock.adobe.com; Figures 18.27 and 18.28
all © David Watson.

l = left, c = centre, b = bottom, t = top, r = right

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be glad to
make suitable arrangements with any copyright holders whom it has not been possible to contact. Computer
hardware and software brand names mentioned in this book are protected by their respective trademarks and
are acknowledged.

Although every effort has been made to ensure that website addresses are correct at time of going to press,
Hodder Education cannot be held responsible for the content of any website mentioned in this book.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood
grown in well-managed forests and other controlled sources. The logging and manufacturing processes are
expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone:
(44) 01235 827827. Fax: (44) 01235 400401. Email education@bookpoint.co.uk Lines are open from
9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through
our website: www.hoddereducation.com

© David Watson and Helen Williams 2019

First published 2019 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2023 2022 2021 2020 2019

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, or held within any information storage and retrieval system, without permission in writing from the
publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for
reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © Terrance Emerson – stock.adobe.com

Illustrations by Aptara Inc. and Hodder Education

Typeset by Aptara Inc.

Printed by Bell & Bain Ltd, Glasgow

A catalogue record for this title is available from the British Library.

ISBN: 9781510457591

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 4 4/30/19 7:42 AM

https://www.theregister.co.uk/2006/11/24/ebay_pirates_payup/
https://www.theregister.co.uk/2006/11/24/ebay_pirates_payup/
http://Out-Law.com
http://Delaunay/stock.adobe.com
http://Shutterstock.com
http://studio306fotolia/stock.adobe.com
http://Chavim/stock.adobe.com
http://pozdeevvs/stock.adobe.com
http://pozdeevvs/stock.adobe.com
http://Yarochkin/stock.adobe.com
http://Horng/stock.adobe.com
http://photo/stock.adobe.com
http://Dykha/Shutterstock.com
http://Shutterstock.com
http://philipus/stock.adobe.com
http://Shutterstock.com
http://cybertrone/stock.adobe.com
http://Tungphoto/Shutterstock.com
http://Luminis/Shutterstock.com
http://Hera/stock.adobe.com
http://Burmakin/stock.adobe.com
http://bkilzer/stock.adobe.com
http://Shutterstock.com
http://caluian/stock.adobe.com
http://123rf.com
http://Garmon/stock.adobe.com
http://Musat/stock.adobe.com
http://Ammit/stock.adobe.com
http://Ammit/stock.adobe.com
http://Berg/stock.adobe.com
http://Harshal/stock.adobe.com
mailto:education@bookpoint.co.uk
http://www.hoddereducation.com
http://www.hoddereducation.com
http://www.cla.co.uk
http://stock.adobe.com
http://www.fsc.org

v

Contents

Introduction viii

AS LEVEL

1 Information representation and multimedia 1
1.1 Data representation 2
1.2 Multimedia 15
1.3 File compression 21

2 Communication 27
2.1 Networking 28
2.2 The internet 54

3 Hardware 68
3.1 Computers and their components 68
3.2 Logic gates and logic circuits 89

4 Processor fundamentals 107
4.1 Central processing unit (CPU) architecture 107
4.2 Assembly language 121
4.3 Bit manipulation 130

5 System software 136
5.1 Operating systems 136
5.2 Language translators 149

6 Security, privacy and data integrity 159
6.1 Data security 159
6.2 Data integrity 169

7 Ethics and ownership 178
7.1 Legal, moral, ethical and cultural implications 179
7.2 Copyright issues 186
7.3 Artificial intelligence (AI) 189

8 Databases 196
8.1 Database concepts 196
8.2 Database management systems (DBMSs) 208
8.3 Data definition language (DDL) and data manipulation

language (DML) 211

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 5 4/30/19 7:42 AM

vi

C
o

n
te

n
ts 9 Algorithm design and problem solving 217

9.1 Computational thinking skills 217
9.2 Algorithms 219

10 Data types and structures 238
10.1 Data types and records 238
10.2 Arrays 241
10.3 Files 249
10.4 Abstract data types (ADTs) 250

11 Programming 264
11.1 Programming basics 264
11.2 Programming constructs 271
11.3 Structured programming 275

12 Software development 283
12.1 Program development lifecycle 283
12.2 Program design 287
12.3 Program testing and maintenance 293

A LEVEL

13 Data representation 304
13.1 User-defined data types 304
13.2 File organisation and access 308
13.3 Floating-point numbers, representation and manipulation 312

14 Communication and internet technologies 328
14.1 Protocols 328
14.2 Circuit switching and packet switching 337

15 Hardware 346
15.1 Processors and parallel processing 346
15.2 Boolean algebra and logic circuits 354

16 System software and virtual machines 372
16.1 Purposes of an operating system (OS) 372
16.2 Virtual machines (VMs) 392
16.3 Translation software 394

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 6 4/30/19 7:42 AM

vii

C
o

n
te

n
ts

17 Security 410
17.1 Encryption 410
17.2 Quantum cryptography 414
17.3 Protocols 416
17.4 Digital signatures and digital certificates 418

18 Artificial intelligence (AI) 425
18.1 Shortest path algorithms 425
18.2 Artificial intelligence, machine learning and deep learning 434

19 Computational thinking and problem solving 450
19.1 Algorithms 450
19.2 Recursion 490

20 Further programming 498
20.1 Programming paradigms 498
20.2 File processing and exception handling 525

Glossary 541

Index 553

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 7 4/30/19 7:42 AM

viii

Introduction
This textbook provides the knowledge, understanding and practical skills
to support those studying Cambridge International AS & A Level Computer
Science. This textbook is part of a suite of resources which include a
Programming Skills Workbook and an Online Teacher’s Guide.

The syllabus content has been covered comprehensively and is presented in two
sections: Chapters 1 to 12 cover the AS Level, Chapters 13 to 20 cover the extra
content required for the full A Level.

How to use this book
To make your study of Computer Science as rewarding and successful as possible,
this textbook, endorsed by Cambridge Assessment International Education, offers
the following important features.

Organisation
The content is presented in the same order as in the syllabus, and the chapter
titles match those in the syllabus.

Features to help you learn
Each chapter is broken down into several sections, so that the content is
accessible.

At the start of each chapter, there is a blue box that gives a summary of the
syllabus points to be covered in that chapter, to show you what you are going
to learn.

In this chapter, you will learn about

★ binary magnitudes, binary prefixes and
decimal prefixes

★ binary, denary and hexadecimal number
systems

★ how to carry out binary addition and
subtraction

★ the use of hexadecimal and binary coded
decimal (BCD) number systems

★ the representation of character sets (such as
ASCII and Unicode)

★ how data for a bit-mapped image is encoded

★ how to estimate the file size for a bit-map image
★ image resolution and colour depth
★ encoding of vector graphics
★ the representation of sound in a computer
★ the effects of changing sampling rate and

resolution on sound quality
★ the need for file compression methods (such

as lossy and lossless formats)
★ how to compress common file formats

(such as text files, bit-map images, vector
graphics, sound files and video files).

The grey-blue What you should already know boxes at the beginning of each
chapter or section help you to check you have the right level of knowledge
before you begin. You may have already studied Computer Science at IGCSE,
O Level or equivalent, or you may not have. These boxes contain questions to
find out how much you remember, or to gauge your previous learning. If you are
unable to answer the questions, you will need to refresh your memory, or make
sure you are familiar with the the relevant ideas, before continuing.

In
tR

o
D

U
C

tI
o

n

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 8 4/30/19 7:42 AM

In
tR

o
D

U
C

tIo
n

ix

Key terms for each chapter or section are listed, with definitions. When you are
reading through the chapter and you come across a term you don’t understand,
go back and see if it has been explained here.

There are Activities throughout, so that you can apply what you have learned.
Some of these take the form of questions, to allow you to test your knowledge;
others aim to give you experience of practical work. Some of these will also
give you opportunities to work collaboratively with other students.

WHAT YOU SHOULD ALREADY KNOW
Try these four questions before you read this
chapter.
1 What are the column weightings for the

binary number system?
2 Carry out these binary additions. Convert

your answers to denary.
a) 0 0 1 1 0 1 0 1 + 0 1 0 0 1 0 0 0
b) 0 1 0 0 1 1 0 1 + 0 1 1 0 1 1 1 0
c) 0 1 0 1 1 1 1 1 + 0 0 0 1 1 1 1 0
d) 0 1 0 0 0 1 1 1 + 0 1 1 0 1 1 1 1
e) 1 0 0 0 0 0 0 1 + 0 1 1 1 0 1 1 1
f) 1 0 1 0 1 0 1 0 + 1 0 1 0 1 0 1 0

3 What are the column weightings for the
hexadecimal (base 16) number system?

4 Carry out these hexadecimal additions.
Convert your answers to denary.
a) 1 0 7 + 2 5 7
b) 2 0 8 + A 1 7
c) A A A + 7 7 7
d) 1 F F + 7 F 7
e) 1 4 9 + F 0 F

f) 1 2 5 1 + 2 5 6 7
g) 3 4 A B + C 0 0 A
h) A 0 0 1 + D 7 7 F
i) 1 0 0 9 + 9 F F 1
j) 2 7 7 7 + A C F 1

Key terms
Logic gates – electronic circuits which rely
on ‘on/off’ logic; the most common ones
are NOT, AND, OR, NAND, NOR and XOR.
Logic circuit – formed from a
combination of logic gates and designed
to carry out a particular task; the output
from a logic circuit will be 0 or 1.
Truth table – a method of checking the
output from a logic circuit; they use all

the possible binary input combinations
depending on the number of inputs; for
example, two inputs have 22 (4) possible
binary combinations, three inputs will
have 23 (8) possible binary combinations,
and so on.
Boolean algebra – a form of algebra
linked to logic circuits and based on
TRUE and FALSE.

ACTIVITY 3B

Produce truth tables for each of the following logic circuits. You are advised
to split them up into intermediate parts to help eliminate errors.

A
a) b) c)

d) e)

B

B

X

A

C

X

X

B
A

C

A

B

X

X

B
A

C

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 9 4/30/19 7:42 AM

x

In
tR

o
D

U
C

tI
o

n There are also some Extension activities. These go beyond the requirements of
the syllabus, but it is good to see if you know the answers. We hope they will
be of interest to you.

The End of chapter questions are practice exam-style questions; these provide
a more formal way to check your progress. Some questions from Cambridge
International AS & A Level Computer Science past papers are included.

EXTENSION ACTIVITY 3E

1 Look at this simplified diagram of a keyboard; the letter H has been
pressed. Explain:
a) how pressing the letter H has been recognised by the computer
b) how the computer manages the very slow process of inputting data

from a keyboard.
2 a) Describe how these types of pointing devices work.

i) Mechanical mouse
ii) Optical mouse

b) Connectivity between mouse and computer can be through USB cable
or wireless. Explain these two types of connectivity.

conductive layers

H

J letter H has been pressed
and now makes contact with
bottom conductive layer

letter H
interpreted
by computerinsulating layer

G

 1 a) The following bytes represent binary integers using the two’s complement
form. State the equivalent denary values.

i) 0 1 0 0 1 1 1 1 [1]

ii) 1 0 0 1 1 0 1 0 [1]

iii) Write the integer −53 in two’s complement form. [1]

iv) Write the maximum possible range of numbers using the two’s
complement form of an 8-bit binary number.

 Give your answers in denary. [2]

b) i) Write the denary integer 798 in binary-coded decimal (BCD)
format. [1]

ii) Write the denary number that is represented by the following BCD number.

1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0

 [2]

c) Give one use of binary-coded decimal system. [1]

End of chapter
questions

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 10 4/30/19 7:42 AM

xi

In
tR

o
D

U
C

tIo
n

Assessment
If you are following the AS Level course, you will take two examination papers:

» Paper 1 Theory Fundamentals (1 hour 30 minutes)
» Paper 2 Fundamental Problem-solving and Programming Skills (2 hours)

If you are studying the A Level course, you will take four examination papers,
Papers 1 and 2 and also:

» Paper 3 Advanced Theory (1 hour 30 minutes)
» Paper 4 Practical (2 hours 30 minutes)

Note that calculators must not be used in any paper.

Command words
The table below includes command words used in the assessment for this
syllabus. The use of the command word will relate to the subject context.
Make sure you are familiar with these.

Command
word

What it means

Analyse examine in detail to show meaning, identify elements and the
relationship between them

Assess make an informed judgement

Calculate work out from given facts, figures or information

Comment give an informed opinion

Compare identify/comment on similarities and/or differences

Complete add information to an incomplete diagram or table

Consider review and respond to given information

Contrast identify/comment on differences

Define give precise meaning

Demonstrate show how or give an example

Describe state the points of a topic/give characteristics and main features

Develop take forward to a more advanced stage or build upon given information

Discuss write about issue(s) or topic(s) in depth in a structured way

Draw draw a line to match a term with a description

Evaluate judge or calculate the quality, importance, amount, or value of something

Examine investigate closely, in detail

Explain set out purposes or reasons/make the relationships between things
evident/provide why and/or how and support with relevant evidence

Give produce an answer from a given source or recall/memory

Identify name/select/recognise

Justify support a case with evidence/argument

Outline set out main points

Predict suggest what may happen based on available information

Sketch make a simple freehand drawing showing the key features, taking care
over proportions

➔

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 11 4/30/19 7:42 AM

xii

Command
word

What it means

State express in clear terms

Suggest apply knowledge and understanding to situations where there are a
range of valid responses in order to make proposals

Summarise select and present the main points, without detail

Write write an answer in a specific way

From the authors
We hope you enjoy this book. It encourages you to develop your computational
thinking while broadening your understanding of computer science. This
should prove helpful when you go on to further study, where topics such as
artificial intelligence, quantum cryptography and imperative and declarative
programming will be studied; all of these are covered in the later chapters of
the book. In order to handle such topics confidently, you will need to be a
competent programmer who uses computational thinking to solve problems and
has a good understanding of computer architecture. All chapters are designed
to build on your previous experience in a way that develops essential skills and
at the same time expands the techniques you are able to use.

David Watson

Helen Williams

Notes for teachers
Key concepts
These are the essential ideas that help learners to develop a deep
understanding of the subject and to make links between the different topics.
Although teachers are likely to have these in mind at all times when they are
teaching the syllabus, the following icons are included in the textbook at
points where the key concepts relate to the text:

Computational thinking
Computational thinking is a set of fundamental skills that help produce
a solution to a problem. Skills such as abstraction, decomposition and
algorithmic thinking are used to study a problem and design a solution that
can be implemented. This may involve using a range of technologies and
programming languages.

Programming paradigms
A programming paradigm is a way of thinking about or approaching problems.
There are many different programming styles that can be used, which are
suited to unique functions, tools and specific situations. An understanding of
programming paradigms is essential to ensure they are used appropriately, when
designing and building programs.

In
tR

o
D

U
C

tI
o

n

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 12 4/30/19 7:42 AM

xiii

In
tR

o
D

U
C

tIo
n

Communication
Communication is a core requirement of computer systems. It includes the
ability to transfer data from one device or component to another and an
understanding of the rules and methods that are used in this data transfer.
Communication could range from the internal transfer of data within a
computer system, to the transfer of a video across the internet.

Computer architecture and hardware
Computer architecture is the design of the internal operation of a computer
system. It includes the rules that dictate how components and data are
organised, how data are communicated between components, to allow hardware
to function. There is a range of architectures – with different components and
rules – that are appropriate for different scenarios. All computers comprise
a combination of hardware components, ranging from internal components,
such as the central processing unit (CPU) and main memory, to peripherals. To
produce effective and efficient programs to run on hardware, it is important to
understand how the components work independently and together to produce
a system that can be used. Hardware needs software to be able to perform a
task. Software allows hardware to become functional. This enables the user to
communicate with the hardware to perform tasks.

Data representation and structures
Computers use binary and understanding how a binary number can be
interpreted in many different ways is important. Programming requires an
understanding of how data can be organised for efficient access and/or transfer.

Additional support
The Programming Skills Workbook provides practice for the programming papers
and includes exercises designed to give students the necessary experience
of working in one of the three prescribed high-level programming languages:
Java (Console mode), Visual Basic and Python (Console mode). It is a write-in
workbook designed to be used throughout the course.

Answers to questions are available in the Online Teacher’s Guide.

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 13 4/30/19 7:42 AM

457591_FM_CI_AS & A_Level_CS_i-xiv.indd 14 4/30/19 7:42 AM

This page intentionally left blank

1

 1.1 D
ata representation

Information representation
and multimedia 1

In this chapter, you will learn about

★ binary magnitudes, binary prefixes and decimal prefixes
★ binary, denary and hexadecimal number systems
★ how to carry out binary addition and subtraction
★ the use of hexadecimal and binary coded decimal (BCD) number

systems
★ the representation of character sets (such as ASCII and Unicode)
★ how data for a bit-mapped image is encoded
★ how to estimate the file size for a bit-map image
★ image resolution and colour depth
★ encoding of vector graphics
★ the representation of sound in a computer
★ the effects of changing sampling rate and resolution on sound quality
★ the need for file compression methods (such as lossy and lossless

formats)
★ how to compress common file formats (such as text files, bit-map

images, vector graphics, sound files and video files).

WHAT YOU SHOULD ALREADY KNOW
Try these four questions before you read this
chapter.
1 What are the column weightings for the

binary number system?
2 Carry out these binary additions. Convert

your answers to denary.
a) 0 0 1 1 0 1 0 1 + 0 1 0 0 1 0 0 0
b) 0 1 0 0 1 1 0 1 + 0 1 1 0 1 1 1 0
c) 0 1 0 1 1 1 1 1 + 0 0 0 1 1 1 1 0
d) 0 1 0 0 0 1 1 1 + 0 1 1 0 1 1 1 1
e) 1 0 0 0 0 0 0 1 + 0 1 1 1 0 1 1 1
f) 1 0 1 0 1 0 1 0 + 1 0 1 0 1 0 1 0

3 What are the column weightings for the
hexadecimal (base 16) number system?

4 Carry out these hexadecimal additions.
Convert your answers to denary.
a) 1 0 7 + 2 5 7
b) 2 0 8 + A 1 7
c) A A A + 7 7 7
d) 1 F F + 7 F 7
e) 1 4 9 + F 0 F
f) 1 2 5 1 + 2 5 6 7
g) 3 4 A B + C 0 0 A
h) A 0 0 1 + D 7 7 F
i) 1 0 0 9 + 9 F F 1
j) 2 7 7 7 + A C F 1

457591_01_CI_AS & A_Level_CS_001-026.indd 1 25/04/19 9:11 AM

2

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

1.1 Data representation
Key terms
Binary – base two number system based on the values
0 and 1 only.
Bit – abbreviation for binary digit.
One’s complement – each binary digit in a number is
reversed to allow both negative and positive numbers to
be represented.
Two’s complement – each binary digit is reversed and
1 is added in right-most position to produce another
method of representing positive and negative numbers.
Sign and magnitude – binary number system where
left-most bit is used to represent the sign (0 = + and
1 = –); the remaining bits represent the binary value.
Hexadecimal – a number system based on the value 16
(uses the denary digits 0 to 9 and the letters A to F).

Memory dump – contents of a computer memory output
to screen or printer.
Binary-coded decimal (BCD) – number system that
uses 4 bits to represent each denary digit.
ASCII code – coding system for all the characters on a
keyboard and control codes.
Character set – a list of characters that have been
defined by computer hardware and software. It is
necessary to have a method of coding, so that the
computer can understand human characters.
Unicode – coding system which represents all the
languages of the world (first 128 characters are the
same as ASCII code).

1.1.1 Number systems
Every one of us is used to the decimal or denary (base 10) number system. This
uses the digits 0 to 9 which are placed in ‘weighted’ columns.

10 000 1000 100 10 units
3 1 4 2 1

The denary number represented above is thirty-one thousand, four hundred and
twenty-one.

(Note that dealing with decimal fractions is covered in Chapter 13 since this is
slightly more complex.)

Designers of computer systems adopted the binary (base 2) number system
since this allows only two values, 0 and 1. No matter how complex the system,
the basic building block in all computers is the binary number system. Since
computers contain millions and millions of tiny ‘switches’, which must be in the
ON or OFF position, this lends itself logically to the binary system. A switch in
the ON position can be represented by 1; a switch in the OFF position can be
represented by 0. Each of the binary digits are known as bits.

1.1.2 Binary number system
The binary system uses 1s and 0s only which gives these corresponding weightings:

128 64 32 16 8 4 2 1
(27) (26) (25) (24) (23) (22) (21) (20)

A typical binary number would be:

1 1 1 0 1 1 1 0

Converting from binary to denary and from denary to binary
It is fairly straightforward to change a binary number into a denary number.
Each time a 1 appears in a column, the column value is added to the total. For
example, the binary number above is:

128 + 64 + 32 + 8 + 4 + 2 = 238 (denary)

457591_01_CI_AS & A_Level_CS_001-026.indd 2 25/04/19 9:11 AM

3

1

1.1
D

ata representation

The 0 values are simply ignored when calculating the total.

The reverse operation – converting from denary to binary – is slightly more
complex. There are two basic ways of doing this.

Consider the conversion of the denary number, 107, into binary …

Method 1
This method involves placing 1s in the appropriate position so that the total
equates to 107.

128 64 32 16 8 4 2 1
0 1 1 0 1 0 1 1

Method 2
This method involves successive division by 2; the remainders are then written
from bottom to top to give the binary value.

2 107

Write the remainder from
bottom to top to get the
binary number:

0 1 1 0 1 0 1 1

2 53 remainder: 1

2 26 remainder: 1

2 13 remainder: 0

2 6 remainder: 1

2 3 remainder: 0

2 1 remainder: 1

2 0 remainder: 1

0 remainder: 0

Binary addition and subtraction
Up until now we have assumed all binary numbers have positive values. There are a
number of methods to represent both positive and negative numbers. We will consider:

» one’s complement
» two’s complement.

In one’s complement, each digit in the binary number is inverted (in other
words, 0 becomes 1 and 1 becomes 0). For example, 0 1 0 1 1 0 1 0 (denary
value 90) becomes 1 0 1 0 0 1 0 1 (denary value −90).

In two’s complement, each digit in the binary number is inverted and a ‘1’ is
added to the right-most bit. For example, 0 1 0 1 1 0 1 0 (denary value 90)
becomes:

1 0 1 0 0 1 0 1
+ 1
= 1 0 1 0 0 1 1 0 (since 1 + 1 = 0, a carry of 1) = denary value −90

Throughout the remainder of this chapter, we will use the two’s complement
method to avoid confusion. Also, two’s complement makes binary addition
and subtraction more straightforward. The reader is left to investigate one’s
complement and the sign and magnitude method in binary arithmetic.

Now that we are introducing negative numbers, we need a way to represent
these in binary. The two’s complement uses these weightings for an 8-bit
number representation:

−128 64 32 16 8 4 2 1

ACTIVITY 1A

Convert these
binary numbers into
denary.
a) 0 0 1 1 0 0 1 1
b) 0 1 1 1 1 1 1 1
c) 1 0 0 1 1 0 0 1
d) 0 1 1 1 0 1 0 0
e) 1 1 1 1 1 1 1 1
f) 0 0 0 0 1 1 1 1
g) 1 0 0 0 1 1 1 1
h) 0 0 1 1 0 0 1 1
i) 0 1 1 1 0 0 0 0
j) 1 1 1 0 1 1 1 0

ACTIVITY 1B

Convert these
denary numbers into
binary (using either
method).
a) 4 1
b) 6 7
c) 8 6
d) 1 0 0
e) 1 1 1
f) 1 2 7
g) 1 4 4
h) 1 8 9
i) 2 0 0
j) 2 5 5

457591_01_CI_AS & A_Level_CS_001-026.indd 3 25/04/19 9:11 AM

4

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Add 0 0 1 0 0 1 0 1 (37 in denary) and 0 0 1 1 1 0 1 0 (58 in denary).Example 1.1

Solution

−128 64 32 16 8 4 2 1
0 0 1 0 0 1 0 1

+
0 0 1 1 1 0 1 0

=
0 1 0 1 1 1 1 1

This gives us 0 1 0 1 1 1 1 1, which is 95 in denary; the correct answer.

This means:

−128 64 32 16 8 4 2 1
1 1 0 1 1 0 1 0
0 0 1 0 0 1 1 0

The first example is: −128 + 64 + 16 + 8 + 2 = −38

The second example is: 32 + 4 + 2 = 38

The easiest way to convert a number into its negative equivalent is to use two’s
complement. For example, 104 in binary is 0 1 1 0 1 0 0 0.

To find the binary value for −104 using two’s complement:

invert the digits: 1 0 0 1 0 1 1 1 (+104 in denary)
add 1: 1
which gives: 1 0 0 1 1 0 0 0 = −104)

ACTIVITY 1C

Convert these denary numbers into 8-bit binary numbers using two’s
complement where necessary. Use these binary column weightings:

−128 64 32 16 8 4 2 1

a) +114
b) +61
c) +96
d) −14
e) −116

Binary addition
Consider Examples 1.1 and 1.2.

EXTENSION
ACTIVITY 1A

Show the column
headings for a
system that uses
16 bits to represent
a binary number.

457591_01_CI_AS & A_Level_CS_001-026.indd 4 25/04/19 9:11 AM

5

1

1.1
D

ata representation

Add 0 1 0 1 0 0 1 0 (82 in denary) and 0 1 0 0 0 1 0 1 (69 in denary).Example 1.2

Solution

−128 64 32 16 8 4 2 1
0 1 0 1 0 0 1 0

+
0 1 0 0 0 1 0 1

=
1 0 0 1 0 1 1 1

This gives us 1 0 0 1 0 1 1 1, which is –105 in denary (which is clearly nonsense).
When adding two positive numbers, the result should always be positive
(likewise, when adding two negative numbers, the result should always be
negative). Here, the addition of two positive numbers has resulted in a negative
answer. This is due to the result of the addition producing a number which is
outside the range of values which can be represented by the 8 bits being used (in
this case +127 is the largest value which can be represented, and the calculation
produces the value 151, which is larger than 127 and, therefore, out of range).
This causes overf low; it is considered in more detail in Chapter 13.

Binary subtraction
To carry out subtraction in binary, we convert the number being subtracted into
its negative equivalent using two’s complement, and then add the two numbers.

Carry out the subtraction 95 – 68 in binary.Example 1.3

Solution
1 Convert the two numbers into binary:

 95 = 0 1 0 1 1 1 1 1

 68 = 0 1 0 0 0 1 0 0

2 Find the two’s complement of 68:

invert the digits: 1 0 1 1 1 0 1 1

add 1: 1

which gives: 1 0 1 1 1 1 0 0 = −68

3 Add 95 and −68:

−128 64 32 16 8 4 2 1

0 1 0 1 1 1 1 1

+

1 0 1 1 1 1 0 0

=

1 0 0 0 1 1 0 1 1

The additional ninth bit is simply ignored leaving the binary number
0 0 0 1 1 0 1 1 (denary equivalent of 27, which is the correct result of the
subtraction).

457591_01_CI_AS & A_Level_CS_001-026.indd 5 25/04/19 9:11 AM

6

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Measurement of the size of computer memories
The byte is the smallest unit of memory in a computer. Some computers use
larger bytes, such as 16-bit systems and 32-bit systems, but they are always
multiples of 8. 1 byte of memory wouldn’t allow you to store very much
information; so memory size is measured in these multiples. See Table 1.1.

ACTIVITY 1D

Carry out these binary additions and subtractions using these 8-bit column
weightings:

−128 64 32 16 8 4 2 1

a) 0 0 1 1 1 0 0 1 + 0 0 1 0 1 0 0 1
b) 0 1 0 0 1 0 1 1 + 0 0 1 0 0 0 1 1
c) 0 1 0 1 1 0 0 0 + 0 0 1 0 1 0 0 0
d) 0 1 1 1 0 0 1 1 + 0 0 1 1 1 1 1 0
e) 0 0 0 0 1 1 1 1 + 0 0 0 1 1 1 0 0
f) 0 1 1 0 0 0 1 1 − 0 0 1 1 0 0 0 0
g) 0 1 1 1 1 1 1 1 − 0 1 0 1 1 0 1 0
h) 0 0 1 1 0 1 0 0 − 0 1 0 0 0 1 0 0
i) 0 0 0 0 0 0 1 1 − 0 1 1 0 0 1 0 0
j) 1 1 0 1 1 1 1 1 − 1 1 0 0 0 0 1 1

Carry out the subtraction 49 – 80 in binary.Example 1.4

Solution
1 Convert the two numbers into binary:

 49 = 0 0 1 1 0 0 0 1

 80 = 0 1 0 1 0 0 0 0

2 Find the two’s complement of 80:

invert the digits: 1 0 1 0 1 1 1 1

add 1: 1

which gives: 1 0 1 1 0 0 0 0 = −80

3 Add 49 and −80:

−128 64 32 16 8 4 2 1
0 0 1 1 0 0 0 1

+
1 0 1 1 0 0 0 0

=
1 1 1 0 0 0 0 1

This gives us 1 1 1 0 0 0 0 1, which is −31 in denary; the correct answer.

457591_01_CI_AS & A_Level_CS_001-026.indd 6 25/04/19 9:11 AM

7

1

1.1
D

ata representation

Name of memory size Equivalent denary value (bytes)
1 kilobyte (1 KB) 1 000

1 megabyte (1 MB) 1 000 000

1 gigabyte (1 GB) 1 000 000 000

1 terabyte (1 TB) 1 000 000 000 000

1 petabyte (1 PB) 1 000 000 000 000 000

▲ Table 1.1 Memory size and denary values

The system of numbering shown in Table 1.1 only refers to some storage
devices, but is technically inaccurate. It is based on the SI (base 10) system
of units where 1 kilo is equal to 1000. A 1 TB hard disk drive would allow the
storage of 1 × 1012 bytes according to this system. However, since memory size
is actually measured in terms of powers of 2, another system has been proposed
by the International Electrotechnical Commission (IEC); it is based on the
binary system. See Table 1.2.

Name of memory size Number of bytes Equivalent denary value (bytes)
1 kibibyte (1 KiB) 210 1 024

1 mebibyte (1 MiB) 220 1 048 576

1 gibibyte (1 GiB) 230 1 073 741 824

1 tebibyte (1 TiB) 240 1 099 511 627 776

1 pebibyte (1 PiB) 250 1 125 899 906 842 624

▲ Table 1.2 IEC memory size system

This system is more accurate. Internal memories (such as RAM) should
be measured using the IEC system. A 64 GiB RAM could, therefore, store
64 × 230 bytes of data (68 719 476 736 bytes).

See Section 1.2 for examples of how to calculate the size of a file.

1.1.3 Hexadecimal number system
The hexadecimal system is very closely related to the binary system.
Hexadecimal (sometimes referred to as simply hex) is a base 16 system with the
weightings:

1 048 576 65 536 4096 256 16 1
(165) (164) (163) (162) (161) (160)

Because it is a system based on 16 different digits, the numbers 0 to 9 and the
letters A to F are used to represent hexadecimal digits.

A = 10, B = 11, C = 12, D = 13, E = 14 and F = 15.

Since 16 = 24, four binary digits are equivalent to each hexadecimal digit. Table
1.3 summarises the link between binary, hexadecimal and denary.

457591_01_CI_AS & A_Level_CS_001-026.indd 7 25/04/19 9:11 AM

8

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Convert 1 0 1 1 1 1 1 0 0 0 0 1 from binary to hexadecimal.

Convert 1 0 0 0 0 1 1 1 1 1 1 1 0 1 from binary to hexadecimal.

Example 1.5

Example 1.6

Solution

First split it into groups of 4 bits:
1 0 1 1 1 1 1 0 0 0 0 1

Then find the equivalent hexadecimal digits:
B E 1

Solution

First split it into groups of 4 bits:
1 0 0 0 0 1 1 1 1 1 1 1 0 1

The left group only contains 2 bits, so add in two 0s to the left:
0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1

Now find the equivalent hexadecimal digits:
2 1 F D

Binary value Hexadecimal value Denary value
0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6

0 1 1 1 7 7

1 0 0 0 8 8

1 0 0 1 9 9

1 0 1 0 A 10

1 0 1 1 B 11

1 1 0 0 C 12

1 1 0 1 D 13

1 1 1 0 E 14

1 1 1 1 F 15

▲ Table 1.3 The link between binary, hexadecimal and denary

Converting from binary to hexadecimal and from hexadecimal to binary
Converting from binary to hexadecimal is a fairly easy process. Starting from
the right and moving left, split the binary number into groups of 4 bits. If the
last group has less than 4 bits, then simply fill in with 0s from the left. Take
each group of 4 bits and convert it into the equivalent hexadecimal digit using
Table 1.3.

Examples 1.5 and 1.6 show you how this works.

457591_01_CI_AS & A_Level_CS_001-026.indd 8 25/04/19 9:11 AM

9

1

1.1
D

ata representation

Converting from hexadecimal to binary is also straightforward. Using the data
from Table 1.3, simply take each hexadecimal digit and write down the 4 bit
code which corresponds to the digit.

ACTIVITY 1E

Convert these binary numbers into hexadecimal.
a) 1 1 0 0 0 0 1 1
b) 1 1 1 1 0 1 1 1
c) 1 0 0 1 1 1 1 1 1 1
d) 1 0 0 1 1 1 0 1 1 1 0
e) 0 0 0 1 1 1 1 0 0 0 0 1

f) 1 0 0 0 1 0 0 1 1 1 1 0
g) 0 0 1 0 0 1 1 1 1 1 1 1 0
h) 0 1 1 1 0 1 0 0 1 1 1 0 0
i) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
j) 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0

Convert this hexadecimal number to its binary equivalent.

4 5 A

Example 1.7

Solution
Using Table 1.3, find the 4-bit code for each digit:

0 1 0 0 0 1 0 1 1 0 1 0

Put the groups together to form the binary number:

0 1 0 0 0 1 0 1 1 0 1 0

Use of the hexadecimal system
This section reviews two uses of the hexadecimal system.

Memory dumps
It is much easier to work with:

B 5 A 4 1 A F C

than it is to work with:

1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0

So, hexadecimal is often used when developing new software or when trying to
trace errors in programs. When the memory contents are output to a printer or
monitor, this is known as a memory dump.

Convert this hexadecimal number to its binary equivalent.

B F 0 8

Example 1.8

Solution
Using Table 1.3:

1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0

Then put all the digits together:

1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0

457591_01_CI_AS & A_Level_CS_001-026.indd 9 25/04/19 9:11 AM

10

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

00990F60 54 68 69 73 20 69 73 20 61 6E 20 65 78 61 6D 70 6C 65 20 6F 66

00990F77 61 20 6D 65 6D 6F 72 79 20 64 75 6D 70 20 66 72 6F 6D 20 20 61

00990E8E 74 79 70 69 63 61 6C 20 20 63 6F 6D 70 75 74 65 72 20 20 6D 85

00990EA5 6D 6F 72 79 20 73 68 6F 77 69 6E 67 20 74 68 65 20 20 63 6F 6E

00990EBC 74 65 6E 74 73 20 6F 66 20 61 20 6E 75 6D 62 65 72 20 20 6F 66

00990ED3 6C 6F 63 61 74 69 6F 6E 73 20 20 69 6E 20 20 68 65 78 20 20 20

00990EEA 6E 6F 74 61 74 69 6F 6E 20 20 00 00 00 00 00 00 00 00 00 00 00

▲ Table 1.4 Memory dump

A program developer can look at each of the hexadecimal codes (as shown in
Table 1.4) and determine where the error lies. The value on the far left shows
the memory location, so it is possible to find out exactly where in memory
the fault occurs. Using hexadecimal is more manageable than binary. It is a
powerful fault-tracing tool, but requires considerable knowledge of computer
architecture to be able to interpret the results.

1.1.4 Binary-coded decimal (BCD) system
The binary-coded decimal (BCD) system uses a 4-bit code to represent each
denary digit:

0 0 0 0 = 0 0 1 0 1 = 5

0 0 0 1 = 1 0 1 1 0 = 6

0 0 1 0 = 2 0 1 1 1 = 7

0 0 1 1 = 3 1 0 0 0 = 8

0 1 0 0 = 4 1 0 0 1 = 9

Therefore, the denary number 3 1 6 5 would be 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1
in BCD format.

The 4-bit code can be stored in the computer either as half a byte or two 4-bit
codes stored together to form one byte. For example, using 3 1 6 5 again …

Method 1: four single bytes

0 0 0 0 0 0 1 1 3

0 0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0 6

0 0 0 0 0 1 0 1 5

Method 2: two bytes

0 0 1 1 0 0 0 1 3 1

0 1 1 0 0 1 0 1 6 5

ACTIVITY 1G

1 Convert these denary numbers into BCD format.
a) 2 7 1 b) 5 0 0 6 c) 7 9 9 0

2 Convert these BCD numbers into denary numbers.
a) 1 0 0 1 0 0 1 1 0 1 1 1
b) 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0

ACTIVITY 1F

Convert these
hexadecimal
numbers into binary.
a) 6 C
b) 5 9
c) A A
d) A 0 0
e) 4 0 E
f) B A 6
g) 9 C C
h) 4 0 A A
i) D A 4 7
j) 1 A B 0

457591_01_CI_AS & A_Level_CS_001-026.indd 10 25/04/19 9:11 AM

11

1

1.1
D

ata representation

Uses of BCD
The most obvious use of BCD is in the representation of digits on a calculator
or clock display.

Each denary digit will have a BCD equivalent value which makes it easy to
convert from computer output to denary display.

As you will learn in Chapter 13, it is nearly impossible to represent decimal
values exactly in computer memories which use the binary number system.
Normally this doesn’t cause a major issue since the differences can be dealt
with. However, when it comes to accounting and representing monetary
values in computers, exact values need to be stored to prevent significant
errors from accumulating. Monetary values use a fixed-point notation, for
example $1.31, so one solution is to represent each denary digit as a BCD
value.

Consider adding $0.37 and $0.94 together using fixed-point decimals.

$0.37 0 0 0 0 0 0 0 0 . 0 0 1 1 0 1 1 1

+ +

$0.94 0 0 0 0 0 0 0 0 . 1 0 0 1 0 1 0 0 Expected result = $1.31

Using binary addition, this sum will produce:

0 0 0 0 0 0 0 0 . 1 1 0 0 1 0 1 1 which produces 1 1 0 0 (denary 12) and 1
0 1 1 (denary 11), which is clearly incorrect. The problem was caused by 3
+ 9 = 12 and 7 + 4 = 11, as neither 12 nor 11 are single denary digits. The
solution to this problem, enabling the computer to store monetary values
accurately, is to add 0 1 1 0 (denary 6) whenever such a problem arises. The
computer can be programmed to recognise this issue and add 0 1 1 0 at each
appropriate point.

If we look at the example again, we can add .07 and .04 (the two digits in the
second decimal place) first.

0 1 1 1

+

0 1 0 0

=

1 0 1 1

1 0 1 1

+

0 1 1 0

=

1 0 0 0 1

This produces 1 0 1 1 which
isn’t a denary digit; this
will flag an error and the
computer needs to add
0 1 1 0.This now

produces a fifth
bit which is
carried to the
next decimal
digit position.

457591_01_CI_AS & A_Level_CS_001-026.indd 11 25/04/19 9:11 AM

12

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Now we will add .3 and .9 together (the two digits in the first decimal place)
remembering the carry bit from the addition above:

0 0 1 1

+

1 0 0 1

+

1

=

1 1 0 1

This produces 1 1 0 1 which isn’t a denary digit; this will flag an error and the
computer again needs to add 0 1 1 0.

1 1 0 1

+

0 1 1 0

=

1 0 0 1 1

Adding 1 to 0 0 0 0 0 0 0 0 produces:

0 0 0 0 0 0 0 1

Final answer:

0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 1

which is 1.31 in denary – the correct answer.

1.1.5 ASCII codes and Unicodes
The ASCII code system (American Standard Code for Information Interchange)
was set up in 1963 for use in communication systems and computer systems.
The newer version of the code was published in 1986. The standard ASCII
code character set consists of 7-bit codes (0 to 127 denary or 0 to 7F in
hexadecimal); this represents the letters, numbers and characters found on a
standard keyboard together with 32 control codes (which use up codes 0 to 31
(denary) or 0 to 19 (hexadecimal)).

Table 1.5 shows part of the standard ASCII code table (only the control codes
have been removed from the table).

This again produces
a fifth bit which is
carried to the next
decimal digit position.

ACTIVITY 1H

Carry out these BCD
additions.
a) 0.45 + 0.21
b) 0.66 + 0.51
c) 0.88 + 0.75

457591_01_CI_AS & A_Level_CS_001-026.indd 12 25/04/19 9:11 AM

13

1

1.1
D

ata representation

Dec Hex Char Dec Hex Char Dec Hex Char
32 20 <SPACE> 64 40 @ 96 60 `

33 21 ! 65 41 A 97 61 a

34 22 “ 66 42 B 98 62 b

35 23 # 67 43 C 99 63 c

36 24 $ 68 44 D 100 64 d

37 25 % 69 45 E 101 65 e

38 26 & 70 46 F 102 66 f

39 27 ‘ 71 47 G 103 67 g

40 28 (72 48 H 104 68 h

41 29) 73 49 I 105 69 i

42 2A * 74 4A J 106 6A j

43 2B + 75 4B K 107 6B k

44 2C , 76 4C L 108 6C l

45 2D - 77 4D M 109 6D m

46 2E . 78 4E N 110 6E n

47 2F / 79 4F O 111 6F o

48 30 0 80 50 P 112 70 p

49 31 1 81 51 Q 113 71 q

50 32 2 82 52 R 114 72 r

51 33 3 83 53 S 115 73 s

52 34 4 84 54 T 116 74 t

53 35 5 85 55 U 117 75 u

54 36 6 86 56 V 118 76 v

55 37 7 87 57 W 119 77 w

56 38 8 88 58 X 120 78 x

57 39 9 89 59 Y 121 79 y

58 3A : 90 5A Z 122 7A z

59 3B ; 91 5B [123 7B {

60 3C < 92 5C \ 124 7C |

61 3D = 93 5D] 125 7D }

62 3E > 94 5E ^ 126 7E ~

63 3F ? 95 5F _ 127 7F <DELETE>

▲ Table 1.5 Part of the ASCII code table

Notice the storage of characters with uppercase and lowercase. For example:

a 1 1 0 0 0 0 1 hex 61 (lower case)
A 1 0 0 0 0 0 1 hex 41 (upper case)
y 1 1 1 1 0 0 1 hex 79 (lower case)
Y 1 0 1 1 0 0 1 hex 59 (uppercase)

Notice the sixth bit changes from 1 to 0 when comparing lower and uppercase
characters. This makes the conversion between the two an easy operation. It
is also noticeable that the character sets (such as a to z, 0 to 9, and so on) are
grouped together in sequence, which speeds up usability.

Extended ASCII uses 8-bit codes (128 to 255 in denary or 80 to FF in hex). This
allows for non-English characters and for drawing characters to be included.

457591_01_CI_AS & A_Level_CS_001-026.indd 13 25/04/19 9:11 AM

14

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Since ASCII code has a number of disadvantages and is unsuitable for some
purposes, different methods of coding have been developed over the years.
One coding system is called Unicode. Unicode allows characters in a code
form to represent all languages of the world, thus supporting many operating
systems, search engines and internet browsers used globally. There is overlap
with standard ASCII code, since the first 128 (English) characters are the same,
but Unicode can support several thousand different characters in total. As can
be seen in Tables 1.5 and 1.6, ASCII uses one byte to represent a character,
whereas Unicode will support up to four bytes per character.
The Unicode consortium was set up in 1991. Version 1.0 was published with five
goals, these were to
» create a universal standard that covered all languages and all writing systems
» produce a more efficient coding system than ASCII
» adopt uniform encoding where each character is encoded as 16-bit or 32-bit code
» create unambiguous encoding where each 16-bit or 32-bit value always

represents the same character (it is worth pointing out here that the ASCII
code tables are not standardised and versions other than the ones shown in
tables 1.5 and 1.6 exist)

» reserve part of the code for private use to enable a user to assign codes for their
own characters and symbols (useful for Chinese and Japanese character sets).

A sample of Unicode characters are shown in Table 1.7. As can be seen from
the table, characters used in languages such as Russian, Greek, Romanian and
Croatian can now be represented in a computer).

▲ Table 1.6 Extended ASCII code table

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
128 154 9A

155 9B
156 9C
157 9D
158 9E
159 9F
160 A0
161 A1
162 A2
163 A3
164 A4
165 A5
166 A6
167 A7
168 A8
169 A9
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 B0
177 B1
178 B2
179 B3

180 B4
181 B5
182 B6
183 B7
184 B8
185 B9
186 BA
187 BB
188 BC
189 BD
190 BE
191 BF
192 C0
193 C1
194 C2
195 C3
196 C4
197 C5
198 C6
199 C7
200 C8
201 C9
202 CA
203 CB
204 CC
205 CD

206 CE
207 CF
208 D0
209 D1
210 D2
211 D3
212 D4
213 D5
214 D6
215 D7
216 D8
217 D9
218 DA
219 DB
220 DC
221 DD
222 DE
223 DF
224 E0
225 E1
226 E2
227 E3
228 E4
229 E5
230 E6
231 E7

232 E8
233 E9
234 EA
235 EB
236 EC
237 ED
238 EE
239 EF
240 F0
241 F1
242 F2
243 F3
244 F4
245 F5
246 F6
247 F7
248 F8
249 F9
250 FA
251 FB
252 FC
253 FD
254 FE
255 FF

129
130
131

153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132

80 Ç
ü
é
â
ä
à
å
ç
ê
ë
è
ï
î
ì
Ä
Å
É
æ
Æ
ô
ö
ò
û
ù
ӱ
Ö

81
82
83

99
98
97
96
95
94
93
92
91
90
8F
8E
8D
8C
8B
8A
89
88
87
86
85
84

Ü
ḉ
£
¥
₧
ƒ
á
í
ó
ú
ñ
Ñ
ᵃ
ᵒ
¿
⌐
¬
½
¼
¡
«
»
░
▒
▓
│

╬
╧
╨
╤
╥

╙
╘
╒
╓
╫
╪

┘
┌
█
▄
▌
▐

▀
α
ß
Г
п
∑
σ
μ
τ

Φ
Θ
Ω
δ
∞
ø
ε
∩
≡
±
≥
≤
⌠
⌡
÷
≈
°
▪▪
▪
√
³
²
■
□

┤

╡

╢
╖

╕

╣

║

╗

╝

╜
╛
┐

└

┴
┬

├

─

┼

╞

╟

╚
╔

╩
╦

╠
═

457591_01_CI_AS & A_Level_CS_001-026.indd 14 25/04/19 9:11 AM

15

1

1.2
M

ultim
edia

1.2 Multimedia
Key terms
Bit-map image – system that uses pixels to make up an
image.
Pixel – smallest picture element that makes up an image.
Colour depth – number of bits used to represent the
colours in a pixel, e.g. 8 bit colour depth can represent
28 = 256 colours.
Bit depth – number of bits used to represent the
smallest unit in, for example, a sound or image file –
the larger the bit depth, the better the quality of the
sound or colour image.
Image resolution – number of pixels that make up an
image, for example, an image could contain 4096 × 3192
pixels (12 738 656 pixels in total).
Screen resolution – number of horizontal and vertical
pixels that make up a screen display. If the screen

resolution is smaller than the image resolution, the
whole image cannot be shown on the screen, or the
original image will become lower quality.
Resolution – number of pixels per column and per row
on a monitor or television screen.
Pixel density – number of pixels per square centimetre.
Vector graphics – images that use 2D points to describe
lines and curves and their properties that are grouped to
form geometric shapes.
Sampling resolution – number of bits used to represent
sound amplitude (also known as bit depth).
Sampling rate – number of sound samples taken per
second.
Frame rate – number of video frames that make up a
video per second.

Images can be stored in a computer in two common formats: bit-map image and
vector graphic.

1.2.1 Bit-map images
Bit-map images are made up of pixels (picture elements); the image is stored
in a two-dimensional matrix of pixels.

Pixels can take different shapes, such as or or or

Ơ ơ Ƣ ƣ Ƥ ƥ Ʀ Ƨ ƨ Ʃ ƪ ƫ Ƭ ƭ Ʈ
ư Ʊ Ʋ Ƴ ƴ Ƶ ƶ Ʒ Ƹ ƹ ƺ ƻ Ƽ ƽ ƾ
ǀ ǁ ǂ ǃ Ǆ ǅ ǆ Ǉ ǈ ǉ Ǌ ǋ ǌ Ǎ ǎ
ǐ Ǒ ǒ Ǔ ǔ Ǖ ǖ Ǘ ǘ Ǚ ǚ Ǜ ǜ ǝ Ǟ
Ǡ ǡ Ǣ ǣ Ǥ ǥ Ǧ ǧ Ǩ ǩ Ǫ ǫ Ǭ ǭ Ǯ
ǰ Ǳ ǲ ǳ Ǵ ǵ Ƕ Ƿ Ǹ ǹ Ǻ ǻ Ǽ ǽ Ǿ
Ȁ ȁ Ȃ ȃ Ȅ ȅ Ȇ ȇ Ȉ ȉ Ȋ ȋ Ȍ ȍ Ȏ
Ȑ ȑ Ȓ ȓ Ȕ ȕ Ȗ ȗ Ș ș Ț ț Ȝ ȝ Ȟ
Ƞ ȡ Ȣ ȣ Ȥ ȥ Ȧ ȧ Ȩ ȩ Ȫ ȫ Ȭ ȭ Ȯ
Ȱ ȱ Ȳ ȳ ȴ ȵ ȶ ȷ ȸ ȹ Ⱥ Ȼ ȼ Ƚ Ⱦ
ɀ Ɂ ɂ Ƀ Ʉ Ʌ Ɇ ɇ Ɉ ɉ Ɋ ɋ Ɍ ɍ Ɏ ɏ
ɐ ɑ ɒ ɓ ɔ ɕ ɖ ɗ ɘ ǝ ɚ ɛ ɜ ɝ ɞ
ɠ ɡ ɢ ɣ ɤ ɥ ɦ ɧ ɨ ɩ ɪ ɫ ɬ ɭ ɮ
ɰ ɱ ɲ ɳ ɴ ɵ ɶ ɷ ɸ ɹ ɺ ɻ ɼ ɽ ɾ
ʀ ʁ ʂ ʃ ʄ ʅ ʆ ʇ ʈ ʉ ʊ ʋ ʌ ʍ ʎ
ʐ ʑ ʒ ʓ ʔ ʕ ʖ ʗ ʘ ʙ ʚ ʛ ʜ ʝ ʞ
ʠ ʡ ʢ ʣ ʤ ʥ ʦ ʧ ʨ ʩ ʪ ʫ ʬ ʭ ʮ
ʰ

01A0

01B0

01C0

01D0

01E0

01F0

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

02A0

02B0 ʱ ʲ ʳ ʴ ʵ ʶ ʷ ʸ ʹ ʺ ʻ ʼ ʽ ʾ

Ư
0 1 2 3 4 5 6 7 8 9 A B C D E F

ƿ
Ǐ
ǟ
ǯ
ǿ
ȏ
ȟ
ȯ
ȿ

ɟ
ɯ
ɿ
ʏ
ʟ
ʯ
ʿ

▲ Table 1.7 Sample of Unicode characters

457591_01_CI_AS & A_Level_CS_001-026.indd 15 25/04/19 9:11 AM

16

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

When storing images as pixels, we have to consider

» at least 8 bits (1 byte) per pixel are needed to code a coloured image (this
gives 256 possible colours by varying the intensity of the blue, green and
red elements)

» true colour requires 3 bytes per pixel (24 bits), which gives more than one
million colours

» the number of bits used to represent a pixel is called the colour depth.

In terms of images, we need to distinguish between bit depth and colour
depth; for example, the number of bits that are used to represent a single
pixel (bit depth) will determine the colour depth of that pixel. As the bit
depth increases, the number of possible colours which can be represented also
increases. For example, a bit depth of 8 bits per pixel allows 256 (28) different
colours (the colour depth) to be represented, whereas using a bit depth of
32 bits per pixel results in 4 294 967 296 (232) different colours. The impact of
bit depth and colour depth is considered later.

We will now consider the actual image itself and how it can be displayed on a
screen. There are two important definitions here:

» Image resolution refers to the number of pixels that make up an image; for
example, an image could contain 4096 × 3192 pixels (12 738 656 pixels in
total).

» Screen resolution refers to the number of horizontal pixels and the number
of vertical pixels that make up a screen display (for example, if the screen
resolution is smaller than the image resolution then the whole image cannot
be shown on the screen or the original image will now be a lower quality).

We will try to clarify the difference by using an example.

Figure 1.1 has been taken by a digital camera using an image resolution of
4096 × 3192 pixels:

▲ Figure 1.1 Image taken by a digital camera

Suppose we wish to display Figure 1.1 on a screen with screen resolution of
1920 × 1080. To display this image the web browser (or other software) would
need to re-size Figure 1.1 so that it now fits the screen. This could be done by
removing pixels so that it could now be displayed, or part of the image could
be cropped (and, in this case, rotated through 90°) as shown in Figure 1.2.

EXTENSION
ACTIVITY 1B

Find out how HTML
is used to control
the colour of each
pixel on a screen.
How is HTML used in
the design stage of
a web page screen
layout?

▲ Figure 1.2 Image cropped
and rotated through 90°

457591_01_CI_AS & A_Level_CS_001-026.indd 16 25/04/19 9:11 AM

17

1

1.2
M

ultim
edia

However, a lower resolution copy of Figure 1.1 (for example, 1024 × 798) would
now fit on the screen without any modification to the image. We could simply
zoom in to enlarge it to full screen size; however, the image could now become
pixelated (in other words, the number of pixels per square inch (known as the
pixel density) is smaller, causing deterioration in the image quality).

We will now consider a calculation which shows how pixel density can be
calculated for a given screen. Imagine we are using an Apple iPhone 8 which
has 5.5-inch screen size and screen resolution of 1920 pixels × 1080 pixels:

1 add together the squares of the resolution size ((19202 + 10802) = (3 686 400
+ 16 640) = 4 852 800)

2 find the square root 4852800 2202.907()=
3 divide by screen size (2202.907 ÷ 5.5 = 401)

This gives us the pixel density of 401 pixels per square inch (ppi) (which is the
same as the published figure from the manufacturer).

A pixel-generated image can be scaled up or scaled down; it is important
to understand that this can be done when deciding on the resolution. The
resolution can be varied on many cameras before taking, for example, a digital
photograph. When magnifying an image, the number of pixels that makes up
the image remains the same but the area they cover is now increased. This
means some of the sharpness could be lost. This is known as the pixel density
and is key when scaling up photographs. For example, look at Figure 1.3.

A CB D E

▲ Figure 1.3 Five images of the same car wheel

Image A is the original. By the time it has been scaled up to make image E it
has become pixelated (‘fuzzy’). This is because images A and E have different
pixel densities.

The main drawback of using high resolution images is the increase in file size. As
the number of pixels used to represent the image is increased, the size of the file
will also increase. This impacts on how many images can be stored on, for example,
a hard drive. It also impacts on the time to download an image from the internet or
the time to transfer images from device to device. Bit-map images rely on certain
properties of the human eye and, up to a point, the amount of file compression
used (see Section 1.3 File compression). The eye can tolerate a certain amount of
resolution reduction before the loss of quality becomes significant.

Calculating bit-map image file sizes
It is possible to estimate the file size needed to store a bit-map image. The file
size will need to take into account the image resolution and bit depth.

For example, a full screen with a resolution of 1920 × 1080 pixels and a bit depth
of 24 requires 1920 × 1080 × 24 bits = 49 766 400 bits for the full screen image.

Dividing by 8 gives us 6 220 800 bytes (equivalent to 6.222 MB using the SI
units or 5.933 MiB using IEE units). An image which does not occupy the full
screen will obviously result in a smaller file size.

EXTENSION
ACTIVITY 1C

Calculate the file
size needed to store
the screen image on
a UHD television.

457591_01_CI_AS & A_Level_CS_001-026.indd 17 25/04/19 9:11 AM

18

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Note: when saving a bit-map image, it is important to include a file header; this will
contain items such as file type (.bmp or .jpeg), file size, image resolution, bit depth
(usually 1, 8, 16, 24 or 32), any type of data compression employed and so on.

1.2.2 Vector graphics
Vector graphics are images that use 2D points to describe lines and curves and
their properties that are grouped to form geometric shapes. Vector graphics
can be designed using computer aided design (CAD) software or using an
application which uses a drawing canvas on the screen. See Figure 1.4.

A vector graphic will contain a drawing list (included in a file header) that is
made up of

» the command used for each object that makes up the graphic image
» the attributes that define the properties that make up each object (for

example consider the ellipse of the robot’s mouth – this will need the
position of the two centres, the radius from centres, the thickness and style
of each line, the line colour and any fill colour used)

» the relative position of each object will also need to be included
» the dimensions of each object are not defined, but the relative positions of

objects to each other in the final graphic need to be defined; this means
that scaling up the vector graphic image will result in no loss of quality.

When printing out vector graphics it is usually necessary to first convert it into
a bit-map image to match the format of most printers.

Comparison between vector graphics and bit-map images

Vector graphic images Bit-map images
made up of geometric shapes which
require definition/attributes

made up of tiny pixels of different colours

to alter/edit the design, it is necessary
to change each of the geometric shapes

possible to alter/edit each of the pixels to
change the design of the image

they do not require large file size since
it is made up of simple geometric shapes

because of the use of pixels (which give very
accurate designs), the file size is very large

because the number of geometric shapes
is limited, vector graphics are not
usually very realistic

since images are built up pixel by pixel, the
final image is usually very realistic

file formats are usually .svg, .cgm, .odg file formats are usually .jpeg, .bmp, .png

▲ Table 1.8 Comparison between vector graphics and bit-map images

It is now worth considering whether a vector graphic or a bit-map image would
be the best choice for a given application. When deciding which is the better
method, we should consider the following:
» Does the image need to be resized? If so, a vector graphic could be the best

option.
» Does the image need to be drawn to scale? Again, a vector graphic is

probably the best option.
» Does the image need to look real? Usually bit-map images look more realistic

than vector graphics.
» Are there file restrictions? If so, it is important to consider whether vector

graphic images can be used; if not, it would be necessary to consider the
image resolution of a bit-map image to ensure the file size is not too large.

▲ Figure 1.4 Drawing of a
robot made up of a number
of geometric shapes

457591_01_CI_AS & A_Level_CS_001-026.indd 18 25/04/19 9:11 AM

19

1

1.2
M

ultim
edia

For example, when designing a logo for a company or composing an ‘exploded
diagram’ of a car engine, vector graphics are the best choice.

However, when modifying photographs using photo software, the best method
is to use bit-map images.

1.2.3 Sound files
Sound requires a medium in which to travel through (it cannot travel in a
vacuum). This is because it is transmitted by causing oscillations of particles
within the medium. The human ear picks up these oscillations (changes in air
pressure) and interprets them as sound. Each sound wave has a frequency and
wavelength; the amplitude specifies the loudness of the sound.

period

high frequency wave

Time

Pr
es

su
re

period

low frequency wave

Time

Pr
es

su
re

▲ Figure 1.5 High and low frequency wave signals

Sound is an analogue value; this needs to be digitised in order to store sound
in a computer. This is done using an analogue to digital converter (ADC). If
the sound is to be used as a music file, it is often filtered first to remove
higher frequencies and lower frequencies which are outside the range of human
hearing. To convert the analogue data to digital, the sound waves are sampled
at a given time rate. The amplitude of the sound cannot be measured precisely,
so approximate values are stored.

Time intervals

So
u

n
d

 a
m

p
lit

u
d

e

0
10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9

10

▲ Figure 1.6 A sound wave

457591_01_CI_AS & A_Level_CS_001-026.indd 19 25/04/19 9:11 AM

20

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Figure 1.6 shows a sound wave. The x-axis shows the time intervals when
the sound was sampled (0 to 20), and the y-axis shows the amplitude of the
sampled sound (the amplitudes above 10 and below 0 are filtered out in this
example).

At time interval 1, the approximate amplitude is 9; at time interval 2, the
approximate amplitude is 4, and so on for all 20 time intervals. Because the
amplitude range in Figure 1.6 is 0 to 10, then 4 binary bits can be used to
represent each amplitude value (for example, 9 would be represented by the
binary value 1001). Increasing the number of possible values used to represent
sound amplitude also increases the accuracy of the sampled sound (for
example, using a range of 0 to 127 gives a much more accurate representation
of the sound sample than using a range of, for example, 0 to 10). This is known
as the sampling resolution (also known as the bit depth).

Sampling rate is the number of sound samples taken per second. The higher
the sampling rate and/or sampling resolution, the greater the file size. For
example, a 16-bit sampling resolution is used when recording CDs to give better
sound quality.

So, how is sampling used to record a sound clip?
» The amplitude of the sound wave is first determined at set time intervals

(the sampling rate).
» This gives an approximate representation of the sound wave.
» The sound wave is then encoded as a series of binary digits.

Using a higher sampling rate or larger resolution will result in a more faithful
representation of the original sound source.

Pros Cons
larger dynamic range produces larger file size

better sound quality takes longer to transmit/download sound files

less sound distortion requires greater processing power

▲ Table 1.9 The pros and cons of using a larger sampling resolution when recording sound

Recorded sound is often edited using software. Common features of such
software include the ability to

» edit the start/stop times and duration of a sample
» extract and save (or delete) part of a sample
» alter the frequency and amplitude of a sample
» fade in and fade out
» mix and/or merge multiple sound tracks or sources
» combine various sound sources together and alter their properties
» remove ‘noise’ to enhance one sound wave in a multiple of waves (for

example, to identify and extract one person’s voice out of a group of people)
» convert between different audio formats.

1.2.4 Video
This section considers the use of video and extends beyond the syllabus. While
this is not specifically mentioned in the syllabus, it has been included here
for completeness. Many specialist video cameras exist. However, most digital
cameras, smart phones and tablets are also capable of taking moving images by
‘stitching’ a number of still photos (frames) together. They are often referred to
as DV (digital video) cameras; they store compressed photo frames at a speed
of 25 MB per second – this is known as motion JPEG.

457591_01_CI_AS & A_Level_CS_001-026.indd 20 25/04/19 9:11 AM

21

1

1.3
File com

pression

In both single frame and video versions, the camera picks up the light from
the image and turns it into an electronic signal using light-sensitive sensors.
In the case of the DV cameras, these signals are automatically converted into a
compressed digital file format.

When recording video, the frame rate refers to the number of frames recorded
per second.

1.3 File compression
Key terms
Lossless file compression – file compression method
where the original file can be restored following
decompression.
Lossy file compression – file compression method
where parts of the original file cannot be recovered
during decompression, so some of the original detail
is lost.
JPEG – Joint Photographic Expert Group – a form of
lossy file compression based on the inability of the eye
to spot certain colour changes and hues.
MP3/MP4 files – file compression method used for
music and multimedia files.

Audio compression – method used to reduce the size of
a sound file using perceptual music shaping.
Perceptual music shaping – method where sounds
outside the normal range of hearing of humans, for
example, are eliminated from the music file during
compression.
Bit rate – number of bits per second that can be
transmitted over a network. It is a measure of the data
transfer rate over a digital telecoms network.
Run length encoding (RLE) – a lossless file
compression technique used to reduce text and photo
files in particular.

It is often necessary to reduce the file size of a file to either save storage
space or to reduce the time taken to stream or transmit data from one device
to another (see Chapter 2). The two most common forms of file compression are
lossless file compression and lossy file compression.

Lossless file compression
With this technique, all the data from the original file can be reconstructed
when the file is uncompressed again. This is particularly important for files
where loss of any data would be disastrous (such as a spreadsheet file of
important results).

Lossy file compression
With this technique, the file compression algorithm eliminates unnecessary
data (as with MP3 and JPEG formats, for example).

Lossless file compression is designed to lose none of the original detail from
the file (such as Run-Length Encoding (RLE) which is covered later in this
chapter). Lossy file compression usually results in some loss of detail when
compared to the original; it is usually impossible to reconstruct the original
file. The algorithms used in the lossy technique have to decide which parts of
the file are important (and need to be kept) and which parts can be discarded.

We will now consider file compression techniques applied to multimedia files.

1.3.1 File compression applications
MPEG-3 (MP3) and MPEG-4 (MP4)
MPEG-3 (MP3) uses technology known as audio compression to convert
music and other sounds into an MP3 file format. Essentially, this compression
technology will reduce the size of a normal music file by about 90%. For example,
an 80 MB music file on a CD can be reduced to 8 MB using MP3 technology.

457591_01_CI_AS & A_Level_CS_001-026.indd 21 25/04/19 9:11 AM

22

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

MP3 files are used in MP3 players, computers or mobile phones. Music files
can be downloaded or streamed from the internet in a compressed format, or
CD files can be converted to MP3 format. While streamed or MP3 music quality
can never match the ‘full’ version found on a CD, the quality is satisfactory for
most purposes.

But how can the original music file be reduced by 90% while still retaining
most of the music quality? This is done using file compression algorithms that
use perceptual music shaping.

Perceptual music shaping removes certain sounds. For example

» frequencies that are outside the human hearing range
» if two sounds are played at the same time, only the louder one can be heard

by the ear, so the softer sound is eliminated.

This means that certain parts of the music can be removed without affecting
the quality too much. MP3 files use what is known as a lossy format, since part
of the original file is lost following the compression algorithm. This means that
the original file cannot be put back together again. However, even the quality
of MP3 files can be different, since it depends on the bit rate – this refers
to the number of bits per second used when creating the file. Bit rates are
between 80 and 320 kilobits per second; usually 200 kilobits or higher gives a
sound quality close to a normal CD.

MPEG-4 (MP4) files are slightly different to MP3 files. This format allows the
storage of multimedia files rather than just sound. Music, videos, photos and
animation can all be stored in the MP4 format. Videos, for example, could
be streamed over the internet using the MP4 format without losing any real
discernible quality (see Chapter 2 for notes on video streaming).

Photographic (bit-map) images
When a photographic file is compressed, both the file size and quality of image
are reduced. A common file format for images is JPEG, which uses lossy file
compression. Once the image is subjected to the JPEG compression algorithm,
a new file is formed and the original file can no longer be constructed. A JPEG
will reduce the raw bit-map image by a factor of between 5 and 15, depending
on the quality of the original.

Vector graphics can also undergo some form of file compression. Scalable
vector graphics (.svg) are defined in XML text files which, therefore, allows
them to be compressed.

Run-length encoding (RLE)
Run-length encoding (RLE) can be used to compress a number of different file
formats.

It is a form of lossless/reversible file compression that reduces the size of a
string of adjacent, identical data (such as repeated colours in an image).

A repeating string is encoded into two values.

The first value represents the number of identical data items (such as
characters) in the run. The second value represents the code of the data item
(such as ASCII code if it is a keyboard character).

RLE is only effective where there is a long run of repeated units/bits.

EXTENSION
ACTIVITY 1D

Find out how file
compression can
be applied to a
photograph without
noticeably reducing
its quality. Compare
this to run-length
encoding (RLE),
described below.

457591_01_CI_AS & A_Level_CS_001-026.indd 22 25/04/19 9:11 AM

23

1

1.3
File com

pression

Using RLE on text data
Consider the text string ‘aaaaabbbbccddddd’.

Assuming each character requires 1 byte, then this string needs 16 bytes. If we
assume ASCII code is being used, then the string can be coded as follows:

a a a a a b b b b c c d d d d d

05 97 04 98 02 99 05 100

This means we have five characters with ASCII code 97, four characters with
ASCII code 98, two characters with ASCII code 99, and five characters with
ASCII code 100. Assuming each number in the second row requires 1 byte of
memory, the RLE code will need 8 bytes. This is half the original file size.

One issue occurs with a string such as ‘cdcdcdcdcd’, where compression is not
very effective. To cope with this we use a flag. A flag preceding data indicates
that what follows are the number of repeating units (for example, 255 05 97
where 255 is the flag and the other two numbers indicate that there are five
items with ASCII code 97). When a flag is not used, the next byte(s) are taken
with their face value and a run of 1 (for example, 01 99 means one character
with ASCII code 99 follows).

Consider this example:

String aaaaaaaa bbbbbbbbbb c d c d c d eeeeeeee

Code 08 97 10 98 01 99 01 100 01 99 01 100 01 99 01 100 08 101

The original string contains 32 characters and would occupy 32 bytes of
storage.

The coded version contains 18 values and would require 18 bytes of storage.

Introducing a flag (255 in this case) produces:

255 08 97 255 10 98 99 100 99 100 99 100 255 08 101

This has 15 values and would, therefore, require 15 bytes of storage. This is a
reduction in file size of about 53%.

Using RLE with images
Black and white images
Figure 1.7 shows the letter F in a grid where each square requires 1 byte of
storage. A white square has a value 1 and a black square a value of 0.

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 1

1 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 0 0 0 0 0 1 1

1 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1

In compressed RLE format this becomes:

9W 6B 2W 1B 7W 1B 7W 5B 3W 1B 7W
1B 7W 1B 6W

Using W = 1 and B = 0 we get:

91 60 21 10 71 10 71 50 31 10 71 10 71
10 61

▲ Figure 1.7 Using RLE with a black and white image

The 8 × 8 grid would need 64 bytes; the compressed RLE format has 30 values,
and therefore needs only 30 bytes to store the image.

457591_01_CI_AS & A_Level_CS_001-026.indd 23 25/04/19 9:11 AM

24

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

Coloured images
Figure 1.8 shows an object in four colours. Each colour is made up of red, green
and blue (RGB) according to the code on the right.

0 0 0

2 5 5 2 5 5 2 5 5

2 5 5 0 0

0 2 5 5 0

Square
colour

Red Green Blue
Components

▲ Figure 1.8 Using RLE with a coloured image

This produces the following data:

2 0 0 0 4 0 255 0 3 0 0 0 6 255 255 255 1 0 0 0 2 0 255 0 4 255 0 0 4 0 255 0 1
255 255 255 2 255 0 0 1 255 255 255 4 0 255 0 4 255 0 0 4 0 255 0 4 255 255 255
2 0 255 0 1 0 0 0 2 255 255 255 2 255 0 0 2 255 255 255 3 0 0 0 4 0 255 0 2 0 0 0

The original image (8 × 8 square) would need 3 bytes per square (to include
all three RGB values). Therefore, the uncompressed file for this image is
8 × 8 × 3 = 192 bytes.

The RLE code has 92 values, which means the compressed file will be 92 bytes
in size. This gives a file reduction of about 52%. It should be noted that the
file reductions in reality will not be as large as this due to other data which
needs to be stored with the compressed file (such as a file header).

1.3.2 General methods of compressing files
All the above file compression techniques are excellent for very specific
types of file. However, it is also worth considering some general methods
to reduce the size of a file without the need to use lossy or lossless file
compression:

reduce the sampling rate used

reduce the sampling resolution

reduce the frame rate

movie files

image files

crop the image

decrease the colour/bit depth

reduce the image resolution

▲ Figure 1.9 General methods of compressing files

457591_01_CI_AS & A_Level_CS_001-026.indd 24 25/04/19 9:11 AM

25

1

1.3
File com

pression

ACTIVITY 1I

1 a) What is meant by lossless and lossy file compression?
b) Give an example of a lossless file format and an example of a lossy file

format.
2 a) Describe how music picked up by a microphone is turned into a

digitised music file in a computer.
b) Explain why it is often necessary to compress stored music files.

Describe how the music quality is essentially retained.
3 a) What is meant by run length encoding?

b) Describe how RLE compresses a file. Give an example in your
description.

4 a) Describe the differences between bit-map images and vector graphics.
b) A software designer needs to incorporate images into her software to

add realism.
 Explain what she needs to consider when deciding between using

bit-map images and vector graphics in her software.

 1 a) The following bytes represent binary integers using the two’s complement
form. State the equivalent denary values.

i) 0 1 0 0 1 1 1 1 [1]

ii) 1 0 0 1 1 0 1 0 [1]

iii) Write the integer −53 in two’s complement form. [1]

iv) Write the maximum possible range of numbers using the two’s
complement form of an 8-bit binary number.

 Give your answers in denary. [2]

b) i) Write the denary integer 798 in binary-coded decimal (BCD) format. [1]

ii) Write the denary number that is represented by the following BCD number.

1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0

 [2]

c) Give one use of binary-coded decimal system. [1]

2 A software developer is using a microphone and a sound editing app to
collect and edit sounds for his new game.

 When collecting sounds, the software developer can decide on the sampling
resolution he wishes to use.

a) i) State what is meant by sampling resolution. [1]

ii) Describe how sampling resolution will affect how accurate the
stored digitised sound will be. [2]

b) The software developer will include images in his new game.

i) Explain the term image resolution. [1]

ii) The software developer is using 16-colour bit-map images.

 State the number of bits required to encode data for one pixel of his
image. [1]

iii) One of the images is 16 384 pixels wide and 512 pixels high.

 The developer decides to save it as a 256-colour bit-map image.

 Calculate the size of the image file in gibibytes. [3]

End of chapter
questions

➔

457591_01_CI_AS & A_Level_CS_001-026.indd 25 25/04/19 9:11 AM

26

1

1
In

fo
r

m
at

Io
n

 r
e

p
r

e
se

n
ta

tI
o

n
 a

n
d

 m
u

lt
Im

e
d

Ia

iv) The bit-map image will contain a header.

 State two items you would expect to see in the header. [2]

v) Give three features you would expect to see in the sound editing app. [3]

3 The editor of a movie is finalising the music score. They will send the final
version of the score to the movie producer by email attachment.

a) Describe how sampling is used to record the music sound clips. [3]

b) The music sound clips need to undergo some form of data compression
before the music editor can send them via email.

 Identify the type of compression, lossy or lossless, they should use.

 Give a justification for your answer. [3]

c) One method of data compression is known as run length encoding (RLE).

i) Explain what is meant by RLE. [3]

ii) Show how RLE would be used to produce a compressed file for
the image below.

 Write down the data you would expect to see in the RLE compressed
format (you may assume that the grey squares have a code value of 85
and the white squares have a code value of 255). [4]

4 a) Write the denary numbers 60, 27 and −27 in 8-bit binary two’s
complement form. [3]

b) Show the result of the addition 60 + 27 using 8-bit binary two’s
complement form. Show all of your working. [2]

c) Show the result of the subtraction 60 − 27 using 8-bit binary two’s
complement form. [2]

d) Give the result of the following addition.

 0 1 0 1 1 0 0 1

 +

 0 1 1 0 0 0 0 1

 Explain why the expected result is not obtained. [2]

5 a) Carry out 0.52 + 0.83 using binary-coded decimal (BCD). Show all
of your working. [4]

b) i) Define the term hexadecimal. [1]

ii) Give two uses of the hexadecimal system. [2]

iii) Convert the following binary number into hexadecimal. [2]

 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0

6 a) Convert the denary number 95 into binary coded decimal (BCD). [1]

b) Using two’s complement, carry out the binary subtraction:

 0 0 1 0 0 0 1 1 – 0 1 0 0 0 1 0 0

 and convert your answer into denary. [3]

c) Convert the denary number 506 into hexadecimal. [1]

457591_01_CI_AS & A_Level_CS_001-026.indd 26 25/04/19 9:11 AM

27

	 2	 Communication

In this chapter, you will learn about

★ the benefits of networking devices
★ the characteristics of a local area network (LAN) and a wide area

network (WAN)
★ client-server and peer-to-peer models in networking
★ the differences between thin client and thick client
★ bus, star, mesh and hybrid networking topologies
★ public and private cloud computing
★ the differences between wired and wireless networks

(including types of cable and wireless technologies)
★ the hardware required to support a LAN
★ the function of routers
★ Ethernet and how data collisions are detected and avoided
★ bit streaming (including differences between real-time and

on-demand streaming of data)
★ the differences between the internet and the World Wide Web (WWW)
★ the hardware needed to support the internet
★ IP addresses (including IPv4, IPv6, public IP addresses and private IP

addresses)
★ the use of the uniform resource locator (URL) to locate a resource on

the world wide web
★ the role of the domain name service (DNS).

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these three questions before you read this
chapter.
1	 a) Explain the following terms associated

with devices connected to a network/
internet.
i) MAC address
ii) IP address

b) Explain the main differences between a
MAC address and an IP address and why it
is necessary to have both associated with a
device connected to the internet.

c) What is the purpose of an internet service
provider (ISP)?

d) Explain the function of an internet browser.
In what ways is this different to an ISP?

2 A college is about to form a network from
20 stand-alone computers. Describe the
hardware and software that might be needed
to produce this simple computer network.

3	 a) Mobile phones and tablets can be
configured to access the internet from any
location. Describe the software required to
allow this to happen.

b) Describe some of the benefits and
drawbacks (when compared to a desktop
PC) of accessing website pages from a
mobile phone.

2.1
N

etw
orking

457591_02_CI_AS & A_Level_CS_027-067.indd 27 4/30/19 7:45 AM

28

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Key	terms
ARPAnet – Advanced Research Projects Agency Network.

WAN – wide area network (network covering a very
large geographical area).

LAN – local area network (network covering a small
area such as a single building).

MAN – metropolitan area network (network which
is larger than a LAN but smaller than a WAN, which
can cover several buildings in a single city, such as a
university campus).

File	server – a server on a network where central files
and other data are stored. They can be accessed by a
user logged onto the network.

Hub – hardware used to connect together a number
of devices to form a LAN that directs incoming data
packets to all devices on the network (LAN).

Switch – hardware used to connect together a number
of devices to form a LAN that directs incoming data
packets to a specific destination address only.

Router – device which enables data packets to be
routed between different networks (for example, can
join LANs to form a WAN).

Modem – modulator demodulator. A device that
converts digital data to analogue data (to be sent down
a telephone wire); conversely it also converts analogue
data to digital data (which a computer can process).

WLAN – wireless LAN.

(W)AP – (wireless) access point which allows a device
to access a LAN without a wired connection.

PAN – network that is centred around a person or their
workspace.

Client-server – network that uses separate dedicated
servers and specific client workstations. All client
computers are connected to the dedicated servers.

Spread	spectrum	technology – wideband radio
frequency with a range of 30 to 50 metres.

Node – device connected to a network (it can be a
computer, storage device or peripheral device).

Peer-to-peer – network in which each node can share
its files with all the other nodes. Each node has its own
data and there is no central server.

Thin	client – device that needs access to the internet for
it to work and depends on a more powerful computer
for processing.

Thick	client – device which can work both off line and
on line and is able to do some processing even if not
connected to a network/internet.

Bus	network	topology	– network using single central
cable in which all devices are connected to this cable so
data can only travel in one direction and only one device
is allowed to transmit at a time.

Packet – message/data sent over a network from node to
node (packets include the address of the node sending the
packet, the address of the packet recipient and the actual
data – this is covered in greater depth in Chapter 14).
Star	network	topology – a network that uses a central
hub/switch with all devices connected to this central
hub/switch so all data packets are directed through this
central hub/switch.
Mesh	network	topology – interlinked computers/
devices, which use routing logic so data packets are
sent from sending stations to receiving stations only by
the shortest route.
Hybrid	network – network made up of a combination of
other network topologies.
Cloud	storage – method of data storage where data is
stored on off-site servers.
Data	redundancy – situation in which the same data is
stored on several servers in case of maintenance or repair.
Wi-Fi – wireless connectivity that uses radio waves,
microwaves. Implements IEEE 802.11 protocols.
Bluetooth – wireless connectivity that uses radio waves
in the 2.45 GHz frequency band.
Spread	spectrum	frequency	hopping – a method of
transmitting radio signals in which a device picks one of
79 channels at random. If the chosen channel is already
in use, it randomly chooses another channel. It has a
range up to 100 metres.
WPAN – wireless personal area network. A local wireless
network which connects together devices in very close
proximity (such as in a user’s house); typical devices
would be a laptop, smartphone, tablet and printer.
Twisted	pair	cable – type of cable in which two wires
of a single circuit are twisted together. Several twisted
pairs make up a single cable.
Coaxial	cable – cable made up of central copper core,
insulation, copper mesh and outer insulation.
Fibre	optic	cable	– cable made up of glass fibre wires
which use pulses of light (rather than electricity) to
transmit data.
Gateway – device that connects LANs which use
different protocols.
Repeater – device used to boost a signal on both wired
and wireless networks.
Repeating	hubs – network devices which are a hybrid of
hub and repeater unit.
Bridge – device that connects LANs which use the
same protocols.
Softmodem – abbreviation for software modem; a
software-based modem that uses minimal hardware.
NIC – network interface card. These cards allow
devices to connect to a network/internet (usually
associated with a MAC address set at the factory).

2.1	 Networking

457591_02_CI_AS & A_Level_CS_027-067.indd 28 4/30/19 7:45 AM

29

2.1
N

etw
orking

2

2.1.1	 Networking devices
One of the earliest forms of networking, circa 1970 in the USA, was the
Advanced Research Projects Agency Network (ARPAnet). This was an early
form of packet switching wide area network (WAN) connecting a number of
large computers in the Department of Defense. It later expanded to include
university computers. It is generally agreed that ARPAnet developed the
technical platform for what we now call the internet. Figure 2.1 shows the vast
area this network covered.

LBL

AMES AMES LLL
T

T

T

T

T

T

T

T T

T T

T

T

T
T

T

T
T

T

SRI
UTAH

XEROX

DOCB

GWC

ILLINOS

RML

LONDON

NORSAR
ABERDEEN

ETACARPA

MITRE

SDAC

BELVOIR

NBS

HARVARD

BBN
BBN

CCA
MIT-MAC

MIT-IPC
LINCOLN

CASE

RADC

CARNEGIE
STANFORD TYMSHARE

FNWC

HAWAI

UCSD
UCSB

UCLA

SDC

RAND
USC

USC–ISI

▲ Figure	2.1 ARPAnet coverage, 1973

As personal computers developed through the 1980s, a local network began to
appear. This became known as a local area network (LAN). LANs tended to
be much smaller networks (usually inside one building) connecting a number
of computers and shared devices, such as printers. WANs typically consist of
a number of LANs connected via public communications networks (such as
telephone lines or satellites). Because a WAN consists of LANs joined together,
it may be a private network, and passwords and user IDs are required to access
it. This is in contrast to the internet which is a vast number of decentralised
networks and computers which have a common point of access, so that anyone
with access to the internet can connect to the computers on these networks.
This makes it intrinsically different to a WAN.

WNIC – wireless network interface cards/controllers.

Ethernet – protocol IEEE 802.3 used by many wired LANs.

Conflict – situation in which two devices have the same
IP address.

Broadcast – communication where pieces of data are
sent from sender to receiver.

Collision – situation in which two messages/data from
different sources are trying to transmit along the same
data channel.

CSMA/CD – carrier sense multiple access with collision
detection – a method used to detect collisions and
resolve the issue.

Bit	streaming – contiguous sequence of digital bits sent
over a network/internet.

Buffering – store which holds data temporarily.

Bit	rate	– number of bits per second that can be
transmitted over a network. It is a measure of the data
transfer rate over a digital telecoms network.

On	demand	(bit	streaming) – system that allows
users to stream video or music files from a
central server as and when required without
having to save the files on their own computer/
tablet/phone.

Real-time	(bit	streaming)	– system in which an event
is captured by camera (and microphone) connected
to a computer and sent to a server where the data
is encoded. The user can access the data ‘as it
happens’ live.

457591_02_CI_AS & A_Level_CS_027-067.indd 29 4/30/19 7:45 AM

30

2

	
2	

C
o

m
m

u
n

iC
at

io
n

In recent years, another type of network – a metropolitan area network
(MAN) – has emerged. MANs are larger than LANs as they can connect together
many small computer networks (e.g LANs) housed in different buildings within
a city (for example, a university campus). MANs are restricted in their size
geographically to, for example, a single city.

In contrast, WANs can cover a much larger geographical area, such as a country
or a continent. For example, a multi-national company may connect a number
of smaller networks together (e.g. LANs or MANs) to form a world-wide WAN.
This is covered in more detail later.

Here are some of the main benefits of networking computers and devices
(rather than using a number of stand-alone computers):

» Devices, such as printers, can be shared (thus reducing costs).
» Licences to run software on networks are often far cheaper than buying

licences for an equivalent number of stand-alone computers.
» Users can share files and data.
» Access to reliable data that comes from a central source, such as a file

server.
» Data and files can be backed up centrally at the end of each day.
» Users can communicate using email and instant messaging.
» A network manager can oversee the network and, for example, apply access

rights to certain files, or restrict access to external networks, such as the
internet.

There are also a number of drawbacks:

» Cabling and servers can be an expensive initial outlay.
» Managing a large network can be a complex and difficult task.
» A breakdown of devices, such as the file servers, can affect the whole network.
» Malware and hacking can affect entire networks (particularly if a LAN is part

of a much larger WAN), although firewalls do afford some protection in this
respect.

Networked computers
Networked computers form an infrastructure which enables internal and external
communications to take place. The infrastructure includes the following:

Hardware
» LAN cards
» routers
» switches
» wireless routers
» cabling

Software
» operation and management of the network
» operation of firewalls
» security applications/utilities

Services
» DSL
» satellite communication channels
» wireless protocols
» IP addressing.

457591_02_CI_AS & A_Level_CS_027-067.indd 30 4/30/19 7:45 AM

31

2.1
N

etw
orking

2
Networks can be categorised as private or public.

Private networks are owned by a single company or organisation (they are
often LANs or intranets with restricted user access, for example, passwords and
user ids are required to join the network); the companies are responsible for the
purchase of their own equipment and software, maintenance of the network and
the hiring and training of staff.

Public networks are owned by a communications carrier company (such as
a telecoms company); many organisations will use the network and there are
usually no specific password requirements to enter the network – but sub-
networks may be under security management.

WANs and LANs
Local area networks (LANs)
LANs are usually contained within one building, or within a small geographical
area. A typical LAN consists of a number of computers and devices (such as
printers) connected to hubs or switches. One of the hubs or switches is usually
connected to a router and/or modem to allow the LAN to connect to the
internet or become part of a wide area network (WAN).

Wireless LANs (WLANs)
Wireless LANs (WLANs) are similar to LANs but there are no wires or cables.
In other words, they provide wireless network communications over fairly
short distances (up to 100 metres) using radio or infrared signals instead of
using cables.

Devices, known as wireless access points (WAPs), are connected into
the wired network at fixed locations. Because of the limited range, most
commercial LANs (such as those on a college campus or at an airport) need
several WAPs to permit uninterrupted wireless communications. The WAPs use
either spread spectrum technology (which is a wideband radio frequency with
a range from a few metres to 100 metres) or infrared (which has a very short
range of about 1 to 2 metres and is easily blocked, and therefore has limited
use; see Section 2.1.5 Wired and wireless networking).

The WAP receives and transmits data between the WLAN and the wired network
structure. End users access the WLAN through wireless LAN adapters which are
built into the devices or as a plug in module.

WAP

WAP

WAP

▲	Figure	2.2 Wireless local area networks (WLAN)

457591_02_CI_AS & A_Level_CS_027-067.indd 31 4/30/19 7:45 AM

32

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Wide area networks (WANs)
Wide area networks (WANs) are used when computers or networks are situated
a long distance from each other (for example, they may be in different cities or
on different continents). If a number of LANs are joined together using a router
or modem, they can form a WAN. The network of automated teller machines
(ATMs) used by banks is one of the most common examples of the use of a WAN.

Because of the long distances between devices, WANs usually make use of a
public communications network (such as telephone lines or satellites), but they
can use dedicated or leased communication lines which can be less expensive
and more secure (less risk of hacking, for example).

A typical WAN will consist of end systems and intermediate systems, as shown
in Figure 2.3. 1, 3, 7 and 10 are known as end systems, and the remainder are
known as intermediate systems. The distance between each system can be
considerable, especially if the WAN is run by a multi-national company.

1 2 3

4 5 6

8 97 10

▲ Figure	2.3 A typical WAN

The following is used as a guide for deciding the ‘size’ of a network:

WAN: 100 km to over 1000 km

MAN: 1 km to 100 km

LAN: 10 m to 1000 m

PAN: 1 m to 10 m (this is not a commonly used term – it means personal area
network; in other words, a home system)

2.1.2	 Client-server and peer-to-peer networking models
We will consider two types of networking models, client-server and peer-to-peer.

Client-server model

server

internet
clients

Client sends a request to the
server and the server finds

the requested data and
sends it back to the client.

A system administrator manages
 the whole network; clients are
connected through a network;

allows data access even
over large distances.

▲ Figure	2.4 Client-server model

457591_02_CI_AS & A_Level_CS_027-067.indd 32 4/30/19 7:45 AM

33

2.1
N

etw
orking

2
» The client-server model uses separate dedicated servers and specific

client workstations; client computers will be connected to the server
computer(s).

» Users are able to access most of the files, which are stored on dedicated
servers.

» The server dictates which users are able to access which files. (Note: sharing
of data is the most important part of the client-server model; with peer-to-
peer, connectivity is the most important aspect.)

» The client-server model allows the installation of software onto a client’s
computer.

» The model uses central security databases which control access to the
shared resources. (Note: passwords and user IDs are required to log into the
network.)

» Once a user is logged into the system, they will have access to only those
resources (such as a printer) and files assigned to them by the network
administrator, so offers greater security than peer-to-peer networks.

» Client-server networks can be as large as you want them to be and they are
much easier to scale up than peer-to-peer networks.

» A central server looks after the storing, delivery and sending of emails.
» This model offers the most stable system, for example, if someone deletes

a shared resource from the server, the nightly back-up would restore the
deleted resource (this is different in peer-to-peer – see later).

» Client-server networks can become bottlenecked if there are several client
requests at the same time.

» In the client-server model, a file server is used and is responsible for
– central storage and management of data files, thus enabling other

network users to access files
– allowing users to share information without the need for offline devices

(such as a memory stick)
– allowing any computer to be configured as the host machine and act as

the file server (note that the server could be a storage device (such as
SSD or HDD) that could also serve as a remote storage device for other
computers, thus allowing them to access this device as if it were a local
storage device attached to their computer).

Examples of use of client-server network model
A company/user would choose a client-server network model for the following
reasons.

» The company/user has a large user-base (however, it should be pointed out
that this type of network model may still be used by a small group of people
who are doing independent projects but need to have sharing of data and
access to data outside the group).

» Access to network resources needs to be properly controlled.
» There is a need for good network security.
» The company requires its data to be free from accidental loss (in other

words, data needs to be backed up at a central location).

An example is the company Amazon; it uses the client-server network
model. The user front-end is updated every time a user logs on to the
Amazon website and a large server architecture handles items such as order
processing, billing customers and data security; none of the Amazon users are

457591_02_CI_AS & A_Level_CS_027-067.indd 33 4/30/19 7:45 AM

34

2

	
2	

C
o

m
m

u
n

iC
at

io
n

aware that other customers are using the website at the same time – there is
no interaction between users and server since they are kept entirely separate
at all times.

Peer-to-peer model

node

▲ Figure	2.5 Peer-to-peer model

On a peer-to-peer network, each node joins the network to allow

» the provision of services to all other network users; the services available
are listed on a nominated ‘look up’ computer – when a node requests a
service, the ‘look up’ computer is contacted to find out which of the other
network nodes can provide the required service

» other users on the network to simply access data from another node
» communication with other peers connected to the network
» peers to be both suppliers and consumers (unlike the client-server

model where consumers and resources are kept entirely separate from
each other)

» peers to participate as equals on the network (again this is different
to the client-server model where a webserver and client have different
responsibilities).

The peer-to-peer model does not have a central server. Each of the nodes
(workstations) on the network can share its files with all the other nodes, and
each of the nodes will have its own data.

Because there is no central storage, there is no requirement to authenticate
users.

This model is used in scenarios where no more than 10 nodes are required (such
as a small business) where it is relatively easy for users to be in contact with
each other on a regular basis. More than 10 nodes leads to performance and
management issues.

457591_02_CI_AS & A_Level_CS_027-067.indd 34 4/30/19 7:45 AM

35

2.1
N

etw
orking

2
Peer-to-peer offers little data security since there is no central security system.
This means it is impossible to know who is authorised to share certain data.
Users can create their own network node share point which is the only real
security aspect since this gives them some kind of control. However, there are
no real authentication procedures.

Examples of peer-to-peer network model
A user would choose the peer-to-peer network model for one or more of
following reasons:

» The network of users is fairly small.
» There is no need for robust security.
» They require workstation-based applications rather than being server-based.

An example would be a small business where there is frequent user
interaction and there is no need to have the features of a client-server
network (for example, a builder with five associated workers located in their
own homes who only need access to each other’s diaries, previous jobs,
skills-base and so on – when the builder is commissioned to do a job they
need to access each other’s computer to check on who is available and who
has the appropriate skills).

Thin clients and thick clients
The client-server model offers thin clients and thick clients. These can often
refer to both hardware and software.

Thin client
A thin client is heavily dependent on having access to a server to allow
constant access to files and to allow applications to run uninterrupted. A
thin client can either be a device or software which needs to be connected
to a powerful computer or server to allow processing to take place (the
computer or server could be on the internet or could be part of a LAN/MAN/
WAN network). The thin client will not work unless it is connected at all
times to the computer or server. A software example would be a web browser
which has very limited functions unless it is connected to a server. Other
examples include mobile phone apps which need constant access to a server
to work. A hardware example is a POS terminal at a supermarket that needs
constant access to a server to find prices, charge customers and to do any
significant processing.

Thick client

A thick client can either be a device or software that can work offline or
online; it is still able to do some processing whether it is connected to a server
or not. A thick client can either be connected to a LAN/MAN/WAN, virtual
network, the internet or a cloud computing server. A hardware example is a
normal PC/laptop/tablet since it would have its own storage (HDD or SSD),
RAM and operating system which means it is capable of operating effectively
online or offline. An example of software is a computer game which can run
independently on a user’s computer, but can also connect to an online server to
allow gamers to play and communicate with each other.

Table 2.1 highlights some of the pros and cons of using thick client or thin
client hardware.

457591_02_CI_AS & A_Level_CS_027-067.indd 35 4/30/19 7:45 AM

36

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Pros Cons

Th
ic

k
cl

ie
nt

s

n more robust (device can carry out
processing even when not connected
to server)

n clients have more control (they can
store their own programs and data/
files)

n less secure (relies on clients to keep
their own data secure)

n each client needs to update data and
software individually

n data integrity issues, since many
clients access the same data which
can lead to inconsistencies

Th
in

 c
lie

nt
s

n less expensive to expand (low-powered
and cheap devices can be used)

n all devices are linked to a server (data
updates and new software installation
done centrally)

n server can offer protection against
hacking and malware

n high reliance on the server; if the
server goes down or there is a break
in the communication link then the
devices cannot work

n despite cheaper hardware, the start-up
costs are generally higher than for
thick clients

▲	Table	2.1 Summary of pros and cons of thick and thin client hardware

Table 2.2 highlights the differences between thick and thin client software.

Thin client software Thick client software

n always relies on a connection to a remote
server or computer for it to work

n can run some of the features of the
software even when not connected
to a server

n requires very few local resources (such as
SSD, RAM memory or computer processing
time)

n relies heavily on local resources

n relies on a good, stable and fast network
connection for it to work

n more tolerant of a slow network
connection

n data is stored on a remote server or
computer

n can store data on local resources
such as HDD or SSD

▲	Table	2.2 Differences between thin and thick client software

ACTIVITY	2A

1 A company has 20 employees working on the development of a new type
of battery for use in mobile phones. Decide which type of network model
(client-server or peer-to-peer) would be most suitable. Give reasons for
your choice.

2 Another company is made up of a group of financial consultants who
advise other companies on financial matters, such as taxation and
exporting overseas. Decide which type of network model (client-server or
peer-to-peer) would be most suitable. Give reasons for your choice.

2.1.3	 Network topologies
There are many ways to connect computers to make complex networks. Here we
will consider

» bus networks
» star networks
» mesh networks
» hybrid networks.

457591_02_CI_AS & A_Level_CS_027-067.indd 36 4/30/19 7:45 AM

37

2.1
N

etw
orking

2
Bus networks
A bus network topology uses a single central cable to which all computers and
devices are connected. It is easy to expand and requires little cabling. Data can
only travel in one direction; if data is being sent between devices then other
devices cannot transmit. Terminators are needed at each end to prevent signal
reflection (bounce). Bus networks are typically peer-to-peer. The disadvantages
of a bus network include:

» If the main cable fails, the whole network goes down.
» The performance of the network deteriorates under heavy loading.
» The network is not secure since each packet passes through every node.

The advantages of a bus network include:

» Even if one node fails, the remainder of the network continues to function.
» It is easy to increase the size of the network by adding additional nodes.

▲	Figure	2.6 Bus network topology

In bus network topology, each node looks at each packet and determines
whether or not the address of the recipient in the package matches the node
address. If so, the node accepts the packet; if not, the packet is ignored.

These are most suitable for situations with a small number of devices with light
traffic occurring. For example, a small company or an office environment.

Star networks
A star network topology uses a central hub/switch and each computer/device
is connected to the hub/switch. Data going from host to host is directed
through the central hub/switch. Each computer/device has its own dedicated
connection to the central node (hub/switch) – any type of network cable can
be used for the connections (see Section 2.1.5 Wired and wireless networking).
This type of network is typically a client-server. The disadvantages of a star
network include:

» The initial installation costs are high.
» If the central hub/switch fails, then the whole network goes down.

The advantages of a star network include:

» Data collisions are greatly reduced due to the topology.
» It is a more secure network since security methods can be applied to the

central node and packets only travel to nodes with the correct address.
» It is easy to improve by simply installing an upgraded hub.
» If one of the connections is broken it only affects one of the nodes.

How packets are handled depends on whether the central node is a switch or
a hub. If it is a hub, all the packets will be sent to every device/node on the
star network – if the address in the packet matches that of the node, it will be
accepted; otherwise, it is ignored (this is similar to the way packets are handled on
a bus network). If the central node is a switch, packets will only be sent to nodes
where the address matches the recipient address in the packet. The latter is clearly
more secure, since only nodes intended to see the packet will receive it.

hub/switch

▲ Figure	2.7 Star network
topology

457591_02_CI_AS & A_Level_CS_027-067.indd 37 4/30/19 7:45 AM

38

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Star networks are useful for evolving networks where devices are frequently
added or removed. They are well suited to applications where there is heavy
data traffic.

Mesh networks
There are two types of mesh network topologies: routing and flooding.
Routing works by giving the nodes routing logic (in other words, they act like
a router) so that data is directed to its destination by the shortest route and
can be re-routed if one of the nodes in the route has failed. Flooding simply
sends the data via all the nodes and uses no routing logic, which can lead to
unnecessary loading on the network. It is a type of peer-to-peer network, but
is fundamentally different. The disadvantages of a mesh network include:

» A large amount of cabling is needed, which is expensive and time
consuming.

» Set-up and maintenance is difficult and complex.

The advantages of a mesh network include:

» It is easy to identify where faults on the network have occurred.
» Any broken links in the network do not affect the other nodes.
» Good privacy and security, since packets travel along dedicated routes.
» The network is relatively easy to expand.

▲	Figure	2.8 Mesh network topology

There are a number of applications worth considering here:

» The internet and WANs/MANs are typical uses of mesh networks.
» Many examples include industrial monitoring and control where sensors are

set up in mesh design and feedback to a control system which is part of the
mesh, for example

– medical monitoring of patients in a hospital
– electronics interconnectivity (for example, systems that link large screen

televisions, DVDs, set top boxes, and so on); each device will be in a
location forming the mesh

– modern vehicles use wireless mesh network technology to enable the
monitoring and control of many of the components in the vehicle.

457591_02_CI_AS & A_Level_CS_027-067.indd 38 4/30/19 7:45 AM

39

2.1
N

etw
orking

2
EXTENSION	ACTIVITY	2A

There appear to be similarities between the peer-to-peer network model
and mesh network model.

Describe the differences between the two models.

Hybrid networks
A hybrid network is a mixture of two or more different topologies (bus and star,
bus and mesh, and so on). The main advantages and disadvantages depend on
which types of network are used to make up the hybrid network, but an additional
disadvantage is that they can be very complex to install, configure and maintain.

Additional advantages include:

» They can handle large volumes of traffic.
» It is easy to identify where a network fault has occurred.
» They are very well suited to the creation of larger networks.

▲	Figure	2.9 Hybrid bus and star network

Note that the handling of packets in hybrid networks will depend on which of
the above topologies are used to make up the hybrid structure.

One of the typical applications of hybrid networks is illustrated by the
following example, involving three hotel chains, A, B and C.

Suppose hotel chain A uses a bus network, hotel chain B uses a star network
and hotel chain C uses a mesh network.

At some point, all three hotel chains are taken over by another company. By
using hybrid network technology, all three hotel chains can be connected
together even though they are each using a different type of network. The
system can also be expanded easily without affecting any of the existing
hotels using the network.

There are many other examples; you might want to explore the various
applications for each type of network topology.

2.1.4	 Public and private cloud computing
Cloud storage is a method of data storage where data is stored on offsite
servers – the physical storage covers hundreds of servers in many locations.

457591_02_CI_AS & A_Level_CS_027-067.indd 39 4/30/19 7:45 AM

40

2

	
2	

C
o

m
m

u
n

iC
at

io
n

The same data is stored on more than one server in case of maintenance or
repair, allowing clients to access data at any time. This is known as data
redundancy. The physical environment is owned and managed by a hosting
company.

There are three common systems, public cloud, private cloud and hybrid cloud.

Public cloud is a storage environment where the customer/client and cloud
storage provider are different companies.

Private cloud is storage provided by a dedicated environment behind a
company firewall. Customer/client and cloud storage provider are integrated
and operate as a single entity.

Hybrid cloud is a combination of private and public clouds. Some data resides
in the private cloud and less sensitive/less commercial data can be accessed
from a public cloud storage provider.

Instead of saving data on a local hard disk or other storage device, a user can
save their data ‘in the cloud’. The pros and cons of using cloud storage are
shown in Table 2.3.

Pros of using cloud storage Cons of using cloud storage

n customer/client files stored on the cloud can be
accessed at any time from any device anywhere in the
world provided internet access is available

n no need for a customer/client to carry an external
storage device with them, or use the same computer to
store and retrieve information

n provides the user with remote back-up of data to aid
data loss and disaster recovery

n recovers data if a customer/client has a hard disk or
back-up device failure

n offers almost unlimited storage capacity

n if the customer/client has a slow or unstable internet
connection, they would have problems accessing or
downloading their data/files

n costs can be high if large storage capacity is required
n expensive to pay for high download/upload data

transfer limits with the customer/client internet service
provider (ISP)

n potential failure of the cloud storage company is
possible – this poses a risk of loss of all back-up data

▲	Table	2.3 Summary of pros and cons of using cloud storage

Data security when using cloud storage
Companies that transfer vast amounts of confidential data from their own
systems to a cloud service provider are effectively relinquishing control of their
own data security. This raises a number of questions:

» What physical security exists regarding the building where the data is housed?
» How good is the cloud service provider’s resistance to natural disasters or

power cuts?
» What safeguards exist regarding personnel who work for the cloud service

company? Can they use their authorisation codes to access confidential data
for monetary purposes?

Potential data loss when using cloud storage
There is a risk that important and irreplaceable data could be lost from the
cloud storage facilities. Actions from hackers (gaining access to accounts or
pharming attacks, for example) could lead to loss or corruption of data. Users
need to be certain sufficient safeguards exist to overcome these risks.

The following breaches of security involving some of the largest cloud service
providers suggest why some people are nervous of using cloud storage for
important files:

457591_02_CI_AS & A_Level_CS_027-067.indd 40 4/30/19 7:45 AM

41

2.1
N

etw
orking

2
» The XEN security threat, which forced several cloud operators to reboot

all their cloud servers, was caused by a problem in the XEN hypervisor
(a hypervisor is a piece of computer software, firmware or hardware that
creates and runs virtual machines).

» A large cloud service provider permanently lost data during a routine
back-up procedure.

» The celebrity photos cloud hacking scandal, in which more than 100 private
photos of celebrities were leaked. Hackers had gained access to a number of
cloud accounts, which then enabled them to publish the photos on social
networks and sell them to publishing companies.

» In 2016, the National Electoral Institute of Mexico suffered a cloud security
breach in which 93 million voter registrations, stored on a central database,
were compromised and became publicly available to everyone. To make
matters worse, much of the information on this database was also linked to
an Amazon cloud server outside Mexico.

Cloud software
Cloud storage is, of course, only one aspect of cloud computing. Other areas
covered by cloud computing include databases, networking, software and
analytical services using the internet.

Here we will consider cloud software – you can research for yourself how
databases and analytical services are provided by cloud computing services.

Software applications can be delivered to a user’s computer on demand using
cloud computing services. The cloud provider will both host and manage
software applications – this will include maintenance, software upgrades and
security for a monthly fee. A user will simply connect to the internet (using
their web browser on a computer or tablet or mobile phone) and contact their
cloud services supplier. The cloud services supplier will connect them to the
software application they require.

The main advantages are that the software will be fully tested and it does not
need to reside on the user’s device. However, the user can still use the software
even if the internet connection is lost. Data will simply be stored on the
local device and then data will be uploaded or downloaded once the internet
connection is restored.

Cloud-based applications can, therefore, perform tasks on a local device. This
makes them fundamentally different to web-based apps which need an internet
connection at all times.

2.1.5	 Wired and wireless networking
Wireless
Wi-Fi and Bluetooth
Both Wi-Fi and Bluetooth offer wireless communication between devices. They
both use electromagnetic radiation as the carrier of data transmission.

Bluetooth sends and receives radio waves in a band of 79 different frequencies
(known as channels). These are all centred on a 2.45 GHz frequency. Devices
using Bluetooth automatically detect and connect to each other, but they do
not interfere with other devices since each communicating pair uses a different
channel (from the 79 options).

When a device wants to communicate, it picks one of the 79 channels at
random. If the channel is already being used, it randomly picks another

457591_02_CI_AS & A_Level_CS_027-067.indd 41 4/30/19 7:45 AM

42

2

	
2	

C
o

m
m

u
n

iC
at

io
n

EXTENSION	ACTIVITY	2B

Frequency and wavelength are linked by the equation:

f = c
λ

where f = frequency (m), λ = wavelength (Hz), and
c = velocity of light (3 × 108 m/s).

Confirm the frequency values in Table 2.3 using the wavelengths given.

Table 2.5 compares radio waves, microwaves and infrared. (Please note: the
‘>’ symbol in the table means ‘better than’).

Bandwidth infrared > microwaves > radio waves

(infrared has the largest bandwidth)

Penetration radio waves > microwaves > infrared

(radio waves have the best penetration)

Attenuation radio waves > microwaves > infrared

(radio waves have the best attenuation)

▲ Table	2.5 Comparison of radio waves, microwaves and infrared

channel. This is known as spread spectrum frequency hopping. To further
minimise the risks of interference with other devices, the communication pairs
constantly change the frequencies (channels) they are using (several times a
second). Bluetooth creates a secure wireless personal area network (WPAN)
based on key encryption.

Bluetooth is useful when

» transferring data between two or more devices which are less than 30
metres apart

» the speed of data transmission is not critical
» using low bandwidth applications (for example, sending music files from a

mobile phone to a headset).

As mentioned earlier in the chapter, Wi-Fi also uses spread spectrum
technology. However, Wi-Fi is best suited to operating full-scale networks,
since it offers much faster data transfer rates, better range and better security
than Bluetooth. A Wi-Fi-enabled device (such as a computer or smart phone)
can access, for example, the internet wirelessly at any wireless access point
(WAP) or ‘hot spot’ up to 100 metres away.

As mentioned, wireless connectivity uses electromagnetic radiation: radio
waves, microwaves or infrared. The scale of frequency and wavelength of
magnetic radiation is shown in Table 2.4.

radio waves microwaves infrared visible light ultra violet X-rays gamma rays

Wave length (m) 102 10−1 10−3 10−5 10−7 10−9 10−11

Frequency (Hz) 3 MHz 3 GHz 300 GHz 30 THz 3 PHz 300 PHz 30 EHz

▲ Table	2.4 Frequency and wavelength of magnetic radiation

457591_02_CI_AS & A_Level_CS_027-067.indd 42 4/30/19 7:45 AM

43

2.1
N

etw
orking

2
Penetration measures the ability of the electromagnetic radiation to pass
through different media. Attenuation is the reduction in amplitude of a
signal (infrared has low attenuation because it can be affected by, for
example, rain or internal walls). Thus, we would expect infrared to be
suitable for indoor use only; the fact that it can be stopped by walls is
seen as an advantage since this stops the signal causing interference
elsewhere. Microwaves seem to offer the best compromise, since they
support reasonable bandwidth, and have reasonable penetration and
attenuation.

Additional notes on the use of satellites
The use of microwaves and radio waves was previously mentioned as a method
for allowing Wi-Fi connectivity in networks. These methods are perfectly
satisfactory for short distances – the electromagnetic waves carry the signals –
but the curvature of the Earth prevents such methods transmitting data
globally.

A B

The electromagnetic radiation from antenna
A is transmitted but is unable to reach antenna
B due to the Earth’s curvature.

▲	Figure	2.10

To overcome this problem, we need to adopt satellite technology:

A B

The signal is boosted by the satellite
orbiting Earth and is then beamed back
to Earth and picked up by antenna B.

The signal is beamed from
antenna A to a satellite
orbiting Earth.

▲	Figure	2.11

The communication between antennae and satellite is carried out by radio
waves or microwave frequencies. Different frequency bands are used to
prevent signal interference and to allow networks spread across the Earth to
communicate through use of satellites (many satellites orbit the Earth – refer
to Section 2.2.2 for more information on use of satellite technology with
networks).

Wired
There are three main types of cable used in wired networks (see Figure 2.12).

457591_02_CI_AS & A_Level_CS_027-067.indd 43 4/30/19 7:45 AM

44

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Twisted pair cables
Twisted pair cables are the most common cable type used in LANs. However,
of the three types of cable, it has the lowest data transfer rate and suffers
the most from external interference (such as electromagnetic radiation).
However, it is the cheapest option. There are two types of twisted pair cable:
unshielded and shielded. Unshielded is used by residential users. Shielded is
used commercially (the cable contains a thin metal foil jacket which cancels
out some of the external interference).

Coaxial cables
Coaxial cables are the most commonly used cables in MANs and by cable
television companies. The cost of coaxial cables is higher than twisted pair
cables but they offer a better data transfer rate and are affected less by
external interference. Coaxial cables also have about 80 times the transmission
capacity of twisted pair. Coaxial suffers from the greatest signal attenuation,
but offers the best anti-jamming capabilities.

Fibre optic cables
Fibre optic cables are most commonly used to send data over long distances,
because they offer the best data transfer rate, the smallest signal attenuation
and have a very high resistance to external interference. The main drawback is
the high cost. Unlike the other two types of cable, fibre optics use pulses of
light rather than pulses of electricity to transmit data. They have about 26 000
times the transmission capacity of twisted pair cables.

Fibre optic cables can be single- or multi-mode.

Single-mode uses a single mode light source and has a smaller central
core, which results in less light reflection along the cable. This allows the
data to travel faster and further, making them a good choice for CATV and
telecommunications.

Multi core allows for a multi-mode light source; the construction causes higher
light reflections in the core, so they work best over shorter distances (in a LAN,
for example).

Wired versus wireless
Numerous factors should be considered when deciding if a network should use
wired or wireless connectivity, as listed below.

pairs

conductor

insulator

cable jacket

1

2

3

4 copper mesh copper wire

outside insulation insulation

optical fibres

flexible buffer
tube
water blocking
binders
ripcord

jacket

Aramid strength
yarns

▲	Figure	2.12 (left to right) Twisted pair cable, coaxial cable, fibre optic cable

457591_02_CI_AS & A_Level_CS_027-067.indd 44 4/30/19 7:45 AM

45

2.1
N

etw
orking

2
Wireless networking
» It is easier to expand networks and is not necessary to connect devices

using cables.
» Devices have increased mobility, provided they are within range of the WAPs.
» Increased chance of interference from external sources.
» Data is less secure than with wired systems; it is easier to intercept

radio waves and microwaves than cables so it is essential to protect data
transmissions using encryption (such as WEP, WPA2).

» Data transmission rate is slower than wired networks (although it is improving).
» Signals can be stopped by thick walls (in old houses, for example) and signal

strength can vary, or ‘drop out’.

Wired networking
» More reliable and stable network (wireless connectivity is often subjected to

interference).
» Data transfer rates tend to be faster with no ‘dead spots’.
» Tends to be cheaper overall, in spite of the need to buy and install cable.
» Devices are not mobile; they must be close enough to allow for cable

connections.
» Lots of wires can lead to tripping hazards, overheating of connections

(potential fire risk) and disconnection of cables during routine office cleaning.

Other considerations
» If mobile phones and tablets are connected to the network, it will need to

offer Wi-Fi or Bluetooth capability.
» There may be regulations in some countries regarding which wireless

transmission frequencies can be used legally.
» Permission from authorities and land owners may be required before laying

cables underground.
» There are numerous competing signals in the air around us; it is important to

consider this when deciding whether to go for wired or wireless connectivity.

2.1.6	 Hardware requirements of networks
In this section we will consider a number of hardware items needed to form a
LAN network and the hardware needed to form a WAN. Please note

» the concept of the WLAN and the hardware needed to support it have been
covered in earlier sections

» the hardware items hub and gateway have been included in this section to
complete the picture; however, knowledge of these two items is not required
by the syllabus.

Hub
Hubs are hardware devices that can have a number of devices or computers
connected to them.

computer

computer

computer

computer

data packet sent to network

HUB

data sent out to all
computers on the

network

▲	Figure	2.13 Hub flow diagram

457591_02_CI_AS & A_Level_CS_027-067.indd 45 4/30/19 7:45 AM

46

2

	
2	

C
o

m
m

u
n

iC
at

io
n

They are often used to connect a number of devices to form a local area
network (LAN), for example a star network (see Section 2.1.3). A hub’s
main task is to take any data packet (a group of data being transmitted)
received at one of its ports and then send the data to every computer
in the network. Using hubs is not a very secure method of data distribution
and is also wasteful of bandwidth. Note that hubs can be wired or
wireless devices.

Switch
Switches are similar to hubs, but are more efficient in the way they distribute
the data packet. As with hubs, they connect a number of devices or computers
together to form a LAN (for example, a star network).

However, unlike a hub, the switch checks the data packet received and works
out its destination address (or addresses) and sends the data to the appropriate
computer(s) only. This makes using a switch a more secure and efficient way of
distributing data.

computer

computer

computer

computer

data packet sent to network

SWITCH

data sent out only to
the appropriate

computers on the
network

▲	Figure	2.14 Switch flow diagram

Each device or computer on a network has a media access control (MAC) address
which identifies it uniquely. Data packets sent to switches will have a MAC
address identifying the source of the data and additional addresses identifying
each device which should receive the data. Note that switches can be wired or
wireless devices.

Repeater
When signals are sent over long distances, they suffer attenuation or signal
loss. Repeaters are devices which are added to transmission systems to
boost the signal so it can travel greater distances. They amplify signals on
both analogue (copper cable) and digital (fibre optic cable) communication
links.

Repeaters can also be used on wireless systems. These are used to boost
signals to prevent any ‘dead spots’ in the Wi-Fi zone. These devices plug into
electric wall sockets and send out booster signals. They are termed non-logical
devices because they will boost all signals which have been detected; they are
not selective.

Sometimes, hubs contain repeaters and are known as repeating hubs. All
signals fed to the hub are boosted before being sent to all devices in the
network, thus increasing the operational range.

There are two main drawbacks of repeating hubs:

1 They have only one collision domain. When the signals are boosted and
then broadcast to devices, any collisions which might occur are not resolved
there and then. One way to deal with this problem is to make use of

457591_02_CI_AS & A_Level_CS_027-067.indd 46 4/30/19 7:45 AM

47

2.1
N

etw
orking

2
jamming signals – while this manages the collisions, it also reduces
network performance since it involves repeated broadcasts as the
collisions are resolved.

2 The devices are referred to as unmanaged since they are unable to manage
delivery paths and also security in the network.

Bridge
Bridges are devices that connect one LAN to another LAN that uses the same
protocol (communication rules). They are often used to connect together
different parts of a LAN so that they can function as a single LAN.

BRIDGE

computer

server

computer

computer

SWITCH

LAN

computer

server

computer

computer

SWITCH

LAN

▲	Figure	2.15 Bridge flow diagram

Bridges are used to interconnect LANs (or parts of LANs), since sending out
every data packet to all possible destinations would quickly flood larger
networks with unnecessary traffic. For this reason, a router is used to
communicate with other networks, such as the internet. Note that bridges can
be wired or wireless devices.

Router
Routers enable data packets to be routed between the different networks for
example, to join a LAN to a WAN. The router takes data transmitted in one
format from a network (which is using a particular protocol) and converts the
data to a protocol and format understood by another network, thereby allowing
them to communicate via the router. We can, therefore, summarise the role of
routers as follows. Routers

» restrict broadcasts to a LAN
» act as a default gateway
» can perform protocol translation; for example, allowing a wired network

to communicate with a wireless (Wi-Fi) network – the router can take an
Ethernet data packet, remove the Ethernet part and put the IP address into
a frame recognised by the wireless protocol (in other words, it is performing
a protocol conversion)

» can move data between networks
» can calculate the best route to a network destination address.

457591_02_CI_AS & A_Level_CS_027-067.indd 47 4/30/19 7:45 AM

48

2

	
2	

C
o

m
m

u
n

iC
at

io
n

ROUTER

computer

server

computer

computer

SWITCH

LAN
LAN or WAN

internet

▲	Figure	2.16	Router flow diagram

Broadband routers sit behind a firewall. The firewall protects the computers
on a network. The router’s main function is to transmit internet and
transmission protocols between two networks and allow private networks to
be connected.

The router inspects the data package sent to it from any computer on any
of the networks connected to it. Since every computer on the same network
has the same part of an internet protocol (IP) address, the router is able to
send the data packet to the appropriate switch and it will then be delivered
using the MAC destination address (see next section). If the MAC address
doesn’t match any device on the network, it passes on to another switch on
the same network until the appropriate device is found. Routers can be wired
or wireless devices.

Gateway
A gateway is a network point (or node) that acts as an entrance to another
network. It is a key point for data on its way to or from other networks. It
can be used to connect two or more dissimilar LANs (LANs using different
protocols). The gateway converts data packets from one protocol to another.
Gateways can also act as routers, firewalls or servers – in other words, any
device that allows traffic to flow in and out of the networks. Gateways can be
wired or wireless devices.

All networks have boundaries so that all communication within the network is
conducted using devices such as switches or routers. If a network node needs
to communicate outside its network, it needs to use a gateway.

Modems
Modern computers work with digital data, whereas many of the public
communication channels still only allow analogue data transmission. To allow
the transmission of digital data over analogue communication channels we
need to use a modem (modulator demodulator). This device converts digital
data to analogue data. It also does the reverse and converts data received
over the analogue network into digital data which can be understood by the
computer.

Wireless modems transmit data in a modulated form to allow several
simultaneous wireless communications to take place without interfering
with each other. A modem will connect to the public infrastructure (cable,
telephone, fibre-optics or satellite) and will supply the user with a standard
Ethernet output which allows connection to a router, thus enabling an internet
connection to occur.

457591_02_CI_AS & A_Level_CS_027-067.indd 48 4/30/19 7:45 AM

49

2.1
N

etw
orking

2
modem router

laptop

PC

smart phone

tablet

internet

▲	Figure	2.17	Wireless modem flow diagram

While the router will allow the creation of a network in a home, for
example, the modem allows for the connection to the external networks
(for example, the internet). Routers and modems can be combined into one
unit; these devices have the electronics and software to provide both router
and modem functions.

Another example of a modem is a softmodem (software modem), which uses
minimal hardware and uses software that runs on the host computer. The
computer’s resources (mainly the processor and RAM) replace the hardware of a
conventional modem.

Table 2.6 shows the differences between routers and gateways.

Routers Gateways

n forward packets of data from one
network to another; routers read each
incoming packet of data and decide
where to forward the packet

n convert one protocol (or data format)
to another protocol (format) used in a
different network

n can route traffic from one network to
another network

n convert data packets from one protocol
to another; they act as an entry and
exit point to networks

n can be used to join LANs together to
form a WAN (sometimes called brouters)
and also to connect a number of LANs
to the internet

n translate from one protocol to another

n offer additional features such as
dynamic routing (ability to forward
data by different routes)

n do not support dynamic routing

▲ Table	2.6 Differences between routers and gateways

EXTENSION	ACTIVITY	2C

Draw a diagram to show how a gateway could be used to connect together
three LANs which are using different protocols. Include all the hardware
devices and cables needed.

Network interface card (NIC)
A network interface card (NIC) is needed to allow a device to connect to
a network (such as the internet). It is usually part of the device hardware
and frequently contains the MAC address generated at the manufacturing
stage.

457591_02_CI_AS & A_Level_CS_027-067.indd 49 4/30/19 7:45 AM

50

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Wireless network interface card/controller (WNIC)
Wireless network interface cards/controllers (WNICs) are the same as the
more ordinary NICs, in that they are used to connect devices to the internet
or other networks. They use an antenna to communicate with networks via
microwaves and normally simply plug into a USB port or can be internal
integrated circuit plug in.

As with usual NICs, they work on layers 1 and 2 of the OSI model (refer to
Chapter 14 for more details). WNICs work in two modes.

Infrastructure mode requires WAPs (wireless access points) and all the data
is transferred using the WAP and hub/switch; all the wireless devices connect
to the WAP and must use the same security and authentication techniques.

Ad hoc mode does not need to have access to WAPs; it is possible for devices
to interface with each other directly.

2.1.7	 Ethernet
Ethernet is a protocol used by many wired LANs. It was adopted as a standard
by the Institute of Electrical and Electronic Engineers (IEEE) and Ethernet is
also known as IEEE 802.3. A network using Ethernet is made up of:

» a node (any device on the LAN)
» medium (path used by the LAN devices, such as an Ethernet cable)
» frame (data is transmitted in frames which are made up of source address

and destination address – the addresses are often the MAC address).

Conflicts
When using Ethernet, it is possible for IP addresses to conflict; this could show
up as a warning such as that in Figure 2.19.

▲	Figure	2.19 IP address conflict error

This may occur if devices on the same network have been given the same
IP address; without a unique IP address it is not possible to connect to a
network. This is most likely to occur on a LAN where dynamic IP addresses
may have been used. Dynamic IP addresses are temporary and may have been
assigned to a device on the network, unfortunately, another device using
static IP addresses may already have the same IP address. This can be resolved
by re-starting the router. Any dynamic IP addresses will be re-assigned, which
could resolve the issue.

Collisions
Ethernet supports broadcast transmission (communications where pieces of
data are sent from sender to receiver) and are used to send messages to all
devices connected to a LAN. The risk is that two messages using the same data

▲	Figure	2.18 Wireless
network interface
card/controller (WNIC)

457591_02_CI_AS & A_Level_CS_027-067.indd 50 4/30/19 7:45 AM

51

2.1
N

etw
orking

2
channel could be sent at the same time, leading to a collision. Carrier sense
multiple access with collision detection (CSMA/CD) was developed to try and
resolve this issue. Collison detection depends on simple physics: when a frame
is sent it causes a voltage change on the Ethernet cable. When a collision is
detected, a node stops transmitting a frame and transmits a ‘jam’ signal and
then waits for a random time interval before trying to resend the frame.
CSMA/CD protocol will define the random time period for a device to wait
before trying again.

Figure 2.20 shows how data collisions can be dealt with using transmission
counters (which keep track of how many times the collision detection routine
has been entered – there will a defined limit as part of the CSMA/CD protocol)
and random time periods.

A assemble
frame

is line
idle?

No

No

No

No

No

wait for
allocated time

Yes

Yes

Yes

Yes

Yes

A

start to send
frame

END

set transmission
counter = 1

collision
detected?

stop transmission and
send jam signal

increment transmission
counter

abort
transmission

max
transmission

counter?

wait for allocated time period
then re-start transmission

frame
sent?

continue to
send

another
frame?

▲	Figure	2.20 How data collisions can be dealt with using transmission counters

457591_02_CI_AS & A_Level_CS_027-067.indd 51 4/30/19 7:45 AM

52

2

	
2	

C
o

m
m

u
n

iC
at

io
n

EXTENSION	ACTIVITY	2D

Review Figure 2.20. As it stands, it is possible for an endless loop to be
established.

Suggest a modification to the flow diagram to ensure it terminates if there is
a problem with the data channel, or to prevent the data transmission holding
up the computer for an unacceptable time period.

2.1.8	 Bit streaming
Bit streaming is a contiguous sequence of digital bits sent over the internet
or a network that requires a high speed data communication link (such as
fast broadband). Since bit streaming often involves very large files (such as
video) it is necessary for the files to undergo some data compression before
transmission. It is also necessary to have some form of buffering to ensure
smooth playback of the media files.

The data transmission rate from the file server (containing the video, for
example) to the buffer must be greater than the rate at which data is
transmitted from buffer to media player. The larger the buffer, the better the
control over the bit rate being sent to the media player. The media player will
always check to ensure data lies between a minimum value (often referred to as
low water mark) and a maximum value (often referred to as a high water mark).
The difference between the two values is usually about 80% of the total buffer
capacity. The buffer is a temporary storage area of the computer.

source of
data stream

low high

buffer

media
player

bit streaming

from server

▲	Figure	2.21 Bit streaming

Table 2.7 shows the pros and cons of bit streaming.

Pros of bit streaming Cons of bit streaming

n no need to wait for a whole video or
music file to be downloaded before the
user can watch or listen

n no need to store large files on your
device

n allows video files and music files to be
played on demand (as required)

n no need for any specialist hardware
n affords piracy protection (more difficult

to copy streamed files than files stored
on a hard drive)

n cannot stream video or music files if
broadband connection is lost

n video or music files will pause to allow
the data being streamed to ‘catch up’ if
there is insufficient buffer capacity or
slow broadband connection

n streaming uses up a lot of bandwidth
n security risks associated with

downloading files from the internet
n copyright issues

▲ Table	2.7 Pros and cons of bit streaming

457591_02_CI_AS & A_Level_CS_027-067.indd 52 4/30/19 7:45 AM

53

2.1
N

etw
orking

2
Bit streaming can be either on demand or real time.

On demand
» Digital files stored on a server are converted to a bit streaming format

(encoding takes place and the encoded files are uploaded to a server).
» A link to the encoded video/music file is placed on the web server to be

downloaded.
» The user clicks on the link and the video/music file is downloaded in a

contiguous bit stream.
» Because it is on demand, the streamed video/music is broadcast to the user

as and when required.
» It is possible to pause, rewind and fast forward the video/music if required.

Real time
» An event is captured by camera and microphone and is sent to a computer.
» The video signal is converted (encoded) to a streaming media file.
» The encoded file is uploaded from the computer to the dedicated video

streaming server.
» The server sends the encoded live video to the user’s device.
» Since the video footage is live it is not possible to pause, rewind or fast

forward.

ACTIVITY	2B

1	 a) Explain the differences between LAN, MAN and WAN.
b) Give three of the benefits of networking computers.
c) Explain the following terms.

i) Thick client
ii) Thin client

2	 a) Draw diagrams to show the following network topologies.
i) Bus
ii) Star
iii) Mesh

b) Give one benefit and one drawback of using each type of network
topology.

3	 a) Explain the differences between public and private cloud computing.
b) Give two benefits of using cloud computing.
c) Give two drawbacks of using cloud computing.

4 You have been asked by a manager to write a report on whether a
LAN being set up in their new building should use wired or wireless
connectivity. The building has 20 floors.

 Explain your arguments for and against using both types of connectivity
and draw a conclusion to help the manager make their decision.

5	 a) What is meant by bit streaming?
b) Why is it necessary to use buffers whilst streaming a video from the

internet?
c) Explain the differences between on demand and real time bit streaming.

457591_02_CI_AS & A_Level_CS_027-067.indd 53 4/30/19 7:45 AM

54

2

	
2	

C
o

m
m

u
n

iC
at

io
n

2.2	 The internet

2.2.1	 The differences between the internet and the World
Wide Web

There are fundamental differences between the internet and the World Wide
Web (WWW).

Internet
» The internet is a massive network of networks (although, as explained in

Section 2.1.1, the internet is not a WAN) which are made up of various
computers and other electronic devices.

» It stands for interconnected network.
» The internet makes use of transmission control protocol (TCP)/internet

protocol (IP).

Key	terms
Internet – massive network of
networks, made up of computers and
other electronic devices; uses TCP/IP
communication protocols.

World	Wide	Web	(WWW) – collection
of multimedia web pages stored on
a website, which uses the internet to
access information from servers and
other computers.

HyperText	Mark-up	Language	(HTML) –
used to design web pages and to write
http(s) protocols, for example.

Uniform	resource	locator	(URL) –
specifies location of a web page (for
example, www.hoddereducation.co.uk).

Web	browser – software that connects
to DNS to locate IP addresses; interprets
web pages sent to a user’s computer so
that documents and multimedia can be
read or watched/listened to.

Internet	service	provider	(ISP) –
company which allows a user to connect
to the internet. They will usually charge a
monthly fee for the service they provide.

Public	switched	telephone	network	
(PSTN) – network used by traditional
telephones when making calls or when
sending faxes.

Voice	over	Internet	Protocol	(VoIP) –
converts voice and webcam images
into digital packages to be sent over the
internet.

Internet	protocol	(IP) – uses IPv4 or IPv6
to give addresses to devices connected
to the internet.

IPv4 – IP address format which uses
32 bits, such as 200.21.100.6.

Classless	inter-domain	routing	
(CIDR) – increases IPv4 flexibility by
adding a suffix to the IP address, such as
200.21.100.6/18.

IPv6 – newer IP address format
which uses 128 bits, such as
A8F0:7FFF:F0F1:F000:3DD0:
256A:22FF:AA00.

Zero	compression – way of reducing the
length of an IPv6 address by replacing
groups of zeroes by a double colon
(::); this can only be applied once to an
address to avoid ambiguity.

Sub-netting – practice of dividing
networks into two or more sub-networks.

Private	IP	address	– an IP address
reserved for internal network use behind
a router.

Public	IP	address – an IP address
allocated by the user’s ISP to identify the
location of their device on the internet.

Domain	name	service	(DNS) – (also
known as domain name system) gives
domain names for internet hosts and is
a system for finding IP addresses of a
domain name.

JavaScript® – object-orientated (or
scripting) programming language used
mainly on the web to enhance HTML
pages.

PHP	– hypertext processor; an HTML-
embedded scripting language used to
write web pages.

457591_02_CI_AS & A_Level_CS_027-067.indd 54 4/30/19 7:45 AM

http://www.hoddereducation.co.uk

55

2.2
The internet

2
World Wide Web (WWW)
» This is a collection of multimedia web pages and other documents which are

stored on websites.
» http(s) protocols are written using HyperText Mark-up Language (HTML).
» Uniform resource locators (URLs) specify the location of all web pages.
» Web resources are accessed by web browsers.
» The world wide web uses the internet to access information from servers and

other computers.

2.2.2	 Hardware and software needed to support
the internet

The fundamental requirements for connecting to the internet are

» a device (such as a computer, tablet or mobile phone)
» a telephone line connection or a mobile phone network connection

(however, it is possible that a tablet or mobile phone may connect to the
internet using a wireless router)

» a router (which can be wired or wireless) or router and modem
» an internet service provider (ISP) (combination of hardware and software)
» a web browser.

The telephone network system, public switched telephone network (PSTN),
is used to connect computers/devices and LANs between towns and cities.
Satellite technology is used to connect to other countries (see later).

In recent years, telephone lines have changed from copper cables to fibre optic
cables, which permits greater bandwidth and faster data transfer rates (and
less risk of data corruption from interference). Fibre optic telephone networks
are usually identified as ‘fast broadband’. As discussed earlier, high speed
broadband has allowed WLANs to be developed by using WAPs.

High speed communication links allow telephone and video calls to be made
using a computer and the internet. Telephone calls require either an internet-
enabled telephone connected to a computer (using a USB port) or external/
internal microphone and speakers. Video calls also require a webcam. When
using the internet to make a phone call, the user’s voice is converted to
digital packages using Voice over Internet Protocol (VoIP). Data is split into
packages (packet switching) and sent over the network via the fastest route.
Packet switching and circuit switching are covered in more detail in Chapter 14.

Comparison between PSTN and internet when making a phone call
Public switched telephone network (PSTN)
PSTN uses a standard telephone connected to a telephone line.

The telephone line connection is always open whether or not anybody is talking –
the link is not terminated until the receivers are replaced by both parties.

Telephone lines remain active even during a power cut; they have their own
power source.

Modern phones are digitised systems and use fibre optic cables (although
because of the way it works this is a big waste of capacity – a 10 minute phone
call will transmit about 10 MB of data).

Existing phone lines use circuit switching (when a phone call is made the
connection (circuit) is maintained throughout the duration of the call – this is
the basis of PSTN).

457591_02_CI_AS & A_Level_CS_027-067.indd 55 4/30/19 7:45 AM

56

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Phone calls using the internet
Phone calls using the internet use either an internet phone or microphone and
speakers (video calls also require a webcam).

The internet connection is only ‘live’ while data (sound/video image) is being
transmitted.

Voice over Internet Protocol (VoIP) converts sound to digital packages
(encoding) which can be sent over the internet.

VoIP uses packet switching; the networks simply send and retrieve data as it
is needed so there is no dedicated line, unlike PSTN. Data is routed through
thousands of possible pathways, allowing the fastest route to be determined.

The conversation (data) is split into data packages. Each packet contains at
least the sender’s address, receiver’s address and order number of packet – the
sending computer sends the data to its router which sends the packets to
another router, and so on. At the receiving end, the packets are reassembled
into the original state (see Chapter 14 for more details).

VoIP also carries out file compression to reduce the amount of data being
transmitted.

Because the link only exists while data is being transmitted, a typical 10
minute phone call may only contain about 3 minutes where people are talking;
thus only 3 MB of data is transmitted making it much more efficient than PSTN.

Cellular networks and satellites
Other devices, such as mobile phones, use the cellular network. Here, the
mobile phone providers act as the ISPs and the phones contain communication
software which allows them to access the telephone network and also permits
them to make an internet connection.

Satellites are an important part of all network communications that cover
vast distances. Due to the curvature of the Earth, the height of the satellite’s
orbit determines how much coverage it can give. Figure 2.22 shows how
satellites are classified according to how high they orbit in relation to the
Earth’s surface.

35 800 km

5000–12 000 km

500–2500 km

GEO

MEO

LEO

Geostationary Earth Orbit (GEO) provide long distance telephone and computer network communications;
orbital period = 24 hours

Medium Earth Orbit (MEO) used for GPS systems (about 10 MEO satellites are currently orbiting the Earth);
orbital period = 2 to 12 hours

Low Earth Orbit (LEO) used by the mobile phone networks (there are currently more than 100 LEO satellites
orbiting the Earth); orbital period = 80 mins to 2 hours

diagram not to scale

▲	Figure	2.22 Satellite classification

457591_02_CI_AS & A_Level_CS_027-067.indd 56 4/30/19 7:45 AM

57

2.2
The internet

2
Satellites have the advantage that they will always give complete coverage
and don’t suffer from signal attenuation to the same extent as underground/
undersea cables. It is also difficult to isolate and resolve faults in cables on
the sea bed.

2.2.3	 IP addresses
The internet is based on TCP/IP protocols. Protocols define the rules that must
be agreed by senders and receivers on the internet. Protocols can be divided
into TCP layers (see Chapter 14). We will first consider internet protocols (IP).

Internet protocols (IP)
IPv4 addressing
The most common type of addressing on the internet is IP version 4 (IPv4).
This is based on 32 bits giving 232 (4 294 967 296) possible addresses. The
32 bits are split into four groups of 8 bits (thus giving a range of 0 to 255).
For example, 254.0.128.77.

The system uses the group of bits to define network (netID) and network host
(hostID). The netID allows for initial transmission to be routed according to the
netID and then the hostID is looked at by the receiving network. Networks are
split into five different classes, as shown in Table 2.8 below.

Network
class

IPv4 range Number of
netID bits

Number of
hostID bits

Types of
network

A 0.0.0.0 to 127.255.255.255 8 24 very large

B 128.0.0.0 to 191.255.255.255 16 16 medium size

C 192.0.0.0 to 223.255.255.255 24 8 small networks

D 224.0.0.0 to 239.255.255.255 – – multi-cast

E 240.0.0.0 to 255.255.255.255 – – experimental

▲ Table	2.8 The five network classes

Consider the class C network IP address 190.15.25.240, which would be written
in binary as:

10111110 00001111 00011001 11110000

Here the network id is 190.15.25 and the host ID is 240.

Consider the class B network IP address 128.148.12.14, which would be written
in binary as:

10000000 10010100 00001100 00001110

Here the network ID is 128.148 and the host ID is 12.14 (made up of sub-net ID
12 and host ID of 14).

Consider the class A network IP address 29.68.0.43, which would be written in
binary as:

00011101 01000100 00000000 00101011

Here the network ID is 29 and the host ID is 68.0.43 (made up of sub-net ID
68.0 and host ID of 43).

457591_02_CI_AS & A_Level_CS_027-067.indd 57 4/30/19 7:45 AM

58

2

	
2	

C
o

m
m

u
n

iC
at

io
n

However, it soon became clear that this IPv4 system provides insufficient
address range. For example, a user with a medium sized network (class B) might
have 284 host machines and their class B licence allows them 216 (65534; note
the value is not 65536 since two values are not assigned). This means several of
the allocated host IDs will not be used, which is wasteful.

Classless inter-domain routing (CIDR) reduces this problem by increasing the
flexibility of the IPv4 system. A suffix is used, such as 192.30.250.00/18, which
means 18 bits will be used for the net ID and the last 14 bits will be used for
the host ID (rather than the normal 24 bits and 8 bits for a class C network).
The suffix clearly increases the flexibility regarding which bits represent the
net ID and which represent the host ID.

EXTENSION	ACTIVITY	2E

Network address translation (NAT) removes the need for each IP address to
be unique. Find out how it works.

IPv6 addressing
IPv6 addressing has been developed to overcome some of the problems
associated with IPv4. This system uses 128-bit addressing, which allows for
much more complex addressing structures. An IPv6 address is broken into
16-bit chunks and because of this, it adopts the hexadecimal notation. For
example:

A8FB:7A88:FFF0:0FFF:3D21:2085:66FB:F0FA

Note how a colon (:) rather than a decimal point (.) is used here.

It has been designed to allow the internet to grow in terms of number of hosts
and the potential amount of data traffic. IPv6 has benefits over IPv4, it

» has no need for NATs (network address translation)
» removes risk of private IP address collisions
» has built in authentication
» allows for more efficient routing.

Zero compression
IPv6 addresses can be quite long; but there is a way to shorten them using
zero compression. For example, 900B:3E4A:AE41:0000:0000:AFF7:DD44:F1FF
can be written as:

900B:3E4A:AE41::AFF7:DD44:F1FF

With the section 0000:0000 replaced by ::

The zero compression can only be applied ONCE to an IPv6 address, otherwise
it would be impossible to tell how many zeros were replaced on each occasion
where it was applied. For example, 8055:F2F2:0000:0000:FFF1:0000:0000:DD04
can be rewritten either as:

8055:F2F2::FFF1:0000:0000:DD04

or as:

8055:F2F2:0000:0000:FFF1::DD04

457591_02_CI_AS & A_Level_CS_027-067.indd 58 4/30/19 7:45 AM

59

2.2
The internet

2
8055:F2F2::FFF1::DD04 is not a legal way of compressing the original address –
we have no way of knowing whether the original address was

8055:F2F2:0000:FFF1:0000:0000:0000:DD04

or

8055:F2F2:0000:0000:0000:FFF1:0000:DD04

or

8055:F2F2:0000:0000:FFF1:0000:0000:DD04

It would, therefore, be regarded as ambiguous.

Sub-netting
CIDR is actually based on sub-netting and the two are similar in many ways.
Sub-netting divides a LAN into two or more smaller networks. This helps reduce
network traffic and can also hide the complexity of the overall network. Recall
that the IP address (using IPv4) is made up of the netID and hostID. Suppose
a university network has eight departments and has a netID of 192.200.20
(11000000.11001000.00010100). All of the devices on the university network
will be associated with this netID and can have hostID values from 00000001
to 1111110 (hostIDs containing all 0s or all 1s are forbidden). The university
network will look something like this:

internet

Admin and
finance

Humanities

Maths

Science

Arts

Engineering

Computing

Business

gateway

▲	Figure	2.23 An example of a university network

So, for example, the devices in the Admin and finance department might have
hostIDs of 1, 8, 240, 35, 67, 88, 134, and so on, with similar spreads for the
other seven departments.

It would be beneficial to organise the netIDs and hostIDs so that the network
was a lot less complex in nature. With sub-netting, the hostID is split as follows:

000 00000, where the first 3 bits are netID expansion and the last 5 bits are
the hostIDs.

457591_02_CI_AS & A_Level_CS_027-067.indd 59 4/30/19 7:45 AM

60

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Thus, we have eight sub-nets with the same range of hostIDs.

Department netID hostID range

Admin and finance 192.200.20.0 00001 to 11110

Humanities 192.200.20.1 00001 to 11110

Maths 192.200.20.2 00001 to 11110

Science 192.200.20.3 00001 to 11110

Arts 192.200.20.4 00001 to 11110

Engineering 192.200.20.5 00001 to 11110

Computing 192.200.20.6 00001 to 11110

Business 192.200.20.7 00001 to 11110

▲ Table	2.9

Admin and
finance

192.200.20.0

Humanities
192.200.20.1

Maths
192.200.20.2

Science
192.200.20.3

Arts
192.200.20.4

Engineering
192.200.20.5

Computing
192.200.20.6

Business
192.200.20.7

internet router

▲	Figure	2.24	An example of a university network with netIDs

The devices in the Admin and finance department will have IP addresses

192.200.20.000 00001 to 192.200.20.000 11110

The Humanities department will have IP addresses

192.200.20.001 00001 to 192.200.20.001 11110

And so on for the other departments.

To obtain the netID from the IP address we can apply the AND mask (recall
that 1 AND 1 = 1, 0 AND 0 = 0 or 1 AND 0 = 0). Thus, if a device has an IP
address of

11000000.11001000.00010100.011 00011

we can apply the AND mask

11111111.11111111.11111111.111 00000

which results in the netID value

11000000.11001000.00010100.011 00000 (or 192.200.20.03)

457591_02_CI_AS & A_Level_CS_027-067.indd 60 4/30/19 7:45 AM

61

2.2
The internet

2
This is the Science department. Consequently, the whole network is more
efficient (for the reasons stated above) and less complex. Compare this to
CIDR 192/200/20/0/27, which extends the size of the netID to 27 bits and has
a hostID of only 5 bits, but would not reduce the complexity of the network.

Private IP addresses and public IP addresses
Private IP addresses are reserved for internal use behind a router or other NAT
device. The following blocks are reserved for private IP addresses.

Class A 10.0.0.0 to 10.255.255.255 16 million possible addresses

Class B 172.16.0.0 to 172.31.255.255 1 million possible addresses

Class C 192.168.0.0 to 192.168.255.255 65 600 possible addresses

▲ Table	2.10

Private IP addresses (which are internal value only) allow for an entirely
separate set of addresses within a network. They allow access to the network
without taking up a public IP address space. However, devices using these
private IP addresses cannot be reached by internet users.

Public IP addresses are the ones allocated by a user’s ISP to identify the
location of their device. Devices using these IP addresses are accessible from
anybody using the internet. Public IP addresses are used by

» DNS servers
» network routers
» directly-controlled computers.

2.2.4	 Uniform resource service (URLs)
Web browsers are software that allow users to access and display web pages on
their screens. They interpret HTML sent from websites and display the results.
Web browsers use uniform resource locators (URL) to access websites; these are
represented by a set of four numbers, such as 109.108.158.1.

But it is much easier to type this into a browser using the following format:

protocol://website address/path/filename

Protocol is usually http or https

Website address is

» domain host (www)
» domain name (name of website)
» domain type (.com, .org, .net, .gov, and so on)
» (sometimes) a country code (.uk, .de, .cy, .br, and so on).

Path is the web page (if this is omitted then it is the root directory of the website)

Filename is the item from the web page

For example: http://www.hoddereducation.co.uk/computerscience

2.2.5	 Domain name service (DNS)
The domain name service (DNS) (also known as domain name system) gives domain
names for internet hosts and is a system for finding IP addresses of a domain name.
Domain names eliminate the need for a user to memorise IP addresses. The DNS
process involves converting a host name (such as www.hoddereducation.co.uk) into
an IP address the computer can understand (such as 107.162.140.19).

457591_02_CI_AS & A_Level_CS_027-067.indd 61 4/30/19 7:45 AM

http://www.hoddereducation.co.uk/computerscience
http://www.hoddereducation.co.uk

62

2

	
2	

C
o

m
m

u
n

iC
at

io
n

Often, DNS servers contain a database of URLs with the matching IP addresses.

DNS server (1)

computer

DNS server (2)

website server

23

5

4

1

▲	Figure	2.25	An example of the DNS process

① The user opens their web browser and types in the URL
(www.hoddereducation.co.uk) and the web browser asks the DNS server (1)
for the IP address of the website.

② The DNS server can’t find www.hoddereducation.co.uk in its database or its
cache and sends out a request to DNS server (2).

③ DNS server (2) finds the URL and can map it to 107.162.140.19; the IP
address is sent back to DNS server (1) which now puts the IP address and
associated URL into its cache/database.

④ This IP address is then sent back to the user’s computer.
⑤ The computer now sets up a communication with the website server and the

required pages are downloaded. The web browser interprets the HTML and
displays the information on the user’s screen.

2.2.6	 Scripting in HTML
This section considers HTML scripting using JavaScript and PHP. While this
extends beyond the syllabus, it is included here to help you understand how
HTML is used to create websites and how web browsers communicate with
servers. It is included here for information and to aid understanding.

A user may wish to develop a web application, which is client-server based, on
their own computer. To do this they would need to:

» download the necessary server software
» install the application on the chosen/allocated server
» use the web browser on their computer to access and interpret the

application web pages.

Each web page would need to be created using HTML. A domain name would
have to be purchased from a web-hosting company. The HTML files would
need to be uploaded to the server which was allocated to the user by the
web-hosting company.

457591_02_CI_AS & A_Level_CS_027-067.indd 62 4/30/19 7:45 AM

http://www.hoddereducation.co.uk
http://www.hoddereducation.co.uk

63

2.2
The internet

2
HTML would be used to create a file using tags. For example:

<html>

<body>

<p> Example <p/>

[program code]

</html>

Between the HTML tags the inclusion of JavaScript or PHP can be used.

JavaScript
JavaScript (unlike HTML) is a programming language which will run on the
client-side. What is the difference between running on the client-side and
running on the server-side?

» Client-side – the script runs on the computer, which is making the request,
processing the web page data that is being sent to the computer from the
server.

» Server-side – the script is run on the web server and the results of
processing are then sent to the computer that made the request.

The following short program inputs a temperature and outputs ‘HIGH’ if it is
200 °C or over, ‘OK’ if it is 100 °C or over and ‘LOW’ if it is below 100 °C.

01 <html>

02 <body>

03 <p>Enter the temperature</p>

04 <input id="Temp" value="0"

05 <button onclick="checkReading()>"Enter</button>

06 <script>

07 function checkReading() {

08 var temp, result;

09 temp = document.getElementById("Temp").value;

10 if (temp >= 200) {

11 result = "HIGH"

12 } else if (temp >= 100) {

13 result = "OK"

14 } else {

15 result = "LOW"

16 }

17 alert("The result is " + result)

18 }

19 </script>

20 </body>

21 </html>

PHP
PHP is another language which can be embedded within HTML. However,
when PHP is used it is processed on the server-side. Again, the code will be
sandwiched inside HTML and will be stored as a .php file.

457591_02_CI_AS & A_Level_CS_027-067.indd 63 4/30/19 7:45 AM

64

2

	
2	

C
o

m
m

u
n

iC
at

io
n

The following example is similar to the JavaScript example; again temperatures
are input but this time ‘H’, ‘O’ and ‘L’ are output depending on the result. Note
that variables begin with $ and are case-sensitive.

01 <?php

02 if(isset($ _ GET['temp'])) {

03 echo "Result: " . checkReading($ _ GET['temp']);

04 } else {

05 ?>

06 <form action="#" method="get">

07 Enter Temp: <input type="text" name="temp" />

08 <input type="submit" value="Calculate" />

09 </form>

10

11 <?php

12 }

13 function checkReading($inputTemp) {

14 $resultChar = "L";

15 if($inputTemp >= 200) $resultChar = "H";

16 else if($inputTemp >= 100) $resultChar = "O";

17 return $resultChar;

18 }

19 ?>

EXTENSION	ACTIVITY	2F

Look at the two pieces of code in the previous JavaScript and PHP sections,
then answer these questions.

a) Write down the names of two variables which are used in each piece
of code.

b) In each case, identify which statement(s) correspond(s) to an output.
c) What is the purpose of the statement shown in line:

i) 09 of the JavaScript code
ii) 03 of the PHP code?

e) What is the purpose of line 05 in the JavaScript?

ACTIVITY	2C

1	 a) Describe what happens when a telephone call is made using PSTN.
b) Describe what happens when a computer, equipped with microphone

and speakers, is used to make a ‘telephone’ call over the internet.
c) Communication links between continents frequently involve the use of

satellite technology. Explain the differences between GEO, MEO and
LEO satellites.

457591_02_CI_AS & A_Level_CS_027-067.indd 64 4/30/19 7:45 AM

65

2.2
The internet

2
2	 a) Class A computer networks are identified by IP addresses starting

with 0.0.0.0, class B computer networks are identified by IP addresses
starting with 128.0.0.0 and class C computer networks are identified by IP
addresses starting with 192.0.0.0. (Class D networks begin with 224.0.0.0.)

 Write these starting IP addresses in binary format.
b) Using the data above, write down the upper IP addresses of the three

network classes A, B and C.
c) A device on a network has the IP address:
 10111110 00001111 00011001 11110000

i) Which class of network is the device part of?
ii) Which bits are used for the net ID and which bits are used for the

host ID?
iii) A network uses IP addresses of the form 200.35.254.25/18.
 Explain the significance of the appended value 18.

d) Give two differences between IPv4 and IPv6.
3	 a) Describe the differences between private IP addresses and public

IP addresses.
b) Identify the protocol, domain name and file name used in the following

URL: https://www.exampleofaurl.co.de/computer_logic.html
c) Describe how DNS is used to retrieve a web page from the website

used in part b).
4	 a) Explain the differences between the internet and the world wide web

(www).
b) Hasina wrote,
 ‘The internet is not necessarily a type of WAN.’
 Is Hasina’s statement correct? Give reasons for your answer.
c) Explain these two terms.

i) Web browser
ii) Internet service provider (ISP)

End of chapter
questions

1 Star and mesh are two types of network topology that can be used to make a LAN.

Star network Mesh network

a) i) State one benefit and one drawback of the star network topology. [2]

ii) State one benefit and one drawback of the mesh network topology. [2]

➔

457591_02_CI_AS & A_Level_CS_027-067.indd 65 4/30/19 7:45 AM

https://www.exampleofaurl.co.de/computer_logic.html

66

2

	
2	

C
o

m
m

u
n

iC
at

io
n

b) Copy the diagram below and connect each description to either a client-server
or peer-to-peer network. [4]

Type of network Description

Connectivity is the most important aspect of
this type of network

Uses separate dedicated servers and specific
workstations

Client-server
Has no central storage and doesn’t require

authentication of users

Sharing of data is the most important aspect of
this type of network

Has no central server; each workstation shares
its files/data with the others

Peer-to-peer
Performance and management issues can occur

if the number of workstations exceeds ten

Once logged in, a user can only access resources
that the network manager allows them to use

More stable system since there is centralised
backing up of files

2 a) Conventional telephone calls are made using the public service telephone
network (PSTN). The national network uses both copper cables and fibre
optic cables.

i) Explain the difference between copper cabling and fibre optic cabling. [2]

ii) Describe two benefits and two drawbacks of both types of cabling. [4]

b) Satellite technology is often used in long distance communications.

 Compare the differences between GEO, MEO and LEO satellites. [3]

c) Some telephones use Bluetooth to connect to the telephone network. Explain
what is meant by:

i) the attenuation of a signal [2]

ii) spread spectrum frequency hopping. [2]

3 a) Explain the term bit streaming. [2]

b) A person watches a film streamed from a website on a tablet computer.

i) Give two benefits of using bit streaming for this purpose. [2]

ii) State two potential problems of using bit streaming for this purpose. [2]

c) Explain the terms on-demand bit streaming and real-time bit streaming. [4]

Cambridge International AS & A Level Computer Science 9608
Paper 11 Q1 November 2015

457591_02_CI_AS & A_Level_CS_027-067.indd 66 4/30/19 7:45 AM

67

2.2
The internet

2
4 A buffer is 2 MiB in size. The lower limit of the buffer is set at 200 KiB and the

higher limit is set at 1.8 MiB.

 Data is being streamed at 1.5 Mbps and the media player is taking data at the rate
600 kbps.

 You may assume a megabit is 1 048 576 bits and a kilobit is 1024 bits.

a) Explain why the buffer is needed. [2]

b) i) Calculate the amount of data stored in the buffer after 2 seconds of
streaming and playback.

 You may assume that the buffer already contains 200 KiB of data. [4]

ii) By using different time values (such as 4 secs, 6 secs, 8 secs, and so on)
determine how long it will take before the buffer reaches its higher limit
(1.8 MiB). [5]

c) Describe how the problem calculated in part b) ii) can be overcome so that a
30-minute video can be watched without frequent pausing of playback. [2]

5 a) When data is transmitted over a LAN network there is the possible risk of
data collision.

i) Explain the term data collision. [2]

ii) Describe how CSMA/CD is able to detect collisions. [1]

iii) Explain how CSMA/CD can be used to resolve the problem of data
collision. [2]

b) Copy the diagram below and connect each network device to its
description. [5]

Network device Description

gateway
device that analyses packets of data transmitted

from one network to another or analyses data
within a single network

switch
network point (node) that connects two networks

that use different protocols

hub
device that connects LANs that use

 the same protocol to allow them to work as a
single network

router
device on a network that redirects data received
to only those destinations on the LAN network

that match the address in the data packet

bridge
device that sends all the received data packets to
every device in the network irrespective of any

data packet addresses

457591_02_CI_AS & A_Level_CS_027-067.indd 67 4/30/19 7:45 AM

68

3
H

a
r

d
w

a
r

e

In this chapter, you will learn about

★ primary storage/memory devices
★ secondary storage (including removable devices)
★ the benefits and drawbacks of embedded systems
★ hardware devices used as input, output and storage
★ the differences between RAM, ROM, SRAM, DRAM, PROM and EPROM
★ the use of RAM, ROM, SRAM and DRAM in a range of devices
★ monitoring and control systems
★ the use of logic gates: NOT, AND, OR, NAND, NOR and XOR
★ the construction and use of truth tables
★ the construction of logic circuits, truth tables and logic expressions

from a variety of logic information.

WHAT YOU SHOULD ALREADY KNOW
Try these five questions before you read this
chapter.
1 What is the difference between memory and

storage?
2 Why is it necessary to have both internal and

external memory/storage devices?
3 Can you recognise the memory/storage

devices on the right?
4 What is the difference between online and

offline storage?
5 What is the difference between data access

time and data transfer rate when using
memory and storage devices?

	 3	 Hardware

Key terms
Memory cache – high speed memory external to processor
which stores data which the processor will need again.
Random access memory (RAM) – primary memory unit
that can be written to and read from.
Read-only memory (ROM) – primary memory unit that
can only be read from.

Dynamic RAM (DRAM) – type of RAM chip that needs
to be constantly refreshed.
Static RAM (SRAM) – type of RAM chip that uses
flip-flops and does not need refreshing.
Refreshed – requirement to charge a component to
retain its electronic state.

3.1 Computers and their components

▲ Figure 3.1 Memory/storage devices

457591_03_CI_AS & A_Level_CS_068-106.indd 68 26/04/19 7:27 AM

69

3.1
C

om
puters and their com

ponents

3

3.1.1 Types of memory and storage
Computers require some form of memory and storage.

Memory is usually referred to as the internal devices which the computer can
access directly. This memory can be the user’s workspace, temporary data or
data that is key to running the computer.

Storage devices allow users to store applications, data and files. The user’s data
is stored permanently and they can change it or read it as they wish. Storage
needs to be larger than internal memory since the user may wish to store large
files (such as music files or photographic images).

Storage devices can also be removable to allow data, for example, to be
transferred between computers. Removable devices allow a user to store
important data in a different building in case of data loss.

However, all of this has become a lot less important with the advent of
technology such as ‘data drop’ (which uses Bluetooth) and cloud storage.

Internal memory includes components such as registers (which are part of the
processor). There is also memory cache (which is external to the processor);
this is used to store data which the processor will probably need to use again.

Programmable ROM (PROM) – type of ROM chip that
can be programmed once.
Erasable PROM (EPROM) – type of ROM that can be
programmed more than once using ultraviolet (UV) light.
Hard disk drive (HDD) – type of magnetic storage device
that uses spinning disks.
Latency – the lag in a system; for example, the time to
find a track on a hard disk, which depends on the time
taken for the disk to rotate around to its read-write head.
Fragmented – storage of data in non-consecutive sectors;
for example, due to editing and deletion of old data.
Removable hard disk drive – portable hard disk drive
that is external to the computer; it can be connected
via a USB part when required; often used as a device to
back up files and data.
Solid state drive (SSD) – storage media with no moving
parts that relies on movement of electrons.
Electronically erasable programmable read-only
memory (EEPROM) – read-only (ROM) chip that can
be modified by the user, which can then be erased and
written to repeatedly using pulsed voltages.
Flash memory – a type of EEPROM, particularly suited
to use in drives such as SSDs, memory cards and
memory sticks.
Optical storage – CDs, DVDs and Blu-rayTM discs that
use laser light to read and write data.
Dual layering – used in DVDs; uses two recording layers.
Birefringence – a reading problem with DVDs caused
by refraction of laser light into two beams.
Binder 3D printing – 3D printing method that uses a
two-stage pass; the first stage uses dry powder and the
second stage uses a binding agent.

Direct 3D printing – 3D printing technique where print
head moves in the x, y and z directions. Layers of melted
material are built up using nozzles like an inkjet printer.
Digital to analogue converter (DAC) – needed to
convert digital data into electric currents that can drive
motors, actuators and relays, for example.

Analogue to digital converter (ADC) – needed to
convert analogue data (read from sensors, for example)
into a form understood by a computer.

Organic LED (OLED) – uses movement of electrons
between cathode and anode to produce an on-screen
image. It generates its own light so no back lighting
required.

Screen resolution – number of pixels in the horizontal
and vertical directions on a television/computer screen.

Touch screen – screen on which the touch of a finger or
stylus allows selection or manipulation of a screen image;
they usually use capacitive or resistive technology.

Capacitive – type of touch screen technology based
on glass layers forming a capacitor, where fingers
touching the screen cause a change in the electric field.

Resistive – type of touch screen technology. When
a finger touches the screen, the glass layer touches
the plastic layer, completing the circuit and causing a
current to flow at that point.

Virtual reality headset – apparatus worn on the head
that covers the eyes like a pair of goggles. It gives the
user the ‘feeling of being there’ by immersing them
totally in the virtual reality experience.

Sensor – input device that reads physical data from its
surroundings.

457591_03_CI_AS & A_Level_CS_068-106.indd 69 26/04/19 7:27 AM

70

3
H

a
r

d
w

a
r

e

3
Figure 3.2 summarises the types of memory and storage devices covered in this
chapter.

secondary storage

hard disk drive (HDD)

solid state drive (SSD)

removable devices:

- DVD/CD/Blu-ray
- flash memory stick
- hard disk drive

primary memory

RAM

ROM

▲ Figure 3.2 Memory and storage devices

Primary memory
Primary memory is the part of computer memory which can be accessed directly
from the CPU and, as Figure 3.2 shows, contains the random access memory
(RAM) and read-only memory (ROM) memory chips. Primary memory allows
the processor to access applications and services temporarily stored in memory
locations. The structure of primary memory is shown in Figure 3.3.

Primary memory

RAM ROM

SRAM DRAM PROM EPROM EEPROM

▲ Figure 3.3 Structure of primary memory

All computer systems come with some form of RAM. These memory devices
are not really random, it refers to the fact that any memory location can be
accessed independent of which memory location was last used. Access time to
locate data is much faster in RAM than in secondary devices. RAM can also be

» written to or read from, and the data stored can be changed by the user or
by the computer

» used to store data, files, part of an application or part of the operating
system currently in use

» volatile (memory contents are lost on powering off the computer).

In general, the larger the RAM, the faster the computer will operate. In reality,
RAM never runs out of memory, it continues to operate but just becomes slower
and slower as more data is stored. As RAM becomes ‘full’, the processor has to
continually access the secondary data storage devices to overwrite old data on
RAM with new data. By increasing the RAM size, the number of times this has
to be done is considerably reduced, thus making the computer operate more
quickly.

There are currently two types of RAM technology, dynamic RAM (DRAM) and
static RAM (SRAM).

457591_03_CI_AS & A_Level_CS_068-106.indd 70 26/04/19 7:27 AM

71

3.1
C

om
puters and their com

ponents

3
Dynamic RAM (DRAM)

Each DRAM chip consists of a number of transistors and capacitors. Each of
these parts is tiny since a single RAM chip will contain millions of capacitors
and transistors.

» Capacitors hold the bits of information (0 or 1).
» Transistors act like switches; they allow the chip control circuitry to read the

capacitor or change the capacitor’s value.

This type of RAM needs to be constantly refreshed (that is, the capacitor
needs to be re-charged every 15 microseconds otherwise it would lose its
value). If it is not refreshed, the capacitor’s charge will leak away very quickly,
leaving every capacitor with the value 0.

DRAMs have a number of advantages over SRAMs. They:

» are much less expensive to manufacture than SRAMs
» consume less power than SRAMs
» have a higher memory capacity than SRAMs.

Static RAM (SRAM)
A major difference between SRAM and DRAM is that SRAM does not need to be
constantly refreshed.

It makes use of flip flops (see Chapter 15) which hold each bit of memory.

SRAM is much faster than DRAM when it comes to data access (typically, access
time for SRAM is 25 nanoseconds and for DRAM is 60 nanoseconds).

DRAM is the most common type of RAM used in computers, but where absolute
speed is essential, for example in the processor’s memory cache, SRAM is the
preferred technology. Memory cache is a high speed portion of the memory.
It is effective because most programs access the same data or instructions
many times. By keeping as much of this information as possible in SRAM, the
computer avoids having to access the slower DRAM.

Table 3.1 summarises the differences between DRAM and SRAM.

DRAM SRAM

n consists of a number of transistors and
capacitors

n needs to be constantly refreshed
n less expensive to manufacture than SRAM
n has a higher memory capacity than SRAM
n main memory is constructed from DRAM
n consumes more power than SRAM under

reasonable levels of access, as it needs
to be constantly refreshed

n uses flip-flops to hold each bit of
memory

n does not need to be constantly
refreshed

n has a faster data access time than DRAM
n processor memory cache makes use

of SRAM
n if accessed at a high frequency, power

usage can exceed that of DRAM

▲ Table 3.1 Differences between DRAM and SRAM

Another form of primary memory is the read-only memory (ROM). This is similar
to RAM in that it shares the same random access properties, but it cannot
be written to or changed. As the name suggests, ROM is a read-only memory
device.

ROMs are

» non-volatile (the contents are not lost after powering off the computer)
» permanent memory devices (the contents cannot be changed)

▲ Figure 3.4 Two pieces
of dynamic random access
memory (DRAM)

▲ Figure 3.5 Static RAM

457591_03_CI_AS & A_Level_CS_068-106.indd 71 26/04/19 7:27 AM

72

3
H

a
r

d
w

a
r

e

3
» often used to store data which the computer needs to access when powering

up for the first time for example, the basic input/output system (BIOS).

Table 3.2 summarises the main differences between RAM and ROM.

RAM ROM

n temporary memory device
n volatile memory
n can be written to and read from
n used to store data, files, programs, part

of OS currently in use
n can be increased in size to improve

operational speed of a computer

n permanent memory device
n non-volatile memory device
n data stored cannot be altered
n sometimes used to store BIOS and other

data needed at start up

▲ Table 3.2 Differences between RAM and ROM

PROM and EPROM
A programmable read-only memory (PROM) is a type of ROM chip that
can be altered once. A PROM is made up of a matrix of fuses. Programming
a PROM requires the use of a PROM writer which uses an electric current to
alter specific cells by ‘burning’ fuses in the matrix. Due to the method of
programming (writing), a PROM can only be written to once. They are often
used in mobile phones and in RFID tags.

An erasable programmable read-only memory (EPROM) is different to a PROM
because they use floating gate transistors and capacitors rather than fuses.
Ultra violet (UV) light is used to program an EPROM through a quartz window.
They are used in applications which are under development, such as the
programming of new games consoles.

Embedded systems
Embedded systems involve installing microprocessors into devices to enable
operations to be controlled in a more efficient way. Devices such as cookers,
refrigerators and central heating systems can now all be activated by a
web-enabled device (such as a mobile phone or tablet). The time a central
heating system switches on or off and the temperature can all be set from an
app on a mobile phone from anywhere in the world.

There are pros and cons of devices being controlled in this manner, as shown in
Table 3.3.

Pros of embedded systems Cons of embedded systems

n small in size and therefore easy to
fit into devices

n relatively low cost to make
n usually dedicated to one task,

making for simple interfaces
and often no requirement of an
operating system

n consume very little power
n very fast reaction to changing input

(operate in real time)
n with mass production comes

reliability

n difficult to upgrade devices to take
advantage of new technology

n troubleshooting faults in the device
becomes a specialist task

n although the interface can appear to be
simple, in reality it can be more confusing
(changing the time on a cooker clock can
require several steps, for example)

n any device that can be accessed over the
internet is also open to hackers, viruses,
and so on

n due to the difficulty in upgrading and fault
finding, devices are often just thrown away
rather than being repaired (wasteful)

▲ Table 3.3 Pros and cons of controlling devices with embedded systems

457591_03_CI_AS & A_Level_CS_068-106.indd 72 26/04/19 7:27 AM

73

3.1
C

om
puters and their com

ponents

3

Secondary storage devices
Secondary storage includes storage devices that are not directly accessible by
the CPU. They are non-volatile devices which allow data to be stored as long as
required by the user. This type of storage is much larger than primary memory,
but data access time is considerably slower than RAM and ROM. All applications,
the operating system, device drivers and general files (for example, documents,
photos and music) are stored on secondary storage. The following section
discusses the various types of secondary storage that can be found on the
majority of computers. Secondary storage devices fall into three categories:
magnetic, solid state and optical.

Hard disk drives (HDD)
Hard disk drives (HDD) are still one of the most common methods used to
store data on a computer.

Data is stored in a digital format on the magnetic surfaces of the disks
(or platters, as they are frequently called). The hard disk drive will have a
number of platters which can spin at about 7000 times a second. A number
of read-write heads can access all of the surfaces in the disk drive. Normally
each platter will have two surfaces which can be used to store the data.
These read-write heads can move very quickly – typically they can move from
the centre of the disk to the edge of the disk (and back again) 50 times a
second.

Data is stored on the surface in sectors and tracks.

A sector on a given track will contain a fixed number of bytes.

Unfortunately, hard disk drives have very slow data access when compared
to, for example, RAM. Many applications require the read-write heads to
constantly seek for the correct blocks of data; this means a large number of
head movements. The effects of latency then become very significant. Latency
is defined as the time it takes for a specific block of data on a data track to
rotate around to the read-write head.

Users will sometimes notice the effect of latency when they see messages such
as, ‘Please wait’ or, at its worst, ‘not responding’.

When a file or data is stored on an HDD, the required number of sectors needed
to store the data will be allocated. However, the sectors allocated may not be
adjacent to each other. Through time, the HDD will undergo numerous deletions
and editing, which leads to sectors becoming increasingly fragmented,
resulting in a gradual deterioration of the HDD performance (in other words, it
takes longer and longer to access data). Defragmentation software can improve
on this situation by ‘tidying up’ the disk sectors.

An HDD is a direct access device; however, data in a given sector will be read
sequentially.

EXTENSION ACTIVITY 3A

Describe how ROM and RAM chips could be used in:
a) a microwave oven
b) a refrigerator
c) a remote-controlled model aeroplane (the movement of the aeroplane is

controlled by a hand-held device).

track

sector

▲ Figure 3.6 Tracks and
sectors on a hard disk drive

457591_03_CI_AS & A_Level_CS_068-106.indd 73 26/04/19 7:27 AM

74

3
H

a
r

d
w

a
r

e

3
Removable hard disk drives are essentially HDDs that are external to the
computer and can be connected to the computer using one of the USB ports. In
this way, they can be used as back-up devices or as another way of transferring
files between computers.

Solid state drives (SSD)
Latency is an issue in HDDs, as discussed earlier. Solid state drives (SSD)
reduce this issue considerably. They have no moving parts and all data is
retrieved at the same rate. They do not rely on magnetic properties. The most
common type of solid state storage devices store data by controlling the
movement of electrons within NAND chips. The data is stored as 0s and 1s in
millions of tiny transistors (at each junction one transistor is called a floating
gate and the other is called a control gate) within the chip. This effectively
produces a non-volatile rewritable memory.

However, a number of solid state storage devices sometimes use electronically
erasable PROM (EEPROM) technology. The main difference is the use of NOR chips
rather than NAND. This makes them faster in operation but devices using EEPROM
are considerably more expensive than those that use NAND technology. EEPROM also
allows data to be read or erased in single bytes at a time. Use of NAND only allows
blocks of data to be read or erased. This makes EEPROM technology more useful in
certain applications where data needs to be accessed or erased in byte-size chunks.

Because of the cost implications, the majority of solid state storage devices
use NAND technology. The two are usually distinguished by the terms flash
memory (use NAND) and EEPROM (use NOR).

So, what are the main benefits of using an SSD rather than an HDD?

Solid state drives

» are more reliable (no moving parts to go wrong)
» are considerably lighter (which makes them suitable for laptops)
» do not have to ‘get up to speed’ before they work properly
» have a lower power consumption
» run much cooler than HDDs (both these points again make them very

suitable for laptop computers)
» are very thin (because they have no moving parts)
» access data considerably faster.

The main drawback of SSD is the still unknown longevity of the technology.
Most solid state storage devices are conservatively rated at only 20 GB write
operations per day over a three year period – this is known as SSD endurance.
For this reason, SSD technology is not commonly used in servers, for example,
where a huge number of write operations take place every day. However, this
issue is being addressed by a number of manufacturers to improve the durability
of these solid state systems and they are rapidly becoming more common in
applications such as servers and cloud storage devices.

Note that it is also not possible to over-write existing data on a flash memory
device; it is necessary to first erase the old data and then write the new data
at the same location.

EXTENSION ACTIVITY 3B

The length of a track on each disk in an HDD disk pack becomes much
shorter towards the centre of the disk. Find out how manufacturers have
overcome this issue with regards to disk data capacity and data access time.

457591_03_CI_AS & A_Level_CS_068-106.indd 74 26/04/19 7:27 AM

75

3.1
C

om
puters and their com

ponents

3
Memory sticks/flash memories (also known as pen drives) use solid state
technology. They usually connect to the computer through the USB port. Their
main advantage is that they are very small, lightweight devices which make
them suitable for transferring files between computers. They can also be used
as small back-up devices for music or photo files, for example.

Complex or expensive software, such as an expert system, will often use a
memory stick as a dongle. The dongle contains additional files which are
needed to run the software. Without this dongle, the software will not work
properly. It therefore prevents illegal or unauthorised use of the software, and
also prevents copying of the software since, without the dongle, it is useless.

Optical media: CDs, DVDs and Blu-ray discs
CDs and DVDS are described as optical storage devices. Laser light is used to
read data from, and write data onto, the surface of a disk.

▲ Figure 3.7 CDs and DVDs use a single, spiral track

Both CDs and DVDs use a thin layer of metal alloy or light-sensitive organic
dye to store the data. As shown in Figure 3.7, both systems use a single, spiral
track which runs from the centre of the disk to the edge. When a disk spins, the
optical head moves to the point where the laser beam ‘contacts’ the disk surface
and follows the spiral track from the centre outwards. As with an HDD, a CD/DVD
is divided into sectors allowing direct access of data. Also, as in the case of an
HDD, the outer part of the disk runs faster than the inner part of the disk.

The data is stored in ‘pits’ and ‘bumps’ on the spiral track. A red laser is used to
read and write the data. CDs and DVDs can be designated R (write once only) or
RW (can be written to or read from many times).

DVD technology is slightly different to that used in CDs. One of the main
differences is the use of dual layering which considerably increases the
storage capacity. This means that there are two individual recording
layers. Two layers of a standard DVD are joined together with a transparent
(polycarbonate) spacer, and a very thin reflector is sandwiched between the
two layers. Reading and writing of the second layer is done by a red laser
focusing at a fraction of a millimetre difference compared to the first layer.

single spiral track runs
from the centre to outer

part of disk

pits or bumps

EXTENSION ACTIVITY 3C

The outer part of an optical disk runs faster than the inner part of the disk.
Find out how manufacturers have overcome this issue with regards to disk
data capacity and data access time.

457591_03_CI_AS & A_Level_CS_068-106.indd 75 26/04/19 7:27 AM

76

3
H

a
r

d
w

a
r

e

3
polycarbonate layer first layer

second layer

laser reads
layer 2

laser reads
layer 1

polycarbonate layer

▲ Figure 3.8 Dual layering in a DVD

Standard, single layer DVDs still have a larger storage capacity than CDs because
the ‘pit’ size and track width are both smaller. This means that more data can be
stored on the DVD surface. DVDs use lasers with a wavelength of 650 nanometres;
CDs use lasers with a wavelength of 780 nanometres. The shorter the wavelength
of the laser light, the greater the storage capacity of the medium.

» Blu-ray discs are another example of optical storage media. However, they
are fundamentally different to DVDs in their construction and in the way
they carry out read-write operations.

» Blu-ray uses a blue laser, rather than a red laser, to carry out read and write
operations; the wavelength of blue light is only 405 nanometres (compared
to 650 nm for red light).

» Using blue laser light means that the ‘pits’ and ‘bumps’ can be much smaller;
consequently, a Blu-ray can store up to five times more data than a DVD.

» Blu-ray uses a single 1.1 mm thick polycarbonate disk; DVDs use a sandwich
of two 0.6 mm thick disks.

» Using two sandwiched layers can cause birefringence (light is refracted into
two separate beams causing reading errors); because Blu-ray uses only one
layer, the discs do not suffer from birefringence.

» Blu-ray discs automatically come with a secure encryption system which
helps to prevent piracy and copyright infringement.

Table 3.4 summarises the main differences between CDs, DVDs and Blu-ray.

disk type
laser
colour

wavelength
of laser light disk construction

track pitch
(distance
between tracks)

CD red 780 nm single 1.2 mm
polycarbonate layer

1.60 µm

DVD red 650 nm two 0.6 mm
polycarbonate layers

0.74 µm

Blu-ray blue 405 nm single 1.1 mm
polycarbonate layer

0.30 µm

nm = 10−9 metres

µm = 10−6 metres

▲ Table 3.4 Main differences between CDs, DVDs and Blu-ray

All these optical storage media are used as back-up systems (for photos,
music and multimedia files). This also means that CDs and DVDs can be used
to transfer files between computers. Manufacturers sometimes supply their
software (such as printer drivers) on CDs and DVDs. When the software is
supplied in this way, the disk is usually in a read-only format.

The most common use of DVD and Blu-ray is the supply of movies or games. The
memory capacity of CDs is not big enough to store most movies.

457591_03_CI_AS & A_Level_CS_068-106.indd 76 26/04/19 7:27 AM

77

3.1
C

om
puters and their com

ponents

3

3.1.2 Input and output devices
This section will consider laser printers, inkjet printers, 3D printers, speakers,
microphones, screens and sensors.

Laser printers
Laser printers use dry powder ink rather than liquid ink and make use of the
properties of static electricity to produce the text and images. Unlike inkjet
printers, for example, laser printers print the whole page in one go. Colour laser
printers use four toner cartridges – blue, cyan, magenta and black. Although
the actual technology is different to monochrome printers, the printing method
is similar, but colour dots are used to build up the text and images.

When a user wishes to print a document using a laser printer, the following
sequence of events takes place.

Stage Description of what happens

1 data from the document is sent to a printer driver

2 printer driver ensures that the data is in a format that the chosen printer
can understand

3 check is made by the printer driver to ensure that the chosen printer is
available to print (is it busy? is it off-line? is it out of ink? and so on)

4 data is sent to the printer and stored in a temporary memory known as a
printer buffer

5 printing drum given a positive charge. As this drum rotates, a laser beam
scans across it removing the positive charge in certain areas, leaving
negatively charged areas which exactly match the text/images of the page
to be printed

6 drum is coated with positively charged toner (powdered ink). Since the toner is
positively charged, it only sticks to the negatively charged parts of the drum

7 negatively charged sheet of paper is rolled over the drum

8 toner on the drum sticks to the paper to produce an exact copy of the page
sent to the printer

9 to prevent the paper sticking to the drum, the electric charge on the paper
is removed after one rotation of the drum

10 the paper goes through a fuser (a set of heated rollers), where the heat
melts the ink so that it fixes permanently to the paper

11 a discharge lamp removes all the electric charge from the drum so it is
ready to print the next page

▲ Table 3.5 Sequence to print using a laser printer

EXTENSION ACTIVITY 3D

A recent development is PRAM (parameter RAM) or PCRAM (phase-change
RAM) which utilises chalogenide glass. This is glass containing elements
such as sulphur, antimony, selenium, germanium or tellurium. Chalogenide
compounds used in PRAMs/PCRAMs can be changed between the
amorphous (glass-like) state and crystalline state, which changes the optical
and electrical properties allowing the storage of data when used as a film on
the surface of optical media.

Find out more about this technology and determine whether this could result
in the demise of the current solid state removable devices.

▲ Figure 3.9 A laser printer

457591_03_CI_AS & A_Level_CS_068-106.indd 77 26/04/19 7:27 AM

78

3
H

a
r

d
w

a
r

e

3
Inkjet printers
Inkjet printers are made up of

» a print head consisting of nozzles that spray droplets of ink onto the paper
to form characters

» an ink cartridge or cartridges; either one cartridge for each colour (blue,
yellow and magenta) and a black cartridge, or one single cartridge
containing all three colours and black (note: some systems use six colours)

» a stepper motor and belt which moves the print head assembly across the
page from side to side

» a paper feed which automatically feeds the printer with pages as they are
required.

The ink droplets are currently produced using one of two technologies: thermal
bubble or piezoelectric.

Thermal bubble – tiny resistors create localised heat which makes the ink
vaporise. This causes the ink to form a tiny bubble, as the bubble expands
some of the ink is ejected from the print head onto the paper. When the
bubble collapses, a small vacuum is created which allows fresh ink to
be drawn into the print head. This continues until the printing cycle is
completed.

Piezoelectric – a crystal is located at the back of the ink reservoir for each
nozzle. The crystal is given a tiny electric charge which makes it vibrate. This
vibration forces ink to be ejected onto the paper and at the same time more ink
is drawn in for further printing.

When a user wishes to print a document using an inkjet printer, the following
sequence of events takes place. Whatever technology is used, the basic steps in
the printing process are the same.

Stage Description of what happens

1 data from the document is sent to a printer driver

2 printer driver ensures that the data is in a format that the chosen printer
can understand

3 check is made by the printer driver to ensure that the chosen printer is
available to print (is it busy? is it off-line? is it out of ink? and so on)

4 data is sent to the printer and stored in a temporary memory known as a
printer buffer

5 a sheet of paper is fed into the main body of the printer. A sensor detects
whether paper is available in the paper feed tray – if it is out of paper (or
the paper is jammed), an error message is sent back to the computer

6 as the sheet of paper is fed through the printer, the print head moves from
side to side across the paper printing the text or image. The four ink colours
are sprayed in their exact amounts to produce the desired final colour

7 at the end of each full pass of the print head, the paper is advanced very
slightly to allow the next line to be printed. This continues until the whole
page has been printed

8 if there is more data in the printer buffer, then the whole process from stage
5 is repeated until the buffer is empty

9 once the printer buffer is empty, the printer sends an interrupt to the processor
in the computer, which is a request for more data to be sent to the printer. The
process continues until the whole of the document has been printed

▲ Table 3.6 Sequence to print using a laser printer

▲ Figure 3.10 An inkjet
printer

457591_03_CI_AS & A_Level_CS_068-106.indd 78 26/04/19 7:27 AM

79

3.1
C

om
puters and their com

ponents

3
3D printers

▲ Figure 3.11 A 3D printer

3D printers are used to produce working, solid objects. They are primarily based
on inkjet and laser printer technology. The solid object is built up layer by layer
using materials such as powdered resin, powdered metal, paper or ceramic.

The artificial bone framework in Figure 3.12 was made from many layers (100 µm
thick) of powered metal using a technology known as binder 3D printing.

Various types of 3D printers exist; they range from the size of a microwave
oven up to the size of a small car.

3D printers use additive manufacturing (the object is built up layer by layer);
this is in contrast to the more traditional method of subtractive manufacturing
(removal of material to make the object). For example, making a statue using
a 3D printer would involve building it up layer by layer using powdered stone
until the final object was formed. The subtractive method would involve
carving the statue out of solid stone (removing the stone not required) until
the final item was produced. Similarly, CNC machining removes metal to form
an object; 3D printing would produce the same item by building up the object
from layers of powdered metal.

Direct 3D printing uses inkjet technology; a print head can move left to right
as in a normal printer. However, the print head can also move up and down to
build up the layers of an object.

Binder 3D printing is similar to direct 3D printing. However, this method uses
two passes for each of the layers; the first pass sprays dry powder and then on
the second pass a binder (a type of glue) is sprayed to form a solid layer.

Newer technologies use lasers and UV light to harden liquid polymers; this
further increases the diversity of products which can be made.

▲ Figure 3.12 Artificial
bone framework made
using an industrial
3D printer

457591_03_CI_AS & A_Level_CS_068-106.indd 79 26/04/19 7:27 AM

80

3
H

a
r

d
w

a
r

e

3
Speakers and microphones
Speakers
Digitised sound stored in a file on a computer can be converted into sound as
follows:

» The digital data is first passed through a digital to analogue converter (DAC)
where it is converted into an electric current.

» This is then passed through an amplifier (since the current generated
by the DAC will be small) to create a current large enough to drive a
loudspeaker.

» This electric current is then fed to a loudspeaker where it is converted into
sound.

The following schematic shows how this is done.

▲ Figure 3.13 Digital to analogue conversion

As Figure 3.13 shows, if the sound is stored in a computer file, it must first
pass through a digital to analogue converter (DAC) to convert the digital
data into an electric current which can be used to drive the loudspeaker.
Figure 3.14 shows how a loudspeaker can convert electric signals into sound
waves.

sound waves

plastic or
paper cone

sound waves
produced

coil of wire
wrapped
around an
iron core

electric current fed to wire

permanent
magnet

▲ Figure 3.14 Diagram showing how a loudspeaker works

» When an electric current flows through a coil of wire that is wrapped around
an iron core, the core becomes a temporary electromagnet; a permanent
magnet is also positioned very close to this electromagnet.

» As the electric current through the coil of wire varies, the induced magnetic
field in the iron core also varies. This causes the iron core to be attracted
towards the permanent magnet and as the current varies this will cause the
iron core to vibrate.

» Since the iron core is attached to a cone (made from paper or thin synthetic
material), this causes the cone to vibrate, producing sound.

The rate at which the DAC can translate the digital output into analogue
voltages is known as the sampling rate. If the DAC is a 16-bit device, then it

speaker

ampliferDAC1 0 0 1 0 1 0 1 0 1 1

457591_03_CI_AS & A_Level_CS_068-106.indd 80 26/04/19 7:27 AM

81

3.1
C

om
puters and their com

ponents

3
can accept numbers between +32 767 (216 – 1) and –32 768 (216); the digital
value containing all zeros is ignored.

Microphones
Microphones are either built into the computer or are external devices
connected through the USB port or through wireless connectivity.

Figure 3.15 shows how a microphone can convert sound waves into an electric
current. The current produced can either be stored as sound (on, for example, a
CD), amplified and sent to a loudspeaker, or sent to a computer for storage.

sound waves

cone

diaphragm

coil wrapped around
a permanent magnet

output from
the microphone

▲ Figure 3.15 Diagram of how a microphone works

» When sound is created, it causes the air to vibrate.
» When a diaphragm in the microphone picks up the air vibrations, the

diaphragm also begins to vibrate.
» A copper coil is wrapped around a permanent magnet and the coil is

connected to the diaphragm using a cone. As the diaphragm vibrates, the
cone moves in and out causing the copper coil to move backwards and
forwards.

» This forwards and backwards motion causes the magnetic field around the
permanent magnet to be disturbed, inducing an electric current.

» The electric current is then either amplified or sent to a recording device.
The electric current is analogue in nature.

The electric current output from the microphone can also be sent to a computer
where a sound card converts the current into a digital signal which can then be
stored in the computer. The following diagram shows what happens when the
word ‘hut’ is picked up by a microphone and is converted into digital values:

▲ Figure 3.16 Analogue to digital conversion

Look at Figure 3.16. The word ‘hut’ (in the form of a sound wave) has been
picked up by a microphone; this is then converted using an analogue to digital
converter (ADC) into digital values which can then be stored in a computer or
manipulated as required using appropriate software.

Screens
Screens are used to show the output from a computer. Modern screens use an LCD,
backlit with LEDs or the newer organic light emitting diode (OLED) technology.

1000 0001
0001 1110
1000 1110
0001 1100
1100 1100
1101 1110

sound wave for ‘HUT’ digital value after conversion

457591_03_CI_AS & A_Level_CS_068-106.indd 81 26/04/19 7:27 AM

82

3
H

a
r

d
w

a
r

e

3
Figure 3.17 shows a simplified form of how OLED technology works.

▲ Figure 3.17 Simplified form of how OLED technology works

OLEDs use organic materials (made up of carbon compounds) to create flexible
semiconductors. Organic films are sandwiched between two charged electrodes
(one is a metallic cathode and the other a glass anode). When an electric field
is applied to the electrodes, they give off light. This means that no form of
back lighting is required. This allows for very thin screens. It also means that
there is no longer a need to use LCD technology, since OLED is a self-contained
system.

Screen displays are based on the pixel (the smallest picture element) concept
where each screen pixel is made up of three sub-pixels, which are red, green
and blue. By varying the intensity of the three sub-pixels, it is possible to
generate millions of colours. The greater the number of pixels on a screen,
the greater is the screen resolution (the number of pixels which can be
viewed horizontally and vertically on screen; for example, 1680 × 1080
pixels). LCD and OLED screens use this type of pixel matrix to make up the
picture.

The ‘purple’ pixel is made up of a combination of
three sub-pixels, which are red, green and blue, in the
required intensity, to ‘fool’ the eye into seeing a
purple dot on the screen. The whole screen is filled
with thousands of these tiny pixels.

▲ Figure 3.18 The pixel matrix

Touch screens (which act as both input and output devices) also make use
of LCD and OLED technology. They are particularly used in mobile phones and
tablets.

We shall now consider LCD capacitive and resistive touch screen technologies.

Capacitive
» Made up of many layers of glass that act like a capacitor creating electric

fields between the glass plates in layers.
» When the top glass layer is touched, the electric current changes and the

coordinates where the screen was touched are determined by an on board
microprocessor.

Benefits
» Medium cost technology.
» Screen visibility is good even in strong sunlight.
» Permits multi-touch capability.
» Screen is very durable; it takes a major impact to break the glass.

negative charges

positive charges

glass or plastic top layer

metallic cathode (negative charge)

emissive layer

conductive layer

glass anode (positive charge)

glass or plastic bottom layer

457591_03_CI_AS & A_Level_CS_068-106.indd 82 26/04/19 7:27 AM

83

3.1
C

om
puters and their com

ponents

3
Drawbacks
» Only allows use of bare fingers as the form of input; although the latest

screens permit the use of a special stylus to be used.

Resistive
» Makes use of an upper layer of polyester (a form of plastic) and a bottom

layer of glass.
» When the top polyester layer is touched, the top layer and bottom layer

complete a circuit.
» Signals are then sent out, which are interpreted by a microprocessor

and the calculations determine the coordinates of where the screen was
touched.

Benefits
» Relatively inexpensive technology.
» Possible to use bare fingers, gloved fingers or stylus to carry out an input

operation.

Drawbacks
» Screen visibility is poor in strong sunlight.
» Does not permit multi-touch capability.
» Screen durability is only fair; it is vulnerable to scratches and the screen

wears out through time.

Virtual headsets
Virtual reality has now been around for many years and has many applications.
For example, it is possible to ‘walk around’ inside dangerous areas – such as a
nuclear power plant – without actually being there.

It allows engineers to plan modifications or repairs to a plant in complete
safety and to try out different scenarios first before implementing them. One
of the devices used is a virtual reality headset which gives the engineer the
feeling of being there. We will now describe how these devices work.

» Video is sent from a computer to the headset (either using an HDMI cable or
a smartphone fitted into the headset).

» Two feeds are sent to an LCD/OLED display (sometimes two screens are
used, one for the left side of the image and one for the right side of the
image); lenses placed between the eyes and the screen allow for focusing
and reshaping of the image/video for each eye, thus giving a 3D effect and
adding to the realism.

» Most headsets use 110° field of view which is enough to give a pseudo 360°
surround image/video.

» A frame rate of 60 to 120 images per second is used to give a true/realistic
image.

» As the user moves their head (up and down or left to right), a series of
sensors and/or LEDs measure this movement, which allows the image/video
on the screen to react to the user’s head movements (sensors are usually
gyroscopic or accelerometers; LEDs are used in conjunction with mini
cameras to further monitor head movements).

» Headsets also use binaural sound (surround sound) so that the speaker
output appears to come from behind, from the side or from a distance,
giving very realistic 3D sound.

457591_03_CI_AS & A_Level_CS_068-106.indd 83 26/04/19 7:27 AM

84

3
H

a
r

d
w

a
r

e

3
» Some headsets also use infrared sensors to monitor eye movement (in

addition to head movement), which allows the depth of field on the screen
to be more realistic; an example of this is to make objects in the foreground
appear fuzzy when the user’s eyes indicate they are looking into the
distance (and vice versa).

Sensors
Sensors are input devices which read or measure physical properties, such as
temperature, pressure, acidity, and so on.

Real data is analogue in nature – this means it is constantly changing and
does not have a discrete value. Analogue data usually requires some form of
interpretation, for example, the temperature shown on a mercury thermometer
requires the user to look at the height of the mercury to work out the
temperature. The temperature, therefore, can have an infinite number of values
depending on the precision of how the height of the mercury is measured.
Equally, an analogue clock requires the user to look at the hands on the clock
face. The area swept out by the hands allows the number of hours and minutes
to be interpreted. There are many other examples.

Computers cannot make any sense of these physical quantities and the data
needs to be converted into a digital format. This is usually achieved by an
analogue to digital converter (ADC). This device converts physical values into
discrete digital values.

ADC

digital dataanalogue data

1 0 0 1 1 1 0 0 ...

▲ Figure 3.19 Converting analogue data into digital data

When a computer is used to control devices, such as a motor or a valve,
it is often necessary to use a digital to analogue converter (DAC), since
these devices need analogue data to operate in many cases. Frequently,
an actuator is used in these control applications. Although these are
technically output devices, they are mentioned here since they are an
integral part of the control system. An actuator is an electromechanical
device such as a relay, solenoid or motor. Note that a solenoid is an example
of a digital actuator as part of the device is connected to a computer which
opens and closes a circuit as required. When energized, the solenoid may
operate a plunger or armature to control, for example, a fuel injection
system. Other actuators, such as motors and valves, may require a DAC so
that they receive an electric current rather than a simple digital signal
direct from the computer.

Notice the importance of (positive) feedback, which is where the output
from the system can affect the next input. This is due to the fact that sensor
readings may cause the microprocessor to alter a valve or a motor, for example,
which will then change the next reading taken by the sensor. So the output
from the microprocessor will impact on the next input received as it attempts
to bring the system within the desired parameters.

457591_03_CI_AS & A_Level_CS_068-106.indd 84 26/04/19 7:27 AM

85

3.1
C

om
puters and their com

ponents

3
Table 3.7 shows a number of common sensors and examples of their
applications.

Sensor Example applications

temperature n control a central heating system
n control/monitor a chemical process
n control/monitor temperature in a greenhouse

moisture/humidity n control/monitor moisture/humidity levels in soil/air in a
greenhouse

n monitor dampness levels in an industrial application (for
example, monitor moisture in a paint spray booth in a car
factory)

light n switch street lighting on at night and off during the day
n monitor/control light levels in a greenhouse
n switch on car headlights when it gets dark

infrared/motion n turn on windscreen wipers on a car when it rains
n detect an intruder in a burglar alarm system
n count people entering or leaving a building

pressure n detect intruders in a burglar alarm system
n check weight (such as the weight of a vehicle)
n monitor/control a process where gas pressure is important

acoustic/sound n pick up noise levels (such as footsteps or breaking glass) in a
burglar alarm system

n detect noise of liquids dripping from a pipe

gas (such as O2
or CO2)

n monitor pollution levels in a river or air
n measure O2 and CO2 levels in a greenhouse
n check for CO2 or NO2 leaks in a power station

pH n monitor/control acidity/alkalinity levels in soil
n monitor pollution in rivers

magnetic field n detect changes in in cell phones, CD players, and so on
n used in anti-lock braking systems in motor vehicles

▲ Table 3.7 Common sensors and examples of applications

Sensors are used in both monitoring and control applications. There is a subtle
difference between how these two methods work. The flowchart (Figure 3.21
overleaf) shows a simplification of the process.

457591_03_CI_AS & A_Level_CS_068-106.indd 85 26/04/19 7:27 AM

86

3
H

a
r

d
w

a
r

e

3
sensors send signals to the

microprocessor or computer

the signals are converted to
digital (if necessary) using an
analogue to digital converter

(ADC)

the microprocessor or computer
analyses the data received

by checking it against stored
values

if new data is outside the
acceptable range, a warning
message is sent to a screen

or an alarm is activated

if the new data is outside the
acceptable range, the

microprocessor or computer
sends signals to control valves,

motors, and so on

the microprocessor or computer
has no effect on what is

being monitored – it is simply
‘watching’ the process

the output from the system
affects the next set of inputs

from the sensors

feedback loop

control systemmonitoring system

▲ Figure 3.20 Sensors for monitoring and controlling systems

Table 3.8 shows some examples of monitoring and control applications of
sensors.

Examples of monitoring Examples of control

n monitoring a patient in a hospital
for vital signs such as heart rate,
temperature, and so on

n checking for intruders in a burglar alarm
system

n checking the temperature levels in a car
engine

n monitoring pollution levels in a river

n turning street lights on at night and
turning them off again during daylight

n controlling the temperature in a central
heating/air conditioning system

n controlling the traffic lights at a road
junction

n operating anti-lock brakes on a car
when necessary

n controlling the environment in a
greenhouse

▲ Table 3.8 Examples of monitoring and control applications of sensors

One of the most common uses of sensors in modern times is in the monitoring
and control of a number of functions in motor vehicles and aeroplanes. Look at
Figure 3.21 showing a typical modern car and its many sensors used to control
or monitor several functions.

457591_03_CI_AS & A_Level_CS_068-106.indd 86 26/04/19 7:27 AM

87

3.1
C

om
puters and their com

ponents

3

ABS

engine
management

front airbag sensors

collision
avoidance

system

rear lighting control

front lighting
control

▲ Figure 3.21 Sensors on a typical modern car

ACTIVITY 3A

1 a) i) Describe three differences between RAM and ROM.
 ii) Compare the relative advantages and disadvantages of SRAM and

DRAM.
 Include examples of where each type of memory would be used in

a computer.

Below is an in-depth look at just one of the sensor systems labelled on
Figure 3.21.

Anti-lock braking systems (on cars)
Anti-lock braking systems (ABS) on cars use magnetic field sensors to stop the
wheels locking up on the car if the brakes have been applied too sharply.

» When one of the car wheels rotates too slowly (it is locking up), a magnetic
field sensor sends data to a microprocessor.

» The microprocessor checks the rotation speed of the other three wheels.
» If they are different (rotating faster), the microprocessor sends a signal to

the braking system and the braking pressure to the affected wheel is reduced.
» The wheel’s rotational speed is then increased to match the other wheels.
» The checking of the rotational speed using these magnetic field sensors is

done several times a second and the braking pressure to all the wheels can
be constantly changing to prevent any of the wheels locking up under heavy
braking.

» This is felt as a ‘judder’ on the brake pedal as the braking system is constantly
switched off and on to equalise the rotational speed of all four wheels.

» If one of the wheels is rotating too quickly, braking pressure is increased to
that wheel until it matches the other three.

457591_03_CI_AS & A_Level_CS_068-106.indd 87 26/04/19 7:27 AM

88

3
H

a
r

d
w

a
r

e

3
 b) Secondary storage can be magnetic, optical or solid state.
 Describe two features of each type of storage which differentiates it

from the other two types.
2 a) Explain the main differences in operation of a laser printer compared

with an inkjet printer.
 b) i) Name one application of a laser printer and one application of an

inkjet printer.
 ii) For each of your named applications in part b) i), give a reason why

the chosen printer is the most suitable.
3 An art gallery took several photographs of a valuable, fragile painting.

The images were sent to a computer where they were processed by a 3D
printing application. A 3D printout of the painting was produced showing
the texture of the oil paint, canvas and any flaws in the painting.

 Give reasons why the art gallery would wish to make this 3D replica.
4 The following diagram shows a schematic of a microprocessor-controlled

street lighting system.

sensor

ADC

DAC

street
light

microprocessor

 The microprocessor is used to control the operation of the street lamp.
The lamp is fitted with a light sensor which constantly sends data to the
microprocessor. The data value from the sensor changes according to
whether it is sunny, cloudy, raining, night time, and so on.

 Describe how the microprocessor would be used to automatically switch
on the light at night and switch it off again when it becomes light. Include
a feature to stop the light constantly flickering on and off when it becomes
overcast or cars go past with full headlights at night.

EXTENSION ACTIVITY 3E

1 Look at this simplified diagram of a keyboard;
the letter H has been pressed. Explain:
a) how pressing the letter H has been

recognised by the computer
b) how the computer manages the very slow

process of inputting data from a keyboard.

2 a) Describe how these types of pointing devices
work.
i) Mechanical mouse
ii) Optical mouse

b) Connectivity between mouse and computer
can be through USB cable or wireless.
Explain these two types of connectivity.

conductive layers

H

J letter H has been pressed and
now makes contact with bottom
conductive layer

letter H
interpreted
by computerinsulating layer

G

457591_03_CI_AS & A_Level_CS_068-106.indd 88 26/04/19 7:27 AM

89

3.2
Logic gates and logic circuits

3

3.2.1	 Logic gates
Electronic circuits in computers, many memories and controlling devices are
made up of thousands of logic gates. Logic gates take binary inputs and
produce a binary output. Several logic gates combined together form a logic
circuit and these circuits are designed to carry out a specific function. The
checking of the output from a logic gate or logic circuit can be done using a
truth table.

This section will consider the function and role of logic gates, logic circuits
and truth tables. A number of possible applications of logic circuits will also
be considered. A reference to Boolean algebra will be made throughout this
section, although this is covered in more depth in Chapter 15.

Six different logic gates will be considered in this section.

NOT gate AND gate OR gate

XOR gateNOR gateNAND gate

▲ Figure	3.22 Six types of logic gate

EXTENSION	ACTIVITY	3F

Another new screen technology is known as quantum	LED	(QLED), which is
in direct competition with organic	(LED). Look at this statement:
‘QLED televisions are simply LED televisions that use quantum dots to
enhance their overall performance in key picture quality areas.’
Find out the main differences between QLED and OLED technologies.

3.2	 Logic gates and logic circuits

Key	terms
Logic	gates	– electronic circuits which rely on
‘on/off’ logic. The most common ones are NOT, AND,
OR, NAND, NOR and XOR.
Logic	circuit	– formed from a combination of logic gates
and designed to carry out a particular task. The output
from a logic circuit will be 0 or 1.

Truth	table – a method of checking the output from
a logic circuit. They use all the possible binary input
combinations depending on the number of inputs;
for example, two inputs have 22 (4) possible binary
combinations, three inputs will have 23 (8) possible
binary combinations, and so on.
Boolean	algebra – a form of algebra linked to logic
circuits and based on TRUE and FALSE.

457591_03_CI_AS & A_Level_CS_068-106.indd 89 02/05/19 12:35 PM

90

3
H

a
r

d
w

a
r

e

3
3.2.2	 Truth tables
Truth tables are used to trace the output from a logic gate or logic circuit. The
NOT gate is the only logic gate with one input; the other five gates have two
inputs. When constructing truth tables, all possible combinations of 1s and 0s
which can be input are considered. For the NOT gate (one input) there are only
21 (2) possible binary combinations. For all other gates (two inputs), there are
22 (4) possible binary combinations.

For logic circuits, the number of inputs can be more than 2; for example, three
inputs give a possible 23 (8) binary combinations. And for four inputs, the
number of possible binary combinations is 24 (16). It is clear that the number
of possible binary combinations is a multiple of the number 2 in every case.
Table 3.9 summarises this.

Inputs Inputs Inputs
A B A B C A B C D
0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0

1 1 0 1 1 0 0 1 1

1 0 0 0 1 0 0

1 0 1 0 1 0 1

1 1 0 0 1 1 0

1 1 1 0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

▲ Table	3.9

3.2.3	 The function of the six logic gates
NOT gate

XA

▲ Figure	3.23 NOT gate

Description
The output, X, is 1 if the input A is NOT 1

How	to	write	this
X = NOT A (logic notation)
X = A– (Boolean algebra)

Truth	table

Input Output
A X
0 1

1 0

▲ Table	3.10

457591_03_CI_AS & A_Level_CS_068-106.indd 90 02/05/19 12:36 PM

91

3.2
Logic gates and logic circuits

3
AND gate

A
X

B

▲ Figure 3.24 AND gate

Description
The output, X, is 1 if input A is 1 and input B
is 1

How to write this
X = A AND B (logic notation)
X = A.B (Boolean algebra)

Truth table
Inputs Output

A B X
0 0 0
0 1 0
1 0 0
1 1 1

▲ Table 3.11

OR gate
A

X
B

▲ Figure 3.25 OR gate

Description
The output, X, is 1 if input A is 1 or input B
is 1

How to write this
X = A OR B (logic notation)
X = A + B (Boolean algebra)

Truth table
Inputs Output

A B X
0 0 0
0 1 1
1 0 1
1 1 1

▲ Table 3.12
NAND gate (NOT AND)

A
X

B

▲ Figure 3.26 NAND gate

Description
The output, X, is 1 if input A is NOT 1 or
input B is NOT 1

How to write this
X = A NAND B (logic notation)
X = A.B (Boolean algebra)

Truth table
Inputs Output

A B X
0 0 1
0 1 1
1 0 1
1 1 0

▲ Table 3.13

NOR gate (NOT OR)

A
X

B

▲ Figure 3.27 NOR gate

Description
The output, X, is 1 if:
input A is NOT 1 and input B is NOT 1

How to write this
X = A NOR B (logic notation)
X = A + B (Boolean algebra)

Truth table
Inputs Output

A B X
0 0 1
0 1 0
1 0 0
1 1 0

▲ Table 3.14

457591_03_CI_AS & A_Level_CS_068-106.indd 91 02/05/19 12:36 PM

92

3
H

a
r

d
w

a
r

e

3
XOR gate

A
X

B

▲ Figure 3.28 XOR gate

Description
The output, X, is 1 if (input A is 1 AND input B
is NOT 1) OR (input A is NOT 1 AND input B
is 1)

How to write this
X = A XOR B (logic notation)
X = (A.B) + (A.B) (Boolean algebra)
(Note: this is sometimes written as:
(A + B) . A.B)

Truth table

Inputs Output
A B X
0 0 0

0 1 1

1 0 1

1 1 0

▲ Table 3.15

EXTENSION ACTIVITY 3G

Using truth tables show that X = (A.B) + (A.B) and X = (A + B) . A.B both
represent the XOR logic gate.

You will notice, in the Boolean algebra, three new symbols.

» A dot (.) represents the AND operation (it can be written as ∧).
» A plus sign (+) represents the OR operation (it can be written as ∨).
» A dash above a letter (for example, A) represents the NOT operation.

3.2.4 Logic circuits
When logic gates are combined to carry out a particular function, such as
controlling a robot, they form a logic circuit.

The output from the logic circuit is checked using a truth table. The following
three examples show how to:

» produce a truth table
» design a logic circuit from a given logic statement/Boolean algebra
» design a logic circuit to carry out an actual safety function.

Produce a truth table for the following logic circuit (note the use of at junctions):

A
B

part 1 part 2 part 3

X

C

P

Q

R

Example 3.1

457591_03_CI_AS & A_Level_CS_068-106.indd 92 02/05/19 12:36 PM

93

3.2
Logic gates and logic circuits

3
Solution

There are three inputs to this logic circuit; therefore, there will be eight possible
binary values which can be input.

To show step-wise how the truth table is produced, the logic circuit has been split
up into three parts and intermediate values are shown as P, Q and R.

Part 1
This is the first part of the logic circuit; the first task is to find the intermediate
values P and Q.

A
B

C

P

Q

The value of P is found from the AND gate where the inputs are A and B. The
value of Q is found from the NOR gate where the inputs are B and C. An
intermediate truth table is produced:

Inputs Outputs
A B C P Q
0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 0

1 1 0 1 0

1 1 1 1 0

Part 2
The second part of the logic circuit has P and Q as inputs and the intermediate
output, R.

Q
P

R

This produces the following intermediate
truth table (Note: even though there are
only two inputs to the logic gate, we have
generated eight binary values in Part 1
and these must all be used in this second
truth table).

Inputs Output
P Q R
0 1 1

0 0 0

0 0 0

0 0 0

0 1 1

0 0 0

1 0 1

1 0 1

457591_03_CI_AS & A_Level_CS_068-106.indd 93 26/04/19 7:27 AM

94

3
H

a
r

d
w

a
r

e

3
Part 3
The final part of the logic circuit has R
and C as inputs and the final output, X.

C

R
X

This gives the third intermediate truth
table.

Putting all three intermediate truth
tables together produces the final truth
table which represents the original
logic circuit.

Inputs Intermediate values Output
A B C P Q R X
0 0 0 0 1 1 1

0 0 1 0 0 0 1

0 1 0 0 0 0 0

0 1 1 0 0 0 1

1 0 0 0 1 1 1

1 0 1 0 0 0 1

1 1 0 1 0 1 1

1 1 1 1 0 1 0

ACTIVITY 3B

Produce truth tables for each of the following logic circuits. You are advised to split them up into
intermediate parts to help eliminate errors.

A

a) b) c)

d) e)

B

B

X

A

C

X

X

B
A

C

A

B

X

X

B
A

C

Inputs Output
R C X
1 0 1

0 1 1

0 0 0

0 1 1

1 0 1

0 1 1

1 0 1

1 1 0

457591_03_CI_AS & A_Level_CS_068-106.indd 94 26/04/19 7:27 AM

95

3.2
Logic gates and logic circuits

3
A safety system uses three inputs to a logic circuit. An alarm, X, sounds if input A
represents ON and input B represents OFF, or if input B represents ON and input C
represents OFF.

Produce a logic circuit and truth table to show the conditions which cause the
output X to be 1.

Example 3.2

Solution
The first thing to do is to write down the logic statement representing the
scenario in this example. To do this, it is necessary to recall that ON = 1 and OFF
= 0 and also that 0 is considered to be NOT 1.

So, we get the following logic statement:

X = 1 if (A = 1 AND
B = NOT 1)

OR (B = 1 AND
C = NOT 1)

this equates to
A is ON and B

is OFF

the two parts are
connected by the

OR gate

this equates to
B is ON AND

C is OFF
Part 1 Part 2 Part 3

This statement can also be written in Boolean algebra as:

(A.B) + (B.C)

The logic circuit is made up of three parts as shown in the logic statement. We
will produce the logic gate for the Part 1 and Part 3, then join both parts together
with the OR gate.

A

B

Part 1 Part 3

B

C

Now, combining both parts with Part 2 (the OR gate) gives us:

A

B

Part 1 Part 2

Part 3

C

X

There are two ways to produce the truth table.

l Trace through the logic circuit using the method described in Example 3.1.

l Use the original logic statement; this allows you to check that your logic
circuit is correct.

457591_03_CI_AS & A_Level_CS_068-106.indd 95 26/04/19 7:27 AM

96

3
H

a
r

d
w

a
r

e

3

ACTIVITY 3C

Draw the logic circuits and complete the truth tables for these logic
statements and Boolean algebra statements.
a) X = 1 if (A = 1 OR B = 1) OR (A = 0 AND B = 1)
b) Y = 1 if (A = 0 AND B = 0) AND (B = 0 OR C = 1)
c) T = 1 if (switch K is ON or switch L is ON) OR (switch K is ON and switch M

is OFF) OR (switch M is ON)
d) X = (A.B) + (B.C)
e) R = 1 if (switch A is ON and switch B is ON) AND (switch B is ON or switch

C is OFF)

We will use the second method in this example.

Inputs Intermediate values Output
A B C (A=1 AND

B=NOT 1)
(B=1 AND
C=NOT 1)

X

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 0 0 0

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 0 0 0

A wind turbine has a safety system which uses three inputs to a logic circuit. A
certain combination of conditions results in an output, X, from the logic circuit
being equal to 1. When the value of X = 1, the wind turbine is shut down.

The following table shows which parameters are being monitored and form the
three inputs to the logic circuit.

Parameter description Parameter Binary value Description of condition
turbine speed S 0 turbine speed ≤ 1000 rpm

1 turbine speed > 1000 rpm

bearing temperature T 0 bearing temperature ≤ 80 °C

1 bearing temperature > 80 °C

wind velocity W 0 wind velocity ≤ 120 kph

1 wind velocity > 120 kph

The output, X, will have a value of 1 if any of the following combination of
conditions occur:
l either turbine speed ≤ 1000 rpm and bearing temperature > 80 °C
l or turbine speed > 1000 rpm and wind velocity > 120 kph
l or bearing temperature ≤ 80 °C and wind velocity > 120 kph

Example 3.3

457591_03_CI_AS & A_Level_CS_068-106.indd 96 26/04/19 7:27 AM

97

3.2
Logic gates and logic circuits

3
Design the logic circuit and complete the truth table to produce a value of X = 1
when either of the three conditions occur.

Solution
This is a different type of problem to those covered in Examples 3.1 and 3.2. This
time, a real situation is given and it is necessary to convert the information into a
logic statement and then produce the logic circuit and truth table. It is advisable in
problems as complex as this to produce the logic circuit and truth table separately
(based on the conditions given) and then check them against each other to see if
there are any errors.

Stage 1
The first thing to do is to convert each of the three statements into logic
statements. Use the information given in the table and the three condition
statements to find how the three parameters S, T and W, are linked. We usually
look for the key words AND, OR and NOT when converting actual statements
into logic.

We end up with these three logic statements:

① turbine speed 1000 rpm and bearing temperature > 80 °C
 logic statement: (S = NOT 1 AND T = 1)

② turbine speed > 1000 rpm and wind velocity > 120 kph
 logic statement: (S = 1 AND W = 1)

③ bearing temperature 80 °C and wind velocity > 120 kph
 logic statement: (T = NOT 1 AND W = 1)

Stage 2
This produces three intermediate logic circuits:
①

T

S

② S
W

③

W

T

Each of the three original statements were joined together by the word OR. So,
we need to join all of the three intermediate logic circuits by two OR gates to get
the final logic circuit.

We will start by joining ① and ② together using an OR gate.

W

T

S

457591_03_CI_AS & A_Level_CS_068-106.indd 97 26/04/19 7:27 AM

98

3
H

a
r

d
w

a
r

e

3
Now, we connect this to logic circuit ③ to obtain the final logic circuit.

W

W

T

S

The final part is to produce the truth table. We will do this using the original
logic statement, since this method allows an extra check to be made on the final
logic circuit.

There were three parts to the problem, so the truth table will first evaluate each
part. Then, by applying OR gates, as shown below, the final value, X, is obtained:

① (S = NOT 1 AND T = 1)

② (S = 1 AND W = 1)

③ (T = NOT 1 AND W = 1)

We find the outputs from ① and ② and then OR these two outputs to obtain a
new intermediate, which we will label part ④.

We then OR parts ③ and ④ together to get the value of X.

Inputs Intermediate values Output
A B C ①

(S=NOT 1
AND T=1)

②
(S=1 AND

W=1)

③
(T=NOT 1
AND W=1)

④ X

0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 1

0 1 0 1 0 0 1 1

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 1 0 1 1 1 1

1 1 0 0 0 0 0 0

1 1 1 0 1 0 1 1

ACTIVITY 3D

There are two scenarios described below. In each case, produce the logic
circuit and complete a truth table to represent the scenario.
 a) A chemical process is protected by a logic circuit. There are three

inputs to the logic circuit representing key parameters in the chemical
process.

 An alarm, X, will give an output value of 1 depending on certain
conditions in the chemical process.

457591_03_CI_AS & A_Level_CS_068-106.indd 98 26/04/19 7:27 AM

99

3.2
Logic gates and logic circuits

3

3.2.5 Logic circuits in the real world
The design of logic circuits is considerably more complex than has, so far, been
described. We have discussed some of the fundamental theories, providing
sufficient coverage of the Cambridge International A Level syllabus. However, it
is worth discussing some of the more advanced aspects of logic circuit design,
to strengthen understanding.

Electronics companies need to consider the cost of components, ease of
fabrication and time constraints when designing and building logic circuits.

Ways electronics companies review logic circuit design include:

» using ‘off-the-shelf’ logic units and building up the logic circuit as a number
of ‘building blocks’

» simplifying the logic circuit as far as possible; this may be necessary
where room is at a premium (for example, building circuit boards for use in
satellites for space exploration).

 This table describes the process conditions being monitored.

Parameter
description Parameter

Binary
value Description of condition

chemical
reaction rate

R 0 reaction rate < 40 mol/l/sec

1 reaction rate 40 mol/l/sec

process
temperature

T 0 temperature > 115 °C

1 temperature 115 °C

concentration
of chemicals

C 0 concentration = 4 mol

1 concentration > 4 mol

 An alarm, X, will generate the value 1 if:
 either reaction rate < 40 mol/l/sec
 or concentration > 4 mol AND temperature > 115 °C
 or reaction rate 40 mol/l/sec AND temperature > 115 °C.

 b) A power station has a safety system controlled by a logic circuit. Three
inputs to the logic circuit determine whether the output, S, is 1.

 When S = 1 the power station shuts down.
 The following table describes the conditions being monitored.

Parameter
description Parameter

Binary
value Description of condition

gas temperature G 0 gas temperature 160 °C

1 gas temperature > 160 °C

reactor pressure R 0 reactor pressure 10 bar

1 reactor pressure > 10 bar

water
temperature

W 0 water temperature 120 °C

1 water temperature > 120 °C

 Output, S, will generate a value of 1, if:
 either gas temperature > 160 °C AND water temperature 120 °C
 or gas temperature 160 °C AND reactor pressure > 10 bar
 or water temperature > 120 °C AND reactor pressure > 10 bar.

457591_03_CI_AS & A_Level_CS_068-106.indd 99 26/04/19 7:27 AM

100

3
H

a
r

d
w

a
r

e

3
Using logic ‘building blocks’
One common ‘building block’ is the NAND gate. It is possible to build up any
logic gate, and therefore any logic circuit, by simply linking together a number
of NAND gates, such as:

» the AND gate

A
B

▲ Figure 3.29 AND gate made from NAND gates

» the OR gate

A

B

▲ Figure 3.30 OR gate made from NAND gates

» the NOT gate

A

▲ Figure 3.31 NOT gate made from NAND gates

ACTIVITY 3E

1 By drawing the truth tables, show that the three logic circuits shown
above can be used to represent AND, OR and NOT gates.

2 a) Show how the following logic circuit could be built using NAND gates only.
 Complete truth tables for both logic circuits to show that they produce

identical outputs.

A
B

C

X

 b) Show how the XOR gate could be built from NAND gates only.
 Complete a truth table for your final design to show that it produces

the same output as a single XOR gate.
3 By drawing a truth table, discover which single logic gate has the same

function as the following logic circuit made up of NAND gates only.

X

B

A

457591_03_CI_AS & A_Level_CS_068-106.indd 100 26/04/19 7:27 AM

101

3.2
Logic gates and logic circuits

3
Simplification of logic circuits
The second method involves the simplification of logic circuits. By reducing
the number of components, the cost of production can be less. This can also
improve reliability and make it easier to trace faults if they occur. This is
covered in more depth in Chapter 15.

3.2.6	 Multi-input logic gates
This section looks at logic gates with more than two inputs (apart from the NOT
gate). Students are not expected to answer questions about multi-input logic
gates at Cambridge International AS Level, but this information is included here
for completeness and for those with an electronics background. This is intended to
complete the picture for interested students who may have seen multi-input gates
in other textbooks, or online, and it leads neatly into topics covered in Chapter 15.

Logic gates (apart from the NOT gate) can have more than two inputs. While it is
still acceptable to use two-input logic gates, it is worth considering the multi-
input option when designing logic circuits; they can simplify the overall result.

Multi-input AND gates

A
B

C

A
B
Cis the same as

▲ Figure	3.32 Multi-input AND gate

Both sets of AND gates have the output A.B.C and they share identical truth tables.

Inputs Output
A B C A.B.C
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

▲ Table	3.16

EXTENSION	ACTIVITY	3H

By drawing a truth table, show which single logic gate has the same function
as the logic circuit drawn below.

A

B

X

457591_03_CI_AS & A_Level_CS_068-106.indd 101 4/30/19 7:48 AM

102

3
H

a
r

d
w

a
r

e

3
Now consider the following:

A
B

C

D

A
B
C
Dis the same as

▲ Figure 3.33 4-input AND gate

Both sets of AND gates have the output A.B.C.D and they share identical truth tables.

Inputs Output
A B C D A.B.C.D
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

▲ Table 3.17

Multi-input OR gates
A
B

C

is the same as
A
B
C

▲ Figure 3.34 Multi-input OR gate

Both sets of OR gates have the output A + B + C and they share identical truth tables.

Inputs Output
A B C A + B + C
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

▲ Table 3.18

457591_03_CI_AS & A_Level_CS_068-106.indd 102 26/04/19 7:27 AM

103

3.2
Logic gates and logic circuits

3
Now consider the following:

A
B

C

D

is the same as

A
B
C
D

▲ Figure 3.35 4-input OR gate

Both sets of OR gates have the output A + B + C + D and they share identical
truth tables.

Inputs Output
A B C D A + B + C + D
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

▲ Table 3.19

ACTIVITY 3F

1 a) Draw the following multi-input NAND gate using two-input NAND
gates only:

A
B
C
D

b) Construct the truth tables for the above 4-input NAND gate and for
your circuit drawn in part a). Confirm that they are identical.

2 a) Draw the following multi-input NOR gates using two-input NOR gates only.

A
B
C

A
B
C
D

b) Construct the truth tables for the above 3-input NOR gate and for your
equivalent circuit drawn in part a).

 Confirm they are identical.

457591_03_CI_AS & A_Level_CS_068-106.indd 103 26/04/19 7:27 AM

104

3
H

a
r

d
w

a
r

e

3
c) Construct the truth tables for the above 4-input NOR gate and for your

equivalent circuit drawn in part a).
 Confirm they are identical.

3 Confirm that the following two logic circuits are identical by constructing
the truth tables for each circuit.

C

A
B
C

A
B

1 a) Many mobile phone and tablet manufacturers are moving to OLED screen
technology.

 Give three reasons why this is happening. [3]

b) A television manufacturer makes the following advertising claim:

 ‘Our OLED screens allow the user to enjoy over one million vivid colours in
true-to-life vision.’

 Comment on the validity of this claim. [4]

2 a) A company is developing a new games console. The game will be stored on a
ROM chip once the program to run the new game has been fully tested and
developed.

i) Give two advantages of putting the game’s program on a ROM chip. [2]

ii) Explain why the manufacturers would use an EPROM chip during
development. [2]

iii) The manufacturers are also using RAM chips on the internal circuit board.

 Explain why they are doing this. [2]

iv) The games console will have four USB ports.

 Apart from the need to attach games controllers, give reasons why USB
ports are incorporated. [2]

b) During development of the games console the plastic parts are being made by
a 3D printer.

 Give two reasons why the manufacturer would use 3D printers. [2]

3 An air conditioning unit in a car is being controlled by a microprocessor and a
number of sensors.

a) Describe the main differences between control and monitoring of
a process. [2]

b) Describe how the sensors and microprocessor would be used to control the
air conditioning unit in the car.

 Name at least two different sensors that might be used and explain the role of
positive feedback in your description.

 You might find drawing a diagram of your intended process to
be helpful. [6]

End of chapter
questions

457591_03_CI_AS & A_Level_CS_068-106.indd 104 26/04/19 7:27 AM

105

3.2
Logic gates and logic circuits

3
4 The nine stages in printing a page using an inkjet printer are shown below.

They are not in the correct order.

 Write the letters A to I so that the stages are in the correct order. [9]

A The data is then sent to the printer and it is stored in a temporary memory
known as a printer buffer.

B As the sheet of paper is fed through the printer, the print head moves
from side to side across the paper printing the text or image. The four ink
colours are sprayed in their exact amounts to produce the desired final
colour.

C The data from the document is sent to a printer driver.

D Once the printer buffer is empty, the printer sends an interrupt to the
processor in the computer, which is a request for more data to be sent to the
printer. The whole process continues until the whole of the document has
been printed.

E The printer driver ensures that the data is in a format that the chosen printer
can understand.

F At the end of each full pass of the print head, the paper is advanced very
slightly to allow the next line to be printed. This continues until the whole
page has been printed.

G A check is made by the printer driver to ensure that the chosen printer is
available to print (is it busy? is it off line? is it out of ink? and so on).

H If there is more data in the printer buffer, then the whole process from stage
5 is repeated until the buffer is finally empty.

I A sheet of paper is then fed into the main body of the printer, where a sensor
detects whether paper is available in the paper feed tray – if it is out of
paper (or the paper is jammed) then an error message is sent back to
the computer.

5 a) There are two types of RAM: dynamic RAM (DRAM) and static RAM
(SRAM). Five statements about DRAM and RAM are shown below. Copy
the diagram below and connect each statement to the appropriate type of
RAM. [5]

Statement Type of RAM

requires the data to be refreshed periodically in
order to retain data

has more complex circuitry
DRAM

does not need to be refreshed as the circuit holds
the data as long as the power supply is on

requires higher power consumption which is
significant when used in battery-powered devices

SRAM

used predominantly in cache memory of
processors where speed is important

b) Give three differences between RAM and ROM. [3]

➔

457591_03_CI_AS & A_Level_CS_068-106.indd 105 26/04/19 7:27 AM

106

3
H

a
r

d
w

a
r

e

3
c) DVD-RAM and f lash memory are two examples of storage devices.

 Describe two differences in how they operate. [2]

 Cambridge International AS & A Level Computer Science 9608
Paper 13 Q4 June 2015

6 a) Three digital sensors, A, B and C, are used to monitor a process. The outputs
from the sensors are used as the inputs to a logic circuit. A signal, X, is output
from the logic circuit:

A logic
circuit

output XB
C

 Output, X, has a value of 1 if either of the following two conditions occur:

 – Sensor A outputs the value 1 OR sensor B outputs the value 0.

 – Sensor B outputs the value 1 AND sensor C outputs the value 0.

 Draw a logic circuit to represent these conditions. [5]

b) Copy and complete the truth table for the logic circuit described in
part a). [4]

A B C working space X
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

c) Write a logic statement that describes the following logic circuit. [3]

X

B

C

A

Cambridge International AS & A Level Computer Science 9608
Paper 13 Q6 June 2015

457591_03_CI_AS & A_Level_CS_068-106.indd 106 26/04/19 7:27 AM

107

4.1
C

entral processing unit (C
PU

) architecture

	 4	

4.1	 Central processing unit (CPU)
architecture

Processor	fundamentals

In this chapter, you will learn about

★ the basic Von Neumann model of a computer system
★ the purpose and role of the registers PC, MDR, MAR, ACC, IX, CIR, and

the status registers
★ the purpose and role of the arithmetic logic unit (ALU), control unit

(CU), system clock and immediate access store (IAS)
★ functions of the address bus, data bus and control bus
★ factors affecting computer performance (such as processor type, bus

width, clock speeds, cache memory and use of core processors)
★ the connection of computers to peripheral devices such as Universal

Serial Bus (USB), high definition multimedia interface (HDMI) and
Video Graphics Array (VGA)

★ the fetch-execute cycle and register transfers
★ the purpose of interrupts
★ the relationship between assembly language and machine code (such

as symbolic, absolute and relative addressing)
★ different stages for a two-pass assembler
★ tracing sample assembly language programming code
★ assembly language instruction groups (such as data movement, I/O

operations, arithmetic operations, comparisons, and so on)
★ addressing modes (immediate, direct, indirect, indexed and relative)
★ how to perform binary shifts (including logical, arithmetic, cyclic, left

shift and right shift)
★ how bit manipulation is used to monitor/control a device.

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these four questions before you read the first
part of this chapter.
1 a) Name the main components that make

up a typical computer system.
 b) Tablets and smart phones carry out

many of the functions of a desktop or
laptop computer. Describe the main
differences between the operations of a
desktop or laptop computer and a tablet
or phone.

2 When deciding on which computer, tablet or
phone to buy, which are the main factors that
determine your final choice?

3 Look at a number of computers, laptops and
phones and list (and name) the types of input
and output ports found on each device.

4 At the centre of all of the above electronic
devices is the microprocessor. How has the
development of the microprocessor changed
over the last ten years?

457591_04_CI_AS & A_Level_CS_107-135.indd 107 25/04/19 9:07 AM

108

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
Key	terms
Von	Neumann	architecture – computer architecture
which introduced the concept of the stored program in
the 1940s.
Arithmetic	logic	unit	(ALU) – component in the
processor which carries out all arithmetic and logical
operations.
Control	unit – ensures synchronisation of data flow
and programs throughout the computer by sending out
control signals along the control bus.
System	clock – produces timing signals on the control
bus to ensure synchronisation takes place.
Immediate	access	store	(IAS) – holds all data and
programs needed to be accessed by the control unit.
Accumulator – temporary general purpose register
which stores numerical values at any part of a given
operation.
Register – temporary component in the processor
which can be general or specific in its use that holds
data or instructions as part of the fetch-execute cycle.
Status	register – used when an instruction requires
some form of arithmetic or logical processing.
Flag – indicates the status of a bit in the status register,
for example, N = 1 indicates the result of an addition
gives a negative value.
Address	bus – carries the addresses throughout the
computer system.
Data	bus	– allows data to be carried from processor to
memory (and vice versa) or to and from input/output
devices.
Control	bus – carries signals from control unit to all
other computer components.
Unidirectional – used to describe a bus in which bits
can travel in one direction only.
Bidirectional – used to describe a bus in which bits can
travel in both directions.
Word – group of bits used by a computer to represent a
single unit.
Clock	cycle – clock speeds are measured in terms of
GHz; this is the vibrational frequency of the clock which
sends out pulses along the control bus – a 3.5 GHZ clock
cycle means 3.5 billion clock cycles a second.
Overclocking – changing the clock speed of a system
clock to a value higher than the factory/recommended
setting.
BIOS – basic input/output system.
Cache	memory – a high speed auxiliary memory which
permits high speed data transfer and retrieval.

Core – a unit made up of ALU, control unit and registers
which is part of a CPU. A CPU may contain a number of
cores.
Dual	core – a CPU containing two cores.
Quad	core – a CPU containing four cores.
Port – external connection to a computer which allows
it to communicate with various peripheral devices. A
number of different port technologies exist.
Universal	Serial	Bus	(USB) – a type of port connecting
devices to a computer.
Asynchronous	serial	data	transmission – serial refers
to a single wire being used to transmit bits of data one
after the other. Asynchronous refers to a sender using
its own clock/timer device rather sharing the same
clock/timer with the recipient device.
High-definition	multimedia	interface	(HDMI) – type of
port connecting devices to a computer.
Video	Graphics	Array	(VGA) – type of port connecting
devices to a computer.
High-bandwidth	digital	copy	protection	(HDCP) – part
of HDMI technology which reduces risk of piracy of
software and multimedia.
Fetch-execute	cycle – a cycle in which instructions and
data are fetched from memory and then decoded and
finally executed.
Program	counter	(PC) – a register used in a computer
to store the address of the instruction which is
currently being executed.
Current	instruction	register – a register used to
contain the instruction which is currently being
executed or decoded.
Register	Transfer	Notation	(RTN) – short hand
notation to show movement of data and instructions in
a processor, can be used to represent the operation of
the fetch-execute cycle.
Interrupt – signal sent from a device or software to
a processor requesting its attention; the processor
suspends all operations until the interrupt has been
serviced.
Interrupt	priority – all interrupts are given a priority
so that the processor knows which need to be serviced
first and which interrupts are to be dealt with quickly.
Interrupt	service	routine	(ISR)	or	interrupt	handler –
software which handles interrupt requests (such as
‘printer out of paper’) and sends the request to the CPU
for processing.

457591_04_CI_AS & A_Level_CS_107-135.indd 108 25/04/19 9:07 AM

109

4.1
C

entral processing unit (C
PU

) architecture

4
4.1.1	 Von Neumann model
Early computers were fed data while the machines were running. It was not
possible to store programs or data; that meant they could not operate without
considerable human intervention.

In the mid-1940s, John Von Neumann developed the concept of the stored
program computer. It has been the basis of computer architecture for many
years. The main, previously unavailable, features of the Von Neumann
architecture were

» a central processing unit (CPU or processor)
» a processor able to access the memory directly
» computer memories that could store programs as well as data
» stored programs made up of instructions that could be executed in

sequential order.

Figure 4.1 shows a simple representation of Von Neumann architecture.

address bus

control bus

data bus

CPU

memory address
register (MAR)

program counter
(PC)

system
clock

CONTROL UNIT (CU)

ARITHMETIC AND
LOGIC UNIT (ALU) status registers

(SR)

accumulator
(ACC)

current
instruction

register (CIR)

memory data
register (MDR)

▲ Figure	4.1 Representation of Von Neumann architecture

4.1.2	 Components of the processor (CPU)
The main components of the processor are the arithmetic logic unit (ALU), the
control unit (CU), the system clock and the immediate access store (IAS).

Arithmetic logic unit (ALU)
The ALU allows the required arithmetic or logic operations to be carried out
while a program is being run. It is possible for a computer to have more than
one ALU – one will perform fixed point operations and the other floating-point
operations (see Chapter 13).

Multiplication and division are carried out by a sequence of addition,
subtraction and left/right shifting operations (for example, shifting 0 0 1 1
0 1 1 1 two places to the left gives 1 1 0 1 1 1 0 0, which is equivalent to
multiplying by a factor of 4).

457591_04_CI_AS & A_Level_CS_107-135.indd 109 25/04/19 9:07 AM

110

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
The accumulator (ACC) is a temporary register used when carrying out ALU
calculations.

Control unit (CU)
The CU reads an instruction from memory (the address of the location where the
instruction can be found is stored in the program counter (PC)). This instruction
is then interpreted. During that process, signals are generated along the control
bus to tell the other components in the computer what to do. The CU ensures
synchronisation of data flow and program instructions throughout the computer.

System clock
A system clock is used to produce timing signals on the control bus to ensure
this vital synchronisation takes place – without the clock the computer would
simply crash. (See Section 4.1.4 System buses.)

Immediate access store (IAS)
The IAS holds all the data and programs that the processor (CPU) needs to
access. The CPU takes data and programs held in backing store and puts them
into the IAS temporarily. This is done because read/write operations carried out
using the IAS are considerably faster than read/write operations to backing store.
Consequently, any key data needed by an application will be stored temporarily in
IAS to speed up operations. The IAS is another name for primary (RAM) memory.

4.1.3	 Registers
One of the most fundamental components of the Von Neumann system is the
register. Registers can be general purpose or special purpose. General purpose
registers hold data that is frequently used by the CPU or can be used by the
programmer when addressing the CPU directly. The accumulator is a good
example of a general purpose register and will be used as such throughout this
book. Special purpose registers have a specific function within the CPU and
hold the program state.

The most common special registers referred to in this book are shown in
Table 4.1. The use of many of these registers is explained more fully in
Section 4.1.6 (fetch-execute cycle) and in Section 4.2 (tracing of assembly
code programs).

Register Abbreviation Function/purpose of register
current instruction
register

CIR stores the current instruction being decoded and
executed

index register IX used when carrying out index addressing
operations (assembly code)

memory address
register

MAR stores the address of the memory location
currently being read from or written to

memory data/
buffer register

MDR/MBR stores data which has just been read from memory
or data which is about to be written to memory
(sometimes referred to as MBR)

program counter PC stores the address where the next instruction to be
read can be found

status register SR contain bits which can be set or cleared depending
on the operation (for example, to indicate overflow
in a calculation)

▲ Table	4.1 Common registers

457591_04_CI_AS & A_Level_CS_107-135.indd 110 25/04/19 9:07 AM

111

4.1
C

entral processing unit (C
PU

) architecture

4
All of the registers listed in Table 4.1 (apart from status and index registers) are
used in the fetch-execute cycle, which is covered later in this chapter.

Index registers are best explained when looking at addressing techniques in
assembly code (again, this is covered later in the chapter).

A status register is used when an instruction requires some form of arithmetic
or logic processing. Each bit is known as a flag. Most systems have the
following four flags.

» Carry flag (C) is set to 1 if there is a CARRY following an addition operation
(refer to Chapter 1).

» Negative flag (N) is set to 1 if the result of a calculation yields a NEGATIVE
value.

» Overflow flag (V) is set to 1 if an arithmetic operation results in an
OVERFLOW being produced.

» Zero flag (Z) is set to 1 if the result of an arithmetic or logic operation is ZERO.

Consider this arithmetic operation:

0 1 1 1 0 1 1 1 Flags:

N V C Z

1 1 0 0

+ 0 0 1 1 1 0 0 0
1 0 1 0 1 1 1 1

Since we have two positive numbers being added, the answer should not be
negative. The flags indicate two errors: a negative result, and an overflow
occurred.

Now consider this operation:

 1 0 0 0 1 0 0 0 Flags:

N V C Z

0 1 1 0

+ 1 1 0 0 0 1 1 1
1 0 1 0 0 1 1 1 1

Since we have two negative numbers being added, the answer should be
negative. The flags indicate that two errors have occurred: a carry has been
generated, and a ninth bit overflow has occurred.

Other flags can be generated, such as a parity flag, an interrupt flag or a half-
carry flag.

EXTENSION	ACTIVITY	4A

Find out what conditions could cause:
a) a parity flag (P) being set to 1
b) an interrupt flag (I) being set to 1
c) a zero flag (Z) being set to 1
d) a half-carry flag (H) being set to 1.

457591_04_CI_AS & A_Level_CS_107-135.indd 111 25/04/19 9:07 AM

112

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
4.1.4	 System buses

control bus

address bus

data bus

system bus

CPU memory input/output

ports

▲ Figure	4.2	System buses

(System) buses are used in computers as a parallel transmission component;
each wire in the bus transmits one bit of data. There are three common buses
used in the Von Neumann architecture known as address bus, data bus and
control bus.

Address bus
As the name suggests, the address bus carries addresses throughout
the computer system. Between the CPU and memory the address bus is
unidirectional (in other words, bits can travel in one direction only). This
prevents addresses being carried back to the CPU, which would be undesirable.

The width of a bus is important. The wider the bus, the more memory locations
which can be directly addressed at any given time; for example, a bus of width
16 bits can address 216 (65 536) memory locations, whereas a bus width of
32 bits allows 4 294 967 296 memory locations to be simultaneously addressed.
Even this is not large enough for modern computers, but the technology behind
even wider buses is outside the scope of this book.

Data bus
The data bus is bidirectional (in other words, it allows data to be sent in both
directions along the bus). This means data can be carried from CPU to memory
(and vice versa) as well as to and from input/output devices. It is important
to point out that data can be an address, an instruction or a numerical value.
As with the address bus, the width of the data bus is important: the wider the
bus, the larger the word length that can be transported. (A word is a group of
bits which can be regarded as a single unit, for example, 16-bit, 32-bit or
64-bit word lengths are the most common). Larger word lengths can improve
the computer’s overall performance.

Control bus
The control bus is also bidirectional. It carries signals from the CU to all the
other computer components. It is usually 8-bits wide since it only carries
control signals.

457591_04_CI_AS & A_Level_CS_107-135.indd 112 25/04/19 9:07 AM

113

4.1
C

entral processing unit (C
PU

) architecture

4
It is worth mentioning here the role of the system clock. The clock defines
the clock cycle which synchronises all computer operations. As mentioned
earlier, the control bus transmits timing signals, ensuring everything is fully
synchronised. By increasing clock speed, the processing speed of the computer
is also increased (a typical current value is 3.5 GHz – which means 3.5 billion
clock cycles a second). Although the speed of the computer may have been
increased, it is not possible to say that a computer’s overall performance is
necessarily increased by using a higher clock speed. Four other factors need to
be considered.

1 Width of the address bus and data bus can affect computer performance.
2 Overclocking: the clock speed can be changed by accessing the basic

input/output system (BIOS) and altering the settings. However, using a
clock speed higher than the computer was designed for can lead to problems,
such as
– execution of instructions outside design limits, which can lead to

seriously unsynchronised operations (in other words, an instruction is
unable to complete in time before the next one is due to be executed)
and the computer would frequently crash and become unstable

– serious overheating of the CPU leading to unreliable performance.
3 The use of cache memory can also improve processor performance. It is

similar to RAM in that its contents are lost when the power is turned off.
Cache uses SRAM (see Chapter 3) whereas most computers use DRAM for
main memory. Therefore, cache memories will have faster access times,
since there is no need to keep refreshing, which slows down access time.
When a processor reads memory, it first checks out cache and then moves
on to main memory if the required data is not there. Cache memory stores
frequently used instructions and data that need to be accessed faster. This
improves processor performance.

4 The use of a different number of cores (one core is made up of an ALU, a
CU and the registers) can improve computer performance. Many computers
are dual core (the CPU is made up of two cores) or quad core (the CPU is
made up of four cores). The idea of using more cores alleviates the need to
continually increase clock speeds. However, doubling the number of cores
does not necessarily double the computer’s performance since we have to
take into account the need for the CPU to communicate with each core; this
will reduce overall performance. For example
– dual core has one channel and needs the CPU to communicate with both

cores, reducing some of the potential increase in its performance
– quad core has six channels and needs the CPU to communicate with all

four cores, considerably reducing potential performance.

core 1 core 2 core 3 core 4

core 2core 1

▲ Figure	4.3 Two cores, one channel (left) and four cores, six channels (right)

All of these factors need to be taken into account when considering computer
performance.

457591_04_CI_AS & A_Level_CS_107-135.indd 113 25/04/19 9:07 AM

114

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
In summary

» increasing bus width (data and address buses) increases the performance
and speed of a computer system

» increasing clock speed usually increases the speed of a computer
» a computer’s performance can be changed by altering bus width, clock speed

and use of multi-core CPUs
» use of cache memories can also speed up a processor’s performance.

4.1.5	 Computer ports
Input and output devices are connected to a computer via ports. The
interaction of the ports with connected input and output is controlled by the
control unit. Here we will summarise some of the more common types of ports
found on modern computers.

▲ Figure	4.4 (from left to right) USB cable, HDMI cable, VGA cable

USB ports
The Universal Serial Bus (USB) is an asynchronous serial data transmission
method. It has quickly become the standard method for transferring data
between a computer and a number of devices.

The USB cable consists of a four-wired shielded cable, with two wires for power
and the earth, and two wires used for data transmission. When a device is
plugged into a computer using one of the USB ports

» the computer automatically detects that a device is present (this is due
to a small change in the voltage level on the data signal wires in the
cable)

» the device is automatically recognised, and the appropriate device
driver is loaded up so that computer and device can communicate
effectively

» if a new device is detected, the computer will look for the device driver
which matches the device. If this is not available, the user is prompted to
download the appropriate software.

457591_04_CI_AS & A_Level_CS_107-135.indd 114 25/04/19 9:07 AM

115

4.1
C

entral processing unit (C
PU

) architecture

4
The USB system has become the industry standard, but there are still pros and
cons to using this system, as summarised in Table 4.2.

Pros of USB system Cons of USB system
n devices plugged into the computer

are automatically detected and device
drivers are automatically loaded up

n the connectors can only fit one way,
which prevents incorrect connections
being made

n this has become the industry standard,
which means that considerable support
is available to users

n several different data transmission rates
are supported

n newer USB standards are backward
compatible with older USB standards

n the present transmission rate is limited
to less than 500 megabits per second

n the maximum cable length is presently
about five metres

n the older USB standard (such as 1.1)
may not be supported in the near future

▲ Table	4.2 Pros and cons of the USB system

High-definition multimedia interface (HDMI)
High-definition multimedia interface (HDMI) ports allow output (both audio
and visual) from a computer to an HDMI-enabled device. They support high-
definition signals (enhanced or standard). HDMI was introduced as a digital
replacement for the older Video Graphics Array (VGA) analogue system.
Modern HD (high definition) televisions have the following features, which are
making VGA a redundant technology:

» They use a widescreen format (16:9 aspect ratio).
» The screens use a greater number of pixels (typically 1920 × 1080).
» The screens have a faster refresh rate (such as 120 Hz or 120 frames a

second).
» The range of colours is extremely large (some companies claim up to four

million different colour variations).

This means that modern HD televisions require more data, which has to be
received at a much faster rate than with older televisions (around 10 gigabits
per second). HDMI increases the bandwidth, making it possible to supply the
necessary data for high quality sound and visual effects.

HDMI can also afford some protection against piracy since it uses
high-bandwidth digital copy protection (HDCP). HDCP uses a type of
authentication protocol (see Chapters 6 and 17). For example, a Blu-ray player
will check the authentication key of the device it is sending data to (such as an
HD television). If the key can be authenticated, then handshaking takes place
and the Blu-ray can start to transmit data to the connected device.

Video Graphics Array (VGA)
VGA was introduced at the end of the 1980s. VGA supports 640 × 480 pixel
resolution on a television or monitor screen. It can also handle a refresh rate
of up to 60 Hz (60 frames a second) provided there are only 16 different colours
being used. If the pixel density is reduced to 200 × 320, then it can support up
to 256 colours.

457591_04_CI_AS & A_Level_CS_107-135.indd 115 25/04/19 9:07 AM

116

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
The technology is analogue and, as mentioned in the previous section, is being
phased out.

Table 4.3 summarises the pros and cons of HDMI and VGA.

Pros of HDMI Cons of HDMI
n the current standard for modern

televisions and monitors
n allows for a very fast data transfer rate
n improved security (helps prevent piracy)
n supports modern digital systems

n not a very robust connection (easy to
break connection when simply moving
device)

n limited cable length to retain good
signal

n there are currently five cable/
connection standards

Pros of VGA Cons of VGA
n simpler technology
n only one standard available
n it is easy to split the signal and connect

a number of devices from one source
n the connection is very secure

n old out-dated analogue technology
n it is easy to bend the pins when making

connections
n the cables must be of a very high grade

to ensure good undistorted signal

▲ Table	4.3 Pros and cons of HDMI and VGA

4.1.6	 Fetch-execute cycle
We have already considered the role of buses and registers in the processor.
This next section shows how an instruction is decoded and executed in the
fetch-execute cycle using various components in the processor.

To execute a set of instructions, the processor first fetches data and
instructions from memory and stores them in suitable registers. Both the
address bus and data bus are used in this process. Once this is done, each
instruction needs to be decoded before being executed.

Fetch
The next instruction is fetched from the memory address currently stored in the
program counter (PC) and is then stored in the current instruction register
(CIR). The PC is then incremented (increased by 1) so that the next instruction
can be processed. This is decoded so that each instruction can be interpreted
in the next part of the cycle.

Execute
The processor passes the decoded instruction as a set of control signals to
the appropriate components within the computer system. This allows each
instruction to be carried out in its logical sequence.

Figure 4.5 shows how the fetch-execute cycle is carried out in the Von
Neumann computer model.

457591_04_CI_AS & A_Level_CS_107-135.indd 116 25/04/19 9:07 AM

117

4.1
C

entral processing unit (C
PU

) architecture

4
any

instructions?

the program counter (PC) contains the address of the memory
location of the next instruction which has to be fetched

this address is then copied from the PC to the memory
address register (MAR) using the address bus

the contents (instruction) at the memory location (address)
contained in MAR are then copied temporarily into the

memory data register (MDR)

the contents (instruction) of the MDR are then copied and
placed into the current instruction register (CIR)

service
the

interrupt

the value in the PC is then incremented by one so that it now
points to the next instruction which has to be fetched

the instruction is finally decoded and then executed by sending
out signals (via the control bus) to the various components of

the computer system

any
interrupts to

service?

yes no

START

no

yes

▲ Figure	4.5 How the fetch-execute cycle is carried out in the Von Neumann computer model

When registers are involved, it is possible to describe what is happening by
using Register Transfer Notation (RTN). In its simplest form:

MAR ← [PC] contents of PC copied into MAR

PC ← [PC] + 1 PC is incremented by 1

MDR ← [[MAR]] data stored at address shown in MAR is
copied into MDR

CIR ← [MDR] contents of MDR copied into CIR

Double brackets are used in the third line because it is not MAR contents being
copied into MDR but it is the data stored at the address shown in MAR that is
being copied to MDR.

Compare the above instructions to those shown in Figure 4.5. Inspection should
show the register transfer notation is carrying out the same function.

457591_04_CI_AS & A_Level_CS_107-135.indd 117 25/04/19 9:07 AM

118

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
RTN can be abstract (generic notation – as shown on page 117) or concrete
(specific to a particular machine – example shown below). For example, on a
RISC computer:

instruction _ interpretation := (¬Run/Start →

Run ← 1; instruction _ interpretation):

Run → (CIR ← M[PC]:PC ← PC + 4; instruction _ execution)

Use of interrupts in the fetch-execute cycle
Section 4.1.7 gives a general overview of how a computer uses interrupts to
allow a computer to operate efficiently and to allow it, for example, to carry
out multi-tasking functions. Just before we discuss interrupts in this general
fashion, the following notes explain how interrupts are specifically used in the
fetch-execute cycle.

A special register called the interrupt register is used in the fetch-execute
cycle. While the CPU is in the middle of carrying out this cycle, an interrupt
could occur, which will cause one of the bits in the interrupt register to change
its status. For example, the initial status might be 0000 0000 and a fault might
occur while writing data to the hard drive; this would cause the register to
change to 0000 1000. The following sequence now takes place.

» At the next fetch-execute cycle, the interrupt register is checked bit by bit.
» The contents 0000 1000 would indicate an interrupt occurred during a

previous cycle and it still needs servicing. The CPU would now service this
interrupt or ignore it for now, depending on its priority.

» Once the interrupt is serviced by the CPU, it stops its current task and stores
the contents of its registers (see Section 4.1.7 for more details about how
this is done).

» Control is now transferred to the interrupt handler (or interrupt service
routine, ISR).

» Once the interrupt is fully serviced, the register is reset and the contents of
registers are restored.

Figure 4.6 summarises the interrupt process during the fetch-execute cycle.

Yes

YesNo

fetch the
next

instructions

FETCH stage in the cycle EXECUTE stage in the cycle INTERRUPT stage in the cycle

END

interrupts
are

disabled

START
execute interrupt

service routine (ISR)

suspend execution of
current program/task

interrupts enabled and
interrupt priority

checked

decode and
execute the
instruction

end of the
program?

No

any
interrupts?

▲ Figure 4.6 The interrupt process during the fetch-execute cycle

457591_04_CI_AS & A_Level_CS_107-135.indd 118 4/30/19 7:49 AM

119

4.1
C

entral processing unit (C
PU

) architecture

4
4.1.7	 Interrupts
An interrupt is a signal sent from a device or from software to the processor.
This will cause the processor to temporarily stop what it is doing and service
the interrupt. Interrupts can be caused by, for example

» a timing signal
» input/output processes (a disk drive is ready to receive more data, for example)
» a hardware fault (an error has occurred such as a paper jam in a printer, for

example)
» user interaction (the user pressed a key to interrupt the current process,

such as <CTRL><ALT><BREAK>, for example)
» a software error that cannot be ignored (if an .exe file could not be found

to initiate the execution of a program OR an attempt to divide by zero, for
example).

Once the interrupt signal is received, the processor either carries on with
what it was doing or stops to service the device/program that generated the
interrupt. The computer needs to identify the interrupt type and also establish
the level of interrupt priority.

Interrupts allow computers to carry out many tasks or to have several windows
open at the same time. An example would be downloading a file from the
internet at the same time as listening to some music from the computer library.
Whenever an interrupt is serviced, the status of the current task being run is
saved. The contents of the program counter and other registers are saved. Then,
the interrupt service routine (ISR) is executed by loading the start address
into the program counter. Once the interrupt has been fully serviced, the status
of the interrupted task is reinstated (contents of saved registers retrieved) and
it continues from the point prior to the interrupt being sent.

ACTIVITY	4A	

1	 a) Describe the functions of the following registers.
i) Current instruction register
ii) Memory address register
iii) Program counter

b) Status registers contain flags. Three such flags are named N, C and V.
i) What does each of the three flags represent?
ii) Give an example of the use of each of the three flags.

2	 a) Name three buses used in the Von Neumann architecture.
b) Describe the function of each named bus.
c) Describe how bus width and clock speed can affect computer

performance.

457591_04_CI_AS & A_Level_CS_107-135.indd 119 25/04/19 9:07 AM

120

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
3 Copy the diagram below and connect each feature to the correct port,

HDMI or VGA.

Type of port Feature

analogue interface

can handle maximum refresh rate of 60 GHz

HDMI

digital interface

can give additional protection from piracy

VGA

easier to split the signal

can support refresh rate up to 120 GHz

4	 a) What is meant by the fetch-execute cycle?
b) Using register transfer notation, show the main stages in a typical

fetch-execute cycle.
5 Copy and complete this paragraph by using terms from this chapter.
 The processor data and instructions required for

an application and temporarily stores them in the
until they can be processed.

 The is used to hold the address of the
next instruction to be executed. This address is copied to the

 using the .

 The contents at this address are stored in the .
 Each instruction is then and finally

 sending out using the
. Any calculations carried out are done using the
. During any calculations, data is temporarily held

in a special register known as the .

457591_04_CI_AS & A_Level_CS_107-135.indd 120 25/04/19 9:07 AM

121

4.2
Assem

bly language

4
WHAT	YOU	SHOULD	ALREADY	KNOW
Try these three questions before you start the
second part of this chapter.
1	 a) Name two types of low-level programming

language.
b) Name the only type of programming

language that a CPU recognises.

c) Why do programmers find writing in this
type of programming language difficult?

2 Find at least two different types of CPU and
the language they use.

3 Look at your computer and/or laptop and/or
phone and list the programming language(s)
they use.

Key	terms

Machine	code – the programming language that the
CPU uses.
Instruction – a single operation performed by a CPU.
Assembly	language – a low-level chip/machine specific
programming language that uses mnemonics.
Opcode – short for operation code, the part of a
machine code instruction that identifies the action the
CPU will perform.
Operand – the part of a machine code instruction that
identifies the data to be used by the CPU.
Source	code – a computer program before translation
into machine code.
Assembler – a computer program that translates
programming code written in assembly language into
machine code. Assemblers can be one pass or two pass.
Instruction	set – the complete set of machine code
instructions used by a CPU.
Object	code – a computer program after translation into
machine code.
Addressing	modes – different methods of using
the operand part of a machine code instruction as a
memory address.

Absolute	addressing – mode of addressing in which
the contents of the memory location in the operand are
used.
Direct	addressing – mode of addressing in which the
contents of the memory location in the operand are
used, which is the same as absolute addressing.
Indirect	addressing – mode of addressing in which the
contents of the contents of the memory location in the
operand are used.
Indexed	addressing – mode of addressing in which the
contents of the memory location found by adding the
contents of the index register (IR) to the address of the
memory location in the operand are used.
Immediate	addressing – mode of addressing in which
the value of the operand only is used.
Relative	addressing – mode of addressing in which the
memory address used is the current memory address
added to the operand.
Symbolic	addressing – mode of addressing used in
assembly language programming, where a label is used
instead of a value.

4.2	 Assembly language

4.2.1	 Assembly language and machine code
The only programming language that a CPU can use is machine code.
Every different type of computer/chip has its own set of machine code
instructions. A computer program stored in main memory is a series of
machine code instructions that the CPU can automatically carry out during
the fetch-execute cycle. Each machine code instruction performs one simple
task, for example, storing a value in a memory location at a specified
address. Machine code is binary, it is sometimes displayed on a screen as
hexadecimal so that human programmers can understand machine code
instructions more easily.

457591_04_CI_AS & A_Level_CS_107-135.indd 121 25/04/19 9:07 AM

122

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
Writing programs in machine code is a specialised task that is very time
consuming and often error prone, as the only way to test a program written
in machine code is to run it and see what happens. In order to shorten
the development time for writing computer programs, other programming
languages were developed, where the instructions were easier to learn
and understand. Any program not written in machine code needs to be
translated before the CPU can carry out the instructions, so language
translators were developed.

The first programming language to be developed was assembly language, this
is closely related to machine code and uses mnemonics instead of binary.

LDD Total 0140 00000000110000000

ADD 20 0214 00000001000011000

STO Total 0340 00000001110000000

Assembly language mnemonics Machine code
hexadecimal

Machine code binary

The structure of assembly language and machine code instructions is the same.
Each instruction has an opcode that identifies the operation to be carried out
by the CPU. Most instructions also have an operand that identifies the data to
be used by the opcode.

LDD Total 0140

Assembly language mnemonics Machine code hexadecimal

4.2.2	 Stages of assembly
Before a program written in assembly language (source code) can be executed,
it needs to be translated into machine code. The translation is performed by a
program called an assembler. An assembler translates each assembly language
instruction into a machine code instruction. An assembler also checks the
syntax of the assembly language program to ensure that only opcodes from
the appropriate machine code instruction set are used. This speeds up the
development time, as some errors are identified during translation before the
program is executed.

There are two types of assembler: single pass assemblers and two pass
assemblers. A single pass assembler puts the machine code instructions
straight into the computer memory to be executed. A two pass assembler
produces an object program in machine code that can be stored, loaded then
executed at a later stage. This requires the use of another program called a
loader. Two pass assemblers need to scan the source program twice, so they
can replace labels in the assembly program with memory addresses in the
machine code program.

LDD Total 0140

Assembly language mnemonics Machine code hexadecimal

Opcode OperandOpcode Operand

Memory addressLabel

457591_04_CI_AS & A_Level_CS_107-135.indd 122 25/04/19 9:07 AM

123

4.2
Assem

bly language

4
Pass 1

» Read the assembly language program one line at a time.
» Ignore anything not required, such as comments.
» Allocate a memory address for the line of code.
» Check the opcode is in the instruction set.
» Add any new labels to the symbol table with the address, if known.
» Place address of labelled instruction in the symbol table.

Pass 2

» Read the assembly language program one line at a time.
» Generate object code, including opcode and operand, from the symbol table

generated in Pass 1.
» Save or execute the program.

The second pass is required as some labels may be referred to before their
address is known. For example, Found is a forward reference for the JPN
instruction.

Label Opcode Operand
Notfound: LDD 200

CMP #0

JPN Found

JPE Notfound

Found: OUT

If the program is to be loaded at memory address 100, and each memory
location contains 16 bits, the symbol table for this small section of program
would look like this:

Label Address
Notfound 100

Found 104

4.2.3	 Assembly language instructions
There are different types of assembly language instructions. Examples of each
type are given below.

Data movement instructions
These instructions allow data stored at one location to be copied into the
accumulator. This data can then be stored at another location, used in a
calculation, used for a comparison or output.

457591_04_CI_AS & A_Level_CS_107-135.indd 123 25/04/19 9:07 AM

124

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
Instruction Explanation

Opcode Operand
LDM #n Load the number into ACC (immediate addressing is used)
LDD <address> Load the contents of the specified address into ACC (direct

or absolute addressing is used)
LDI <address> The address to be used is the contents of the specified

address. Load the contents of the contents of the given
address into ACC (indirect addressing is used)

LDX <address> The address to be used is the specified address plus the
contents of the index register. Load the contents of this
calculated address into ACC (indexed addressing is used)

LDR #n Load the number n into IX (immediate addressing is used)
LDR ACC Load the number in the accumulator into IX
MOV <register> Move the contents of the accumulator to the register (IX)
STO <address> Store the contents of ACC into the specified address (direct

or absolute addressing is used)
END Return control to the operating system

ACC is the single accumulator

IX is the Index Register

All numbers are denary unless identified as binary or hexadecimal

B is a binary number, for example B01000011

& is a hexadecimal number, for example &7B

is a denary number

▲ Table	4.4 Data movement instructions

Input and output of data instructions
These instructions allow data to be read from the keyboard or output to the screen.

Instruction Explanation
Opcode Operand
IN Key in a character and store its ASCII value in ACC
OUT Output to the screen the character whose ASCII value is

stored in ACC
No opcode is required as a single character is either input to the accumulator or output
from the accumulator

▲ Table	4.5 Input and output of data instructions

Arithmetic operation instructions
These instructions perform simple calculations on data stored in the accumulator
and store the answer in the accumulator, overwriting the original data.

Instruction Explanation
Opcode Operand
ADD <address> Add the contents of the specified address to the ACC

(direct or absolute addressing is used)
ADD #n Add the denary number n to the ACC
SUB <address> Subtract the contents of the specified address from the ACC
SUB #n Subtract the number n from the ACC
INC <register> Add 1 to the contents of the register (ACC or IX)
DEC <register> Subtract 1 from the contents of the register (ACC or IX)
Answers to calculations are always stored in the accumulator

▲ Table	4.6 Arithmetic operation instructions

457591_04_CI_AS & A_Level_CS_107-135.indd 124 25/04/19 9:07 AM

125

4.2
Assem

bly language

4
Unconditional and conditional instructions

Instruction Explanation
Opcode Operand
JMP <address> Jump to the specified address
JPE <address> Following a compare instruction, jump to the specified

address if the comparison is True
JPN <address> Following a compare instruction, jump to the specified

address if the comparison is False
END Returns control to the operating system

Jump means change the PC to the address specified, so the next instruction to be
executed is the one stored at the specified address, not the one stored at the next
location in memory

▲ Table	4.7 Unconditional and conditional instructions

Compare instructions

Instruction Explanation
Opcode Operand
CMP <address> Compare the contents of ACC with the contents of the

specified address (direct or absolute addressing is used)
CMP #n Compare the contents of ACC with the number n
CMI <address> The address to be used is the contents of the specified

address; compare the contents of the contents of the given
address with ACC (indirect addressing is used)

The contents of the accumulator are always compared

▲ Table	4.8 Compare instructions

4.2.4	 Addressing modes
Assembly language and machine code programs use different addressing modes
depending on the requirements of the program.

Absolute addressing – the contents of the memory location in the operand
are used. For example, if the memory location with address 200 contained the
value 20, the assembly language instruction LDD 200 would store 20 in the
accumulator.

Direct addressing – the contents of the memory location in the operand are
used. For example, if the memory location with address 200 contained the
value 20, the assembly language instruction LDD 200 would store 20 in the
accumulator. Absolute and direct addressing are the same.

Indirect addressing – the contents of the contents of the memory location in
the operand are used. For example, if the memory location with address 200
contained the value 20 and the memory location with address 20 contained
the value 5, the assembly language instruction LDI 200 would store 5 in the
accumulator.

Indexed addressing – the contents of the memory location found by adding
the contents of the index register (IR) to the address of the memory location
in the operand are used. For example, if IR contained the value 4 and memory
location with address 204 contained the value 17, the assembly language
instruction LDX 200 would store 17 in the accumulator.

457591_04_CI_AS & A_Level_CS_107-135.indd 125 25/04/19 9:07 AM

126

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
Immediate addressing – the value of the operand only is used. For example,
the assembly language instruction LDM #200 would store 200 in the
accumulator.

Relative addressing – the memory address used is the current memory address
added to the operand. For example, JMR #5 would transfer control to the
instruction 5 locations after the current instruction.

Symbolic addressing – only used in assembly language programming. A label
is used instead of a value. For example, if the memory location with address
labelled MyStore contained the value 20, the assembly language instruction
LDD MyStore would store 20 in the accumulator.

Labels make it easier to alter assembly language programs because when
absolute addresses are used every reference to that address needs to be edited
if an extra instruction is added, for example.

Label Instruction Explanation
Opcode Operand

<label>: <opcode> <operand> Labels an instruction
<label>: n Gives a symbolic address <label> to the

memory location with the contents n

▲ Table	4.9 Labels

4.2.5	 Simple assembly language programs
A program written in assembly language will need many more instructions than
a program written in a high-level language to perform the same task.

In a high-level language, adding three numbers together and storing the
answer would typically be written as a single instruction:

total = first + second + third

The same task written in assembly language could look like this:

Label Opcode Operand
start: LDD first

ADD second

ADD third

STO total

END

first: #20

second: #30

third: #40

total: #0

If the program is to be loaded at memory address 100 after translation and
each memory location contains 16 bits, the symbol table for this small section
of program would look like this:

457591_04_CI_AS & A_Level_CS_107-135.indd 126 25/04/19 9:07 AM

127

4.2
Assem

bly language

4
Label Address
start 100

first 106

second 107

third 108

total 109

When this section of code is executed, the contents of ACC, CIR and the
variables used can be traced using a trace table.

CIR Opcode Operand ACC first 106 second 107 third 108 total 109

100 LDD first 20 20 30 40 0

101 ADD second 50 20 30 40 0

102 ADD third 90 20 30 40 0

103 STO total 90 20 30 40 90

104 END

In a high-level language, adding a list of numbers together and storing the
answer would typically be written using a loop.

 FOR counter = 1 TO 3

 total = total + number[counter]

 NEXT counter

The same task written in assembly language would require the use of the index
register (IX). The assembly language program could look like this:

Label Opcode Operand Comment
LDM #0 Load 0 into ACC
STO total Store 0 in total
STO counter Store 0 in counter
LDR #0 Set IX to 0

loop: LDX number Load the number indexed by IX into ACC
ADD total Add total to ACC
STO total Store result in total
INC IX Add 1 to the contents of IX
LDD counter Load counter into ACC
INC ACC Add 1 to ACC
STO counter Store result in counter
CMP #3 Compare with 3
JPN loop If ACC not equal to 3 then return to start of

loop
END

number: #5 List of three numbers
#7

#3

counter: counter for loop
total: Storage space for total

457591_04_CI_AS & A_Level_CS_107-135.indd 127 25/04/19 9:07 AM

128

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
If the program is to be loaded at memory address 100 after translation and
each memory location contains 16 bits, the symbol table for this small section
of program would look like this:

Label Address
loop 104

number 115

counter 118

total 119

When this section of code is executed the contents of ACC, CIR, IX and the
variables used can be traced using a trace table:

CIR Opcode Operand ACC IX Counter 118 Total 119
100 LDM #0 0

101 STO total 0 0

102 STO counter 0 0 0

103 LDR #0 0 0 0 0

104 LDX number 5 0 0 0

105 ADD total 5 0 0 0

106 STO total 5 0 0 5

107 INC IX 5 1 0 5

108 LDD counter 0 1 0 5

109 INC ACC 1 1 0 5

110 STO counter 1 1 1 5

111 CMP #3 1 1 1 5

112 JPN loop 1 1 1 5

104 LDX number 7 1 1 5

105 ADD total 12 1 1 5

106 STO total 12 1 1 12

107 INC IX 12 2 1 12

108 LDD counter 1 2 1 12

109 INC ACC 2 2 1 12

110 STO counter 2 2 2 12

111 CMP #3 2 2 2 12

112 JPN loop 2 2 2 12

104 LDX number 3 2 2 12

105 ADD total 15 2 2 12

106 STO total 15 2 2 15

107 INC IX 15 3 2 15

108 LDD counter 2 3 2 15

109 INC ACC 3 3 2 15

110 STO counter 3 3 3 15

111 CMP #3 3 3 3 15

112 JPN loop 3 3 3 15

113 END

457591_04_CI_AS & A_Level_CS_107-135.indd 128 25/04/19 9:07 AM

129

4.2
Assem

bly language

4
ACTIVITY	4B	

1	 a) State the contents of the accumulator after the following instructions
have been executed. The memory location with address 200 contains
300, the memory location with address 300 contains 50.
i) LDM #200
ii) LDD 200
iii) LDI 200

b) Write an assembly language instruction to:
i) compare the accumulator with 5
ii) jump to address 100 if the comparison is true.

2	 a) Copy and complete the symbol table for this assembly language
program. Assume that the translated program will start at memory
address 100.

b) Complete a trace table to show the execution of this assembly
language program.

c) State the task that this assembly language program performs.

Label Opcode Operand
LDD number1

SUB number2

ADD number3

CMP #10

JPE nomore

ADD number4

nomore: STO total

END

number1: #30

number2: #40

number3: #20

number4: #50

total: #0

3	 a) Using the assembly language instructions given in this section, write
an assembly language program to output the ASCII value of each
element of an array of four elements.

b) Complete the symbol table for your assembly language program.
Assume that the translated program will start at memory address
100.

c) Complete a trace table to show the execution of your assembly
language program.

457591_04_CI_AS & A_Level_CS_107-135.indd 129 25/04/19 9:07 AM

130

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
4.3	 Bit manipulation

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these two questions before you start the third part of this chapter.
1) Copy and complete the truth table for AND, OR and XOR.

AND OR XOR

0 0

0 1

1 0

1 1

2) Identify three different types of shift used in computer programming.

Key	terms

Shift – moving the bits stored in a register a given number of places within the
register; there are different types of shift.
Logical	shift – bits shifted out of the register are replaced with zeros.
Arithmetic	shift – the sign of the number is preserved.
Cyclic	shift – no bits are lost, bits shifted out of one end of the register are introduced
at the other end of the register.
Left	shift – bits are shifted to the left.
Right	shift – bits are shifted to the right.
Monitor – to automatically take readings from a device.
Control – to automatically take readings from a device, then use the data from those
readings to adjust the device.
Mask – a number that is used with the logical operators AND, OR or XOR to identify,
remove or set a single bit or group of bits in an address or register.

4.3.1	 Binary shifts
A shift involves moving the bits stored in a register a given number of places
within the register. Each bit within the register may be used for a different
purpose. For example, in the IR each bit identifies a different interrupt.

There are several different types of shift.

Logical shift – bits shifted out of the register are replaced with zeros. For
example, an 8-bit register containing the binary value 10101111 shifted left
logically three places would become 01111000.

Arithmetic shift – the sign of the number is preserved. For example, an 8-bit
register containing the binary value 10101111 shifted right arithmetically three
places would become 11110101. Arithmetic shifts can be used for multiplication
or division by powers of two.

Cyclic shift – no bits are lost during a shift. Bits shifted out of one end of
the register are introduced at the other end of the register. For example, an
8-bit register containing the binary value 10101111 shifted left cyclically three
places would become 01111101.

457591_04_CI_AS & A_Level_CS_107-135.indd 130 25/04/19 9:07 AM

131

4.3
B

it m
anipulation

4
Left shift – bits are shifted to the left; gives the direction of shift for logical,
arithmetic and cyclic shifts.

Right shift – bits are shifted to the right; gives the direction of shift for
logical, arithmetic and cyclic shifts.

Table 4.10 shows the logical shifts that you are expected to use in assembly
language programming.

Instruction Explanation
Opcode Operand
LSL n Bits in ACC are shifted logically n places to the left. Zeros are

introduced on the right-hand end
LSR n Bits in ACC are shifted logically n places to the right. Zeros are

introduced on the left-hand end

Shifts are always performed on the ACC

▲ Table	4.10 Logical shifts in assembly language programming

4.3.2	 Bit manipulation used in monitoring and control
In monitoring and control, each bit in a register or memory location can be
used as a flag and would need to be tested, set or cleared separately.

For example, a control system with eight different sensors would need to record
when the data from each sensor had been processed. This could be shown using
8 different bits in the same memory location.

» AND is used to check if the bit has been set.
» OR is used to set the bit.
» XOR is used to clear a bit that has been set.

Table 4.11 shows the instructions used to check, set and clear a single bit or
group of bits.

Instruction Explanation
Opcode Operand
AND n Bitwise AND operation of the contents of ACC with the

operand
AND <address> Bitwise AND operation of the contents of ACC with the

contents of <address>
XOR n Bitwise XOR operation of the contents of ACC with the

operand
XOR <address> Bitwise XOR operation of the contents of ACC with the

contents of <address>
OR n Bitwise OR operation of the contents of ACC with the operand
OR <address> Bitwise OR operation of the contents of ACC with the

contents of <address>

The results of logical bit manipulation are always stored in the ACC. <address> can be an
absolute address or a symbolic address. The operand is used as the mask to set or clear
bits

▲ Table	4.11 Instructions used to check, set and clear a single bit or group of bits

457591_04_CI_AS & A_Level_CS_107-135.indd 131 25/04/19 9:07 AM

132

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
The assembly language code to test sensor 3 could be:

Opcode Operand Comment
LDD sensors Load content of sensors into ACC
AND #B100 Mask to select bit 3 only
CMP #B100 Check if bit 3 is set
JPN process Jump to process routine if bit not set
LDD sensors Load sensors into ACC
XOR #B100 Clear bit 3 as sensor 3 has been processed

ACTIVITY	4C	

1	 a) State the contents of the accumulator after the following instructions
have been executed. The accumulator contains B00011001.
i) LSL #4
ii) LSR #5

b) Write an assembly language instruction to:
i) set bit 4 in the accumulator
ii) clear bit 1 in the accumulator.

2	 a) Describe the difference between arithmetic shifts and logical shifts.
b) Explain, with the aid of examples, how a cyclic shift works.
c) This register is shown before and after it has been shifted. Identify the

type of shift that has taken place.

0 0 1 1 0 1 0 1

1 0 1 0 1 0 0 0

1 a) Write these six stages of the Von Neumann fetch-execute cycle in the correct
order. [6]

– instruction is copied from the MDR and is placed in the CIR
– the instruction is executed
– the instruction is decoded
– the address contained in PC is copied to the MAR
– the value in PC is incremented by 1
– instruction is copied from memory location in MAR and

placed in MDR

b) Explain how the following affect the performance of a computer system.

i) Width of the data bus and address bus. [2]

ii) The clock speed. [2]

iii) Use of dual core or quad core processors. [2]

c) A student accessed the BIOS on their computer. They increased the clock
speed from 2.5 GHz to 3.2 GHz.

 Explain the potential dangers in doing this. [2]

End of chapter
questions

457591_04_CI_AS & A_Level_CS_107-135.indd 132 25/04/19 9:07 AM

133

4.3
B

it m
anipulation

4
2 a) Explain the main differences between HDMI, VGA and USB ports when

sending data to peripherals. [5]

b) Describe how interrupts can be used to service a printer printing out a large
1000 page document. [5]

3 a) i) Name three special registers used in a typical processor. [3]

ii) Explain the purpose of the three registers named in part i). [3]

b) Explain how interrupts are used when a processor sends a document to a
printer. [4]

4 A programmer is writing a program in assembly language. They need to use shift
instructions.

 Describe, using examples, three types of shift instructions the programmer could
use. [6]

5 An intruder detection system for a large house has four sensors. An 8-bit memory
location stores the output from each sensor in its own bit position.

 The bit value for each sensor shows:

 – 1 – the sensor has been triggered

 – 0 – the sensor has not been triggered

 The bit positions are used as follows:

Not used Sensor 4 Sensor 3 Sensor 2 Sensor 1

 The output from the intruder detection system is a loud alarm.

a) i) State the name of the type of system to which intruder detection systems
belong. [1]

ii) Justify your answer to part i). [1]

b) Name two sensors that could be used in this intruder detection system.

 Give a reason for your choice. [4]

c) The intruder system is set up so that the alarm will only sound if two or more
sensors have been triggered. An assembly language program has been written
to process the contents of the memory location.

➔

457591_04_CI_AS & A_Level_CS_107-135.indd 133 25/04/19 9:07 AM

134

	
4	

P
r

o
c

e
ss

o
r

	f
u

n
d

a
m

e
n

ta
ls

4
This table shows part of the instruction set for the processor used.

Instruction Explanation
Opcode Operand
LDD <address> Direct addressing. Load the contents of the given address

to ACC
STO <address> Store the contents of ACC at the given address
INC <register> Add 1 to the contents of the register (ACC or IX)
ADD <address> Add the contents of the given address to the contents of

ACC
AND <address> Bitwise AND operation of the contents of ACC with the

contents of <address>
CMP #n Compare the contents of ACC with the number n
JMP <address> Jump to the given address
JPE <address> Following a compare instruction, jump to <address> if the

compare was True
JGT <address> Following a compare instruction, jump to <address> if

the content of ACC is greater than the number used in the
compare instruction

END End the program and return to the operating system

Part of the assembly code is:

Opcode Operand

SENSORS: B00001010

COUNT: 0

VALUE: 1

LOOP: LDD SENSORS

AND VALUE

CMP #0

JPE ZERO

LDD COUNT

INC ACC

STO COUNT

ZERO: LDD VALUE

CMP #8

JPE EXIT

ADD VALUE

STO VALUE

JMP LOOP

EXIT: LDD COUNT

TEST: CMP …

JGT ALARM

457591_04_CI_AS & A_Level_CS_107-135.indd 134 25/04/19 9:07 AM

135

4.3
B

it m
anipulation

4
i) Copy the table below and dry run the assembly language code.

 Start at LOOP and finish when EXIT is reached. [4]

BITREG COUNT VALUE ACC
B00001010 0 1

ii) The operand for the instruction labelled TEST is missing.

 State the missing operand. [1]

iii) The intruder detection system is improved and now has eight sensors. One
instruction in the assembly language code will need to be amended.

 Identify this instruction. Write the amended instruction. [2]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q6 June 2016

457591_04_CI_AS & A_Level_CS_107-135.indd 135 25/04/19 9:07 AM

136

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

	 5	 System	software

In this chapter, you will learn about

★ why computers need an operating system
★ key management tasks, such as memory management, file

management, security management, hardware management and
process management

★ the need for utility software, including disk formatters, virus
checkers, defragmentation software, disk content analyse and repair
software, file compression and back-up software

★ program libraries, software under development using program library
software and the benefits to software developers, including the use of
dynamic link library (DLL) files

★ the need for these language translators: assemblers, compilers and
interpreters

★ the benefits and drawbacks of using compilers or interpreters
★ an awareness that high level language programs may be partially

compiled and partially interpreted (such as Javatm)
★ the features of a typical integrated development environment (IDE) for

– coding (using context-sensitive prompts)
– initial error detection (including dynamic syntax checks)
– presentation (including pretty print, expand and collapse code

blocks)
– debugging (for example, single stepping, use of breakpoints,

variables/expressions report windows).

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these five questions before you read the first
part of this chapter.
1 Microprocessors are commonly used to

control microwave ovens, washing machines
and many other household items.

 Explain why it is not necessary for these
devices to have an operating system.

2	 a) Name three of the most common
operating systems used in computers and
other devices, such as mobile phones and
tablets.

b) A manufacturer makes laptop computers,
mobile phones and tablets.

 Explain why it is necessary for the
manufacturer to develop different versions
of its operating system for use on its
computers, mobile phones and tablets.

3 Most operating systems offer a graphic user
interface (GUI) as well as a command line
interface (CLI).
a) What are the main differences between the

two types of interface?

5.1	 Operating systems

457591_05_CI_AS & A_Level_CS_136-158.indd 136 25/04/19 9:27 AM

137

5.1
O

perating system
s

5

Key	terms

CMOS – complementary metal-oxide semiconductor.
Operating	system – software that provides an
environment in which applications can run and provides
an interface between hardware and human operators.
HCI – human–computer interface.
GUI – graphical user interface.
CLI – command line interface.
Icon – small picture or symbol used to represent, for
example, an application on a screen.
WIMP – windows, icons, menu and pointing device.
Post-WIMP – interfaces that go beyond WIMP and use
touch screen technology rather than a pointing device.
Pinching	and	rotating – actions by fingers on a touch
screen to carry out tasks such as move, enlarge,
reduce, and so on.
Memory	management – part of the operating system
that controls the main memory.
Memory	optimisation – function of memory
management that determines how memory is allocated
and deallocated.
Memory	organisation – function of memory
management that determines how much memory is
allocated to an application.
Security	management – part of the operating system
that ensures the integrity, confidentiality and availability
of data.
Contiguous – items next to each other.
Virtual	memory	systems – memory management (part
of OS) that makes use of hardware and software to
enable a computer to compensate for shortage of actual
physical memory.
Memory	protection – function of memory management
that ensures two competing applications cannot use
same memory locations at the same time.
Process	management – part of the operating system
that involves allocation of resources and permits the
sharing and exchange of data.

Hardware	management – part of the operating system
that controls all input/output devices connected to
a computer (made up of sub-management systems
such as printer management, secondary storage
management, and so on).
Device	driver – software that communicates with the
operating system and translates data into a format
understood by the device.
Utility	program – parts of the operating system which
carry out certain functions, such as virus checking,
defragmentation or hard disk formatting.
Disk	formatter – utility that prepares a disk to allow
data/files to be stored and retrieved.
Bad	sector – a faulty sector on an HDD which can be
soft or hard.
Antivirus	software – software that quarantines and
deletes files or programs infected by a virus (or other
malware). It can be run in the background or initiated by
the user.
Heuristic	checking – checking of software for
behaviour that could indicate a possible virus.
Quarantine – file or program identified as being
infected by a virus which has been isolated by
antivirus software before it is deleted at a later
stage.
False	positive – a file or program identified by a virus
checker as being infected but the user knows this
cannot be correct.
Disk	defragmenter – utility that reorganises the
sectors on a hard disk so that files can be stored in
contiguous data blocks.
Disk	content	analysis	software – utility that checks
disk drives for empty space and disk usage by reviewing
files and folders.
Disk	compression – software that compresses data
before storage on an HDD.
Back-up	utility – software that makes copies of files on
another portable storage device.

b) What are the pros and cons of both types
of interface?

c) Who would use each type of interface?
4 Before the advent of the operating system,

computers relied on considerable human
intervention.

 Find out the methods used to start up early
computers to prepare them for the day’s
tasks.

5 Describe the role of buffers and interrupts
when a printing job is being sent to an inkjet
printer.

 Consider the different operational speeds of a
processor and a printer, together with size of
printing job and interrupt priorities.

 Describe potential error scenarios – such as
paper jam, out of paper or out of ink – and
how these could affect the printing job.

457591_05_CI_AS & A_Level_CS_136-158.indd 137 25/04/19 9:27 AM

138

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5

5.1.1	 The need for an operating system
Early computers had no operating system at all. Control software had to be
loaded each time the computer was started – this was done using either paper
tape or punched cards.

In the 1970s, the home computer was becoming increasingly popular. Early
examples, such as the Acorn BBC B, used an internal ROM chip to store part
of the operating system. A cassette tape machine was also used to load the
remainder of the operational software (see Figure 5.1). This was necessary to
‘get the computer started’ and used a welcome cassette tape which had to be
used each time the computer was turned on.

	 	 	

▲ Figure	5.1 An Acorn BBC B (left) and its cassette tape machine (right)

As the hard disk drive (HDD) was developed, operating systems were stored on
the hard disk, and start-up of the motherboard was handled by the basic input/
output system (BIOS). Initially, the BIOS was stored on a ROM chip but, in
modern computers, the BIOS contents are stored on a flash memory chip. The
BIOS configuration is stored in CMOS memory (complementary metal-oxide
semiconductor) which means it can be altered or deleted as required.

The required part of the operating system is copied into RAM – since operating
systems are now so large, it would seriously affect a computer’s performance
if it was all loaded into RAM at once. An operating system provides both the
environment in which applications can be run, and a useable interface between
humans and computer. An operating system also disguises the complexity
of computer hardware. Common examples include Microsoft Windows®, Apple
Mac OS, Google Android and IOS (Apple mobile phones and tablets).

The human–computer interface (HCI) is usually achieved through a graphical
user interface (GUI), although it is possible to use a command line interface
(CLI) if the user wishes to directly communicate with the computer.

A CLI requires a user to type instructions to choose options from menus, open
software, and so on. There are often a number of commands that need to be
typed; for example, to save or load a file. The user, therefore, has to learn a
number of commands (which must be typed exactly with no errors) just to carry
out basic operations. Furthermore, it takes time to key in commands every time
an operation has to be carried out.

Program	library – a library on a computer where
programs and routines are stored which can be freely
accessed by other software developers for use in their
own programs.
Library	program – a program stored in a library for
future use by other programmers.

Library	routine – a tested and ready-to-use routine
available in the development system of a programming
language that can be incorporated into a program.
Dynamic	link	file	(DLL) – a library routine that can
be linked to another program only at the run time
stage.

457591_05_CI_AS & A_Level_CS_136-158.indd 138 25/04/19 9:27 AM

139

5.1
O

perating system
s

5
The advantage of CLI is that the user is in direct communication with the
computer and is not restricted to a number of pre-determined options.

For example, the following section of CLI imports data from table A into table B.
It shows how complex it is just to carry out a straightforward operation.

1. SQLPrepare(hStmt,

2. ? (SQLCHAR *) "INSERT INTO tableB SELECT * FROM tableA",

3. ? SQL_NTS):

4. ? SQLExecute(hStmt);

A GUI allows the user to interact with a computer (or MP3 player, gaming
device, mobile phone, and so on) using pictures or symbols (icons). For
example, the whole of the above CLI code could have been replaced by a single
icon, like the one on the left.

Selecting this icon would execute all of the steps shown in the CLI without the
need to type them.

GUIs use various technologies and devices to provide the user interface.
One of the first commonly used GUI environments was known as windows,
icons, menu and pointing device (WIMP), which was developed for use on
personal computers (PCs). Here, a mouse is used to control a cursor and icons
are selected to open and run windows. Each window contains an application.
Modern computer systems allow several windows to be open at the same time.
An example is shown in Figure 5.2.

▲ Figure	5.2 An example of WIMP

A windows manager looks after the interaction between windows, the
applications and windowing system (which handles the pointing devices and
the cursor’s position).

However, smart phones, tablets and many computers now use a post-WIMP
interaction where fingers are in contact with the screen, allowing actions such
as pinching and rotating which are difficult using a single pointer and device
such as a mouse. Also, simply tapping the icon with a finger (or stylus) will
launch the application. Developments in touch screen technology mean these
flexible HCIs are now readily available.

Table update

457591_05_CI_AS & A_Level_CS_136-158.indd 139 25/04/19 9:27 AM

140

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
5.1.2	 Operating system tasks

operating
system

hardware management

file management security management

memory management

process management

▲ Figure	5.3 Operating system tasks

Memory management
Memory management, as the name suggests, is the management of a
computer’s main memory. This can be broken down into three parts: memory
optimisation, memory organisation and memory protection.

Memory optimisation
Memory optimisation is used to determine how computer memory is allocated
and deallocated when a number of applications are running simultaneously.
It also determines where they are stored in memory. It must, therefore,
keep track of all allocated memory and free memory available for use by
applications. To maintain optimisation of memory, it will also swap data to
and from the HDD or SSD.

Memory organisation
Memory organisation determines how much memory is allocated to an
application, and how the memory can be split up in the most appropriate or
efficient manner.

This can be done with the use of

» a single (contiguous) allocation, where all of the memory is made available
to a single application. This is used by MS-DOS and by embedded systems

» partitioned allocation, where the memory is split up into contiguous
partitions (or blocks) and memory management then allocates a partition
(which can vary in size) to an application

» paged memory, which is similar to partitioned allocation, but each partition
is of a fixed size. This is used by virtual memory systems

» segmented memory, which is different because memory blocks are not
contiguous – each segment of memory will be a logical grouping of data
(such as the data which may make up an array).

Memory protection
Memory protection ensures that two competing applications cannot use the
same memory locations at the same time. If this was not done, data could
be lost, applications could produce incorrect results, there could be security
issues, or the computer may crash.

Memory protection and memory organisation are different aspects of an
operating system. An operating system may use a typical type of memory
organisation (for example, it may use paging or segmentation) but it is always
important that no two applications can occupy the same part of memory.

457591_05_CI_AS & A_Level_CS_136-158.indd 140 25/04/19 9:27 AM

141

5.1
O

perating system
s

5
Therefore, memory protection must always be a part of any type of memory
organisation used.

Figure 5.4 shows how different applications can be kept separate from each other.

These boundaries mark the
upper limits of the
addresses available to each
application (addresses start
at 0 and end at Z); the
boundaries (A + 1, B + 1,
C + 1) are often referred to
as a FENCE

A FENCE defines the
boundary between the
operating system and the
applications; it is not
possible for an application
to access a memory
location which is lower than
the FENCE address

Address

Boundary location is at address (A+1)

Boundary location is at address (B+1)

Boundary location is at address (C+1)

Upper limit to address value (Z)

Memory

operating system

memory allocated
to application 1

memory allocated
to application 2

memory allocated
to application 3

A + 1

B

0

A

B + 1

C

C + 1

Z

▲ Figure	5.4 Memory protection

Security management
Security management is another part of a typical operating system. The
function of security management is to ensure the integrity, confidentiality and
availability of data.

This can be achieved by

» carrying out operating system updates as and when they become available
» ensuring that antivirus software (and other security software) is always up-

to-date
» communicating with, for example, a firewall to check all traffic to and from

the computer
» making use of privileges to prevent users entering ‘private areas’ on a

computer which permits multi-user activity (this is done by setting up user
accounts and making use of passwords and user IDs). This helps to ensure
the privacy of data

» maintaining access rights for all users
» offering the ability for the recovery of data (and system restore) when it has

been lost or corrupted
» helping to prevent illegal intrusion to the computer system (also ensuring

the privacy of data).

Note: many of these features are covered in more depth elsewhere in this
chapter or in other chapters.

EXTENSION	ACTIVITY	5A

While working through the remainder of Chapters 5 and 6, find out all of
the methods available to ensure the security, privacy and integrity of data
and how these link into the operating system security management. It is
important to distinguish between what constitutes security, privacy and
integrity of data.

457591_05_CI_AS & A_Level_CS_136-158.indd 141 25/04/19 9:27 AM

142

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
Process management
A process is a program which is being run on a computer. Process management
involves the allocation of resources and permits the sharing and exchange of
data, thus allowing all processes to be fully synchronised (for example, by the
scheduling of resources, resolution of software conflicts, use of queues and so
on). This is covered in more depth in Chapter 16.

Hardware management
Hardware management involves all input and output peripheral devices.

The functions of hardware management include

» communicating with all input and output devices using device drivers
» translating data from a file (defined by the operating system) into a format

that the input/output device can understand using device drivers
» ensuring each hardware resource has a priority so that it can be used and

released as required.

The management of input/output devices is essentially the control and
management of queues and buffers. For example, when printing out a
document, the printer management

» locates and loads the printer driver into memory
» sends data to a printer buffer ready for printing
» sends data to a printer queue (if the printer is busy or the print job has a

low priority) before sending to the printer buffer
» sends various control commands to the printer throughout the printing

process
» receives and handles error messages and interrupts from the printer.

File management
The main tasks of file management include

» defining the file naming conventions which can be used (filename.docx,
where the extension can be .bat, .htm, .dbf, .txt, .xls, and so on)

» performing specific tasks, such as create, open, close, delete, rename, copy,
move

» maintaining the directory structures
» ensuring access control mechanisms are maintained, such as access rights to

files, password protection, making files available for editing, locking files,
and so on

» specifying the logical file storage format (such as FAT or NTFS if Windows
is being used), depending on which type of disk formatter is used
(see Section 5.1.3)

» ensuring memory allocation for a file by reading it from the HDD/SSD and
loading it into memory.

EXTENSION	ACTIVITY	5B

Write down the tasks carried out by a keyboard manager when a user types
text using a word processor. Consider the use of buffers and queues in your
answer.

457591_05_CI_AS & A_Level_CS_136-158.indd 142 25/04/19 9:27 AM

143

5.1
O

perating system
s

5
5.1.3	 Utility software
Computer users are provided with a number of utility programs that are part of
the operating system. However, users can also install their own utility software
in addition. This software is usually initiated by the user, but some, such as
virus checkers, can be set up to constantly run in the background. Utility
software offered by most operating systems includes

» hard disk formatter
» virus checker
» defragmentation software
» disk contents analysis/repair software
» file compression
» back-up software.

Hard disk formatter
A new hard disk drive needs to be initialised ready for formatting. The
operating system needs to know how to store files and where the files will
be stored on the hard disks. A disk formatter will organise storage space by
assigning it to data blocks (partitions). A disk surface may have a number of
partitions (see Chapter 3 for more details regarding the organisation of data on
hard disks). Note that partitions are contiguous blocks of data.

Once the partitions have been created, they must be formatted. This is usually
done by writing files which will hold directory data and tables of contents
(TOC) at the beginning of each partition. This allows the operating system
to recognise a file and know where to find it on the disk surface. Different
operating systems will use different filing systems; Windows, for example, uses
new technology filing system (NTFS).

When carrying out full formatting using NTFS, all disk sectors are filled with
zeros; these zeros are read back, thus testing the sector, but any data already
stored there will be lost. So, it is important to remember that reformatting
an HDD which has already been used will result in loss of data during the
formatting procedure.

Disk formatters also have checking tools, which are non-destructive tests that
can be carried out on each sector. If any bad sector errors are discovered, the
sectors will be flagged as ‘bad’ and the file tracking records will be reorganised –
this is done by replacing the bad sectors with new unused sectors, effectively
repairing the faulty disk. A damaged file will now contain an ‘empty’ sector,
which allows the file to be read but it will be corrupted since the bad sector will
have contained important (and now lost) data. It would, therefore, be prudent to
delete the damaged file leaving the rest of the HDD effectively repaired.

Bad sectors can be categorised as hard or soft. There are a number of ways that
they can be produced, as shown in Table 5.1.

Hard bad sectors (difficult to repair) Soft bad sectors

n caused by manufacturing errors
n damage to disk surface caused by allowing the read-

write head to touch the disk surface (for example, by
moving HDD without first parking the read-write head)

n system crash which could lead to damage to the disk
surface(s)

n sudden loss of power leading to data corruption in
some of the sectors

n effect of static electricity leading to corruption of
data in some of the sectors on the hard disk surfaces

▲ Table	5.1 Hard and soft bad sectors

457591_05_CI_AS & A_Level_CS_136-158.indd 143 25/04/19 9:27 AM

144

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
Virus checkers
Any computer (including mobile phones and tablets) can be subject to a virus
attack (see Chapter 6).

There are many ways to help prevent viruses, such as being careful when
downloading material from the internet, not opening files or links in emails
from unknown senders, and by only using certified software. However, virus
checkers – which are offered by operating systems – still provide the best
defence against malware, as long as they are kept up to date and constantly run
in the background.

Running antivirus software in the background on a computer will constantly
check for virus attacks. Although various types of antivirus software work in
different ways, they have some common features. They

» check software or files before they are run or loaded on a computer
» compare possible viruses against a database of known viruses
» carry out heuristic checking – this is the checking of software for types of

behaviour that could indicate a possible virus, which is useful if software is
infected by a virus not yet on the database

» put files or programs which may be infected into quarantine, to
– automatically delete the virus, or
– allow the user to decide whether to delete the file (it is possible that the

user knows that the file or program is not infected by a virus – this is known
as a false positive and is one of the drawbacks of antivirus software).

Antivirus software needs to be kept up to date since new viruses are constantly
being discovered. Full system checks need to be carried out once a week, for
example, since some viruses lie dormant and would only be picked up by this
full system scan.

Defragmentation software
As an HDD becomes full, blocks used for files will become scattered all over
the disk surface (in potentially different sectors and tracks as well as different
surfaces). This happens as files are deleted, partially-deleted, extended and
so on. The consequence is slower data access time: the HDD read-write head
requires several movements just to find and retrieve the data making up the
required file. It would be advantageous if files could be stored in contiguous
sectors, considerably reducing HDD head movements.

Note that, due to their different operation when accessing data, this is less of
a problem with SSDs.

Consider the following example using a disk with 12 sectors per surface.

We have three files (1, 2 and 3) stored on track 8 of the disk surface.

sectors:

track 8:

0 1 2 3 4 5 6 7 8 9 10 11

File 1 File 2 File 3

▲ Figure	5.5

File 2 is deleted by the user and file 1 has data added to it. However, the file 2
sectors which become vacant are not filled up straight away by new file 1 data
since this would require ‘too much effort’ for the HDD resources.

457591_05_CI_AS & A_Level_CS_136-158.indd 144 25/04/19 9:27 AM

145

5.1
O

perating system
s

5
We get the following.

track 8: File 1File 1 File 3

▲ Figure	5.6

File 1 has been extended to write data in sectors 10 and 11.

Now, suppose file 3 is extended with the equivalent of 3.25 blocks of data. This
requires filling up sector 9 and then moving to some empty sectors to write the
remainder of the data – the next free sectors are on track 11.

track 8: File 1File 1 File 3

track 11: File 3

▲ Figure	5.7

If this continues, the files just become more and more scattered throughout
the disk surfaces. It is possible for sectors 4, 5 and 6 (on track 8) to eventually
become used if the disk starts to fill up and it has to use up whatever space
is available. A disk defragmenter will rearrange the blocks of data to store
files in contiguous sectors wherever possible; however, if the disk drive
is almost full, defragmentation may not work. Assuming we can carry out
defragmentation, then track 8 now becomes:

track 8: File 1 File 3

▲ Figure	5.8

This allows for much faster data access and retrieval since the HDD now requires
fewer read-write head movements to access and read files 1 and 3. Some
defragmenters also carry out clean up operations. Data blocks can become
damaged after several read/write operations (this is different to bad sectors). If
this happens, they are flagged as ‘unusable’ and any subsequent write operation
will avoid writing data to data blocks which have become affected.

Disk content analysis/repair software
The concept of disk repair software was discussed in the above section. Disk
content analysis software is used to check disk drives for empty space and
disk usage by reviewing files and file folders. This can lead to optimal use
of disk space by the removal of unwanted files and downloads (such as the
deletion of auto saving files, cookies, download files, and so on).

Disk compression and file compression
File compression is essential to save storage space and make it quicker to
download/upload files and quicker to send files via email. It was discussed in
Chapter 1.

Disk compression is much less common these days due to the vast size of HDDs
(often more than 2 TB). The disk compression utility compresses data before
writing it to hard disk (and decompresses it again when reading this data). It is
a high priority utility and will essentially override all other operating system
routines – this is essential because all applications need to have access to the
HDD. It is important not to uninstall disk compression software since this would
render any previously saved data to be unreadable.

457591_05_CI_AS & A_Level_CS_136-158.indd 145 25/04/19 9:27 AM

146

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
Back-up software
While it is sensible to take manual back-ups using, for example, a memory stick
or portable HDD, it is also good practice to use the operating system back-up
utility. This utility will

» allow a schedule for backing up files to be made
» only carry out a back-up procedure if there have been any changes made to a file.

For total security, there should be three versions of a file:

1 The current (working) version stored on the internal HDD.

2 A locally backed up copy of the file (stored on a portable SSD, for example).

3 A remote back-up version stored well away from the computer (using cloud
storage, for example).

Windows environment offers the following facilities using the back-up utility:

» The ability to restore data, files or the computer from the back-up (useful
if there has been a problem and files have been lost and need to be
recovered).

» The ability to create a restore point (this restores a computer to its state at
some point in the past; this can be very useful if a very important file has
been deleted and cannot be recovered by any of the other utilities).

» Options of where to save back-up files; this can be set up from the utility to
ensure files are automatically backed up to a chosen device.

Windows uses File History, which takes snapshots of files and stores them on an
external HDD at regular intervals. Over a period of time, File History builds up a
vast library of past versions of files – this allows a user to choose which version
of the file they want to use. File History defaults to backing up every hour and
retains past versions of files forever unless the user changes the settings.

Mac OS offers the Time Machine back-up utility. This erases the contents of a
selected drive and replaces them with the contents from the back-up. To use
this facility it is necessary to have an external HDD or SSD (connected via USB
port) and ensure that the Time Machine utility is installed and activated on the
selected computer. Time machine will automatically

» back up every hour
» keep daily back-ups for the past month, and
» keep weekly back-ups for all the previous months.

Note that once the back-up HDD or SSD is almost full, the oldest back-ups are
deleted and replaced with the newest back-up data. Figure 5.9 shows the
Time Machine message:

▲ Figure	5.9 Screen shot of Time Machine message

457591_05_CI_AS & A_Level_CS_136-158.indd 146 25/04/19 9:27 AM

147

5.1
O

perating system
s

5
5.1.4	 Program libraries
Program libraries are used

» when software is under development and the programmer can utilise
pre-written subroutines in their own programs, thus saving considerable
development time

» to help a software developer who wishes to use dynamic link library (DLL)
subroutines in their own program, so these subroutines must be available at
run time.

When software routines are written (such as a sort routine), they are frequently
saved in a program library for future use by other programmers. A program
stored in a program library is known as a library program. We also have the
term library routines to describe subroutines which could be used in another
piece of software under development.

Suppose we are writing a game for children with animated graphics (of a
friendly panda) using music routines and some scoreboard graphics.

▲ Figure	5.10

This game could be developed using existing routines from a library.

new game under development

friendly panda
animation routines

children’s music routines

final scoring graphics
▲ Figure	5.11

Well done
Freddie!!

You got 6 right

457591_05_CI_AS & A_Level_CS_136-158.indd 147 25/04/19 9:27 AM

148

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
Developing software in this way

» removes the need to rewrite the many routines every single time (thus
saving considerable time and cost)

» leads to modular programming, which means several programmers can be
working on the same piece of software at the same time

» allows continuity with other games that may form part of a whole range
(in education, where there may be a whole suite of programs, for example)

» allows the maintenance of a ‘corporate image’ in all the software being
developed by a particular company

» saves considerable development time having to test each routine, since the
routines are all fully tested in other software and should be error-free.

All operating systems have two program libraries containing library programs
and library routines: static and dynamic.

In static libraries, software being developed is linked to executable code in the
library at the time of compilation. So the library routines would be embedded
directly into the new program code.

In dynamic libraries, software being developed is not linked to the library
routines until actual run time (these are known as dynamic link library files
or DLL). These library routines would be stand-alone files only being accessed
as required by the new program – the routines will be available to several
applications at the same time.

When using DLL, since the library routines are not loaded into RAM until
required, memory is saved, and software runs faster. For example, suppose
we are writing new software which allows access to a printer as part of its
specification. The main program will be developed and compiled. Once the
object code is run, it will only access (and load up) the printer routine from DLL
when required by the user of the program. The main program will only contain a
link to the printer library routine and will not contain any of the actual printer
routine coding in the main body. Table 5.2 summarises the pros and cons of
using DLL files.

Pros of using DLL files Cons of using DLL files

the executable code of the main program is much smaller
since DLL files are only loaded into memory at run time

the executable code is not self-contained, therefore all
DLL files need to be available at run time otherwise error
messages (such as missing .dll error) will be generated and
the software may even crash

it is possible to make changes to DLL files independently
of the main program, consequently if any changes are
made to the DLL files it will not be necessary to recompile
the main program

any DLL linking software in the main program needs to be
available at run time to allow links with DLL files to be
made

DLL files can be made available to a number of
applications at the same time

if any of the DLL files have been changed (either
intentionally or through corruption) this could lead to the
main program giving unexpected results or even crashing

all of the above save memory and also save execution time malicious changes to DLL files could be due to the result
of malware, thus presenting a risk to the main program
following the linking process

▲ Table	5.2 Pros and cons of using DLL files

457591_05_CI_AS & A_Level_CS_136-158.indd 148 25/04/19 9:27 AM

149

5.2
Language translators

5

5.2	 Language translators

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these two questions before you read the
second part of this chapter:
1	 a) Name two types of language translator.

b) Identify a method, other than using a
translator, of executing a program written
in a high-level language.

2 Most modern language translators offer an
Integrated Development Environment (IDE)
for program development.
a) Which IDE are you using?
b) Describe five features offered by the IDE

you use.
c) Which feature do you find most useful?

Why is it useful to you?

ACTIVITY	5A

1	 a)	 i) Explain why a computer needs an
operating system.

ii) Name two management tasks carried out
by the operating system.

b) A new program is to be written in a high
level language. The developer has decided
to use DLL files in the design of the new
program.
i) Explain what is meant by a DLL file.

How does this differ from a static library
routine?

ii) Describe two potential drawbacks of
using DLL files in the new program.

2 A company produces glossy geography
magazines. Each magazine is produced using
a network of computers where thousands of
photographs and drawings need to be stored.
The computers also have an external link to the
internet.

 Name, and describe the function of, three utility
programs the company would use on all its
computers.

3 A computer user has a number of important
issues, listed below.

 For each issue, name a utility which could help
solve it. Give a reason for each choice.
a) The user wants to send a number of

very large attachments by email, but the
recipient cannot accept attachments greater
than 20 MB.

b) The user has accidentally deleted files in the
past. It is essential that this cannot happen
in the future.

c) The user has had their computer for a
number a years. The time to access and
retrieve data from the hard disk drive is
increasing.

d) Last week, the user clicked on a link in an
email from a friend, since then the user’s
computer is running slowly, files are being
lost, and they are receiving odd messages.

e) Some of the files on the user’s HDD have
corrupted and will not open and this is
affecting the performance of the HDD.

Key	terms
Translator – the systems software used to translate
a source program written in any language other than
machine code.
Compiler – a computer program that translates a
source program written in a high-level language to
machine code or p-code, object code.

Interpreter – a computer program that analyses and
executes a program written in a high-level language line
by line.
Prettyprinting – the practice of displaying or printing
well set out and formatted source code, making it
easier to read and understand.

457591_05_CI_AS & A_Level_CS_136-158.indd 149 25/04/19 9:27 AM

150

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
Integrated	development	environment	(IDE) – a suite of
programs used to write and test a computer program
written in a high-level programming language.
Syntax	error	– an error in the grammar of a source
program.
Logic	error	– an error in the logic of a program.
Debugging – the process of finding logic errors in a
computer program by running or tracing the program.

Single	stepping – the practice of running a program
one line/instruction at a time.
Breakpoint – a deliberate pause in the execution
of a program during testing so that the contents of
variables, registers, and so on can be inspected to aid
debugging.
Report	window – a separate window in the run-time
environment of the IDE that shows the contents of
variables during the execution of a program.

5.2.1	 Translation and execution of programs
Instructions in a program can only be executed when written in machine code
and loaded into the main memory of a computer. Programming instructions
written in any programming language other than machine code must be
translated before they can be used. The systems software used to translate
a source program written in any language other than machine code are
translators. There are three types of translator available, each translator
performs a different role.

Assemblers
Programs written in assembly language are translated into machine code by
an assembler program. Assemblers either store the program directly in main
memory, ready for execution, as it is translated, or they store the translated
program on a storage medium to be used later. If stored for later use, then
a loader program is also needed to load the stored translated program into
main memory before it can be executed. The stored translated program can be
executed many times without being re-translated.

Every different type of computer/chip has its own machine code and assembly
language. For example, MASM is an assembler that is used for the X86 family
of chips, while PIC and GENIE are used for microcontrollers. Assembly language
programs are machine dependent; they are not portable from one type of
computer/chip to another.

Here is a short sample PIC assembly program:

 movlw B’00000000’

 tris PORTB

 movlw B’00000011’

 movwf PORTB

 stop: goto stop

Assembly language programs are often written for tasks that need to be
speedily executed, for example, parts of an operating system, central heating
system or controlling a robot.

EXTENSION	
ACTIVITY	5C

Find out what
task this very
short sample PIC
assembly program
is performing.

457591_05_CI_AS & A_Level_CS_136-158.indd 150 25/04/19 9:27 AM

151

5.2
Language translators

5
Compilers and interpreters
Programs written in a high-level language can be either translated into
machine code by a compiler program, or directly executed line-by-line using an
interpreter program.

Compilers usually store the translated program (object program) on a storage
medium ready to be executed later. A loader program is needed to load the
stored translated program into main memory before it can be executed.
The stored translated program can be executed many times without being
retranslated. The program will only need to be retranslated when changes are
made to the source code.

With an interpreter, no translated program is generated in main memory or
stored for later use. Every line in a program is interpreted then executed each
time the program is run.

High-level language programs are machine independent, portable and can be
run on any type of computer/chip, provided there is a compiler or interpreter
available. For example, Java, Python and Visual Basic® (VB) are high-level
languages often used for teaching programming.

The similarities and differences between assemblers, compilers and interpreters
are shown in Table 5.3.

Assembler Compiler Interpreter

Source program written in assembly language high-level language high-level language

Machine dependent yes no no

Object program generated yes, stored on disk or in
main memory

yes, stored on disk or in
main memory

no, instructions are
executed under the control
of the interpreter

Each line of the source
program generates

one machine code
instruction, one to one
translation

many machine code
instructions, instruction
explosion

many machine code
instructions, instruction
explosion

▲ Table	5.3 Similarities and differences between assemblers, compilers and interpreters

5.2.2	 Pros and cons of compiling or interpreting a program
Both compilers and interpreters are used for programs written in high-level
languages. Some integrated development environments (IDEs) have both
available for programmers, since interpreters are most useful in the early stages
of development and compilers produce a stand-alone program that can be
executed many times without needing the compiler.

Table 5.4 shows the pros (in the blue cells) and cons (in the white cells) of
compilers and interpreters.

Compiler Interpreter
The end user only needs the executable code, therefore, the
end user benefits as there is no need to purchase a compiler
to translate the program before it is used.

The end user will need to purchase a compiler or an
interpreter to translate the source code before it is used.

The developer keeps hold of the source code, so it cannot
be altered or extended by the end user, therefore, the
developer benefits as they can charge for upgrades and
alterations.

The developer relinquishes control of the source code,
making it more difficult to charge for upgrades and
alterations. Since end users can view the source code, they
could potentially use the developer’s intellectual property.

EXTENSION	
ACTIVITY	5D

Find out about
three more high-
level programming
languages that are
being used today.

➔

457591_05_CI_AS & A_Level_CS_136-158.indd 151 25/04/19 9:27 AM

152

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
Compiler Interpreter
Compiled programs take a shorter time to execute as
translation has already been completed and the machine
code generated may have been optimised by the compiler.

An interpreted program can take longer to execute than
the same program when compiled, since each line of the
source code needs to be translated before it is executed
every time the program is run.

Compiled programs have no syntax or semantic errors. Interpreted programs may still contain syntax or semantic
errors if any part of the program has not been fully tested,
these errors will need to be debugged.

The source program can be translated on one type of
computer then executed on another type of computer.

Interpreted programs cannot be interpreted on one type
of computer and run on another type of computer.

A compiler finds all errors in a program. One error detected
can mean that the compiler finds other dependent errors
later on in the program that will not be errors when the
first error is corrected. Therefore, the number of errors
found may be more than the actual number of errors.

It is easier to develop and debug a program using an
interpreter as errors can be corrected on each line and
the program restarted from that place, enabling the
programmer to easily learn from any errors.

Untested programs with errors may cause the computer to
crash.

Untested programs should not be able to cause the
computer to crash.

The developer needs to write special routines in order to
view partial results during development, making it more
difficult to assess the quality of particular sections of
code.

Partial results can be viewed during development,
enabling the developer to make informed decisions about
a section of code, for example whether to continue,
modify, or scrap and start again.

End users do not have access to the source code and
the run-time libraries, meaning they are unable to
make modifications and are reliant on the developer for
updates and alterations.

If an interpreted program is purchased, end users have all the
source code and the run-time libraries, enabling the program
to be modified as required without further purchase.

▲ Table	5.4 Pros (blue cells) and cons (white cells) of compilers and interpreters.

5.2.3	 Partial compiling and interpreting
In order to achieve shorter execution times, many high-level languages
programs use a system that is partially compilation and partially interpretation.
The source code is checked and translated by a compiler into object code.
The compiled object code is a low-level machine independent code, called
intermediate code, p-code or bytecode. To execute the program, the object
code can be interpreted by an interpreter or compiled using a compiler.

For example, Java and Python programs can be translated by a compiler into a
set of instructions for a virtual machine. These instructions, called bytecode,
are then interpreted by an interpreter.

Below are examples of Java and Python intermediate code (bytecode):

Source code:

public class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println("Hello World");

 }

}

457591_05_CI_AS & A_Level_CS_136-158.indd 152 25/04/19 9:27 AM

153

5.2
Language translators

5

5.2.4	 Integrated development environment (IDE)
An integrated development environment (IDE) is used by programmers to
aid the writing and development of programs. There are many different IDEs
available; some just support one programming language, others can be used for
several different programming languages. NetBeans®, PyCharm®, Visual Studio®
and SharpDevelop are all IDEs currently in use.

EXTENSION	ACTIVITY	5F

In small groups investigate different IDEs. See how many different features
are available for your group’s IDE and identify which programming
language(s) are supported. Compare the features of the IDE investigated by
your group with the IDEs investigated by other groups in the class.

Bytecode:

Compiled from "HelloWorld.java"

public class HelloWorld extends java.lang.Object{

public HelloWorld();

 Code:

 0: aload _ 0

 1: invokespecial #1; //Method java/lang/
Object.”<init>”:()V

 4: return

public static void main(java.lang.String[]);

 Code:

 0: getstatic #2; //Field java/lang/System.
out:Ljava/io/PrintStream;

 3: ldc #3; //String Hello World

 5: invokevirtual #4; //Method java/io/PrintStream.
println:(Ljava/lang/String;)V

 8: return

EXTENSION	ACTIVITY	5E

Visual Basic also has an interpreter for bytecode. Find an example of
bytecode for Visual Basic. See if you can find the bytecode for displaying
‘Hello World’ on the screen as in the Python example above.

Source code:

print ("Hello World")

Bytecode:

1 0 LOAD _ NAME 0 (print)

 2 LOAD _ CONST 0 ('Hello World')

 4 CALL _ FUNCTION 1 (1 positional, 0 keyword pair)

 6 RETURN _ VALUE

457591_05_CI_AS & A_Level_CS_136-158.indd 153 4/30/19 7:51 AM

154

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
IDEs usually have

» a source code editor
» a compiler, an interpreter, or both
» a run-time environment with a debugger
» an auto-documenter.

Source code editor
A source code editor allows a program to be written and edited without the
need to use a separate text editor. The use of an integrated source code editor
speeds up the development process, as editing can be done without changing
to a different piece of software each time the program needs correcting or
adding to. Most source code editors colour code the words in the program and
layout the program in a meaningful way (prettyprinting). Some source code
editors also offer context sensitive prompts with text completion for variable
names and reserved words, and provide dynamic syntax checking. Figures 5.12
and 5.13 show these features in the PyCharm source code editor.

colour coded words

context sensitive
prompt offering
text completion

▲ Figure	5.12 PyCharm IDE showing source code editor

Here, string values are shown coloured green and integer values are shown
coloured blue.

▲ Figure	5.13 PyCharm IDE showing dynamic syntax checking

457591_05_CI_AS & A_Level_CS_136-158.indd 154 25/04/19 9:27 AM

155

5.2
Language translators

5
Dynamic syntax checking finds possible syntax errors as the program code
is being typed in to the source code editor and alerts the programmer at the
time, before the source code is interpreted. Many errors can therefore be found
and corrected during program writing and editing before the program is run.
Logic errors can only be found when the program is run.

For larger programs that have more than one code block, some code blocks can
be collapsed to a single line in the editor allowing the programmer to just see
the code blocks that are currently being developed.

Compilers and interpreters
Most IDEs usually provide a compiler and/or an interpreter to run the program.
The interpreter is often used for developing the program and the compiler to
produce the final version of the object code.

source program

run-time environment

▲ Figure	5.14 PyCharm IDE showing both program code and program run

With PyCharm there can be more than one interpreter available for different
versions of the Python language. The program results are shown using the
run-time environment provided.

A run-time environment with a debugger
A debugger is a program that runs the program under development and aids
the process of debugging. It allows the programmer to single step through
the program a line at a time (single stepping) or to set a breakpoint to stop
the execution of the program at a certain point in the source code. A report
window then shows the contents of the variables and expressions evaluated at
that point in the program. This allows the programmer to see if there are any
logic errors in the program and check that the program works as intended.

single step

type and contents of the variables

457591_05_CI_AS & A_Level_CS_136-158.indd 155 25/04/19 9:27 AM

156

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
single step

type and contents of the variables

▲ Figure	5.15 PyCharm IDE showing the report window after line 2 (page 155) and after
line 4 (above)

Each variable used is shown in the report window together with the type and
the contents of the variable at that point in the program. The top variable
shown is the last one that was used.

Answers to calculations and other expressions can also be shown.

▲ Figure	5.16 PyCharm IDE showing the report window with the answer to an expression

457591_05_CI_AS & A_Level_CS_136-158.indd 156 25/04/19 9:27 AM

157

5.2
Language translators

5
Auto-documenter
Most IDEs usually provide an auto-documenter to explain the function and
purpose of programming code.

▲ Figure	5.17 PyCharm IDE showing the quick documentation window for print

1 A programmer is writing a program that includes code from a program library.

a) Describe two benefits to the programmer of using one or more library
routines. [4]

b) The programmer decides to use a Dynamic Link Library (DLL) file.

i) Describe two benefits of using DLL files. [4]

ii) State one drawback of using DLL files. [2]

Cambridge International AS & A Level Computer Science 9608
Paper 12 Q8 November 2016

2 a) The operating system contains code for performing various management
tasks. The appropriate code is run when the user performs actions.

 Copy the diagram below and connect each OS management task to the
appropriate user action. [3]

ACTIVITY	5B

1	 a)	 i) Describe the difference between a compiler and an assembler.
ii) Describe the difference between a compiler and an interpreter.

b) State two benefits and two drawbacks of using an interpreter.
2 A new program is to be written in a high-level language. The programmer

has decided to use an IDE to develop the new program.
a) Explain what is meant by an IDE.
b) Describe three features of an IDE.

End of chapter
questions

➔

457591_05_CI_AS & A_Level_CS_136-158.indd 157 25/04/19 9:27 AM

158

	
5	

Sy
St

e
m

	S
o

ft
w

a
r

e

5
OS management task action

main memory management
The user moves the mouse on the

desktop

input/output management
The user closes the spreadsheet

program

secondary storage
management

The user selects the SAVE command to
save their spreadsheet

human–computer interface
management

The user selects the PRINT command
to output their spreadsheet

b) A user has the following issues with the use of his PC.

 State the utility software which should provide a solution.

i) The hard disk stores a large number of video files. The computer
frequently runs out of storage space. [1]

ii) The user is unable to find an important document. He thinks it
was deleted in error some weeks ago. This must not happen again. [1]

iii) The operating system reports ‘bad sector’ errors. [1]

iv) There have been some unexplained images and advertisements
appearing on the screen. The user suspects it is malware. [1]

Cambridge International AS & A Level Computer Science 9608
Paper 11 Q6 June 2017

	3 File History and Time Machine are examples of back-up utilities offered as part of
two different operating systems.

a) Explain why it is important to back up files on a computer. [2]

b) One of the features offered by both utilities is the possibility of
‘turning back the internal computer clock’.

 Explain why this is an important feature and give two occasions when a
user may wish to use this feature. [4]

c) By using diagrams and written explanation, describe how defragmentation
software works. [4]

4 Assemblers, compilers and interpreters are all used to translate programs.
Discuss the different roles played by each translator. [6]

5 State four features of an IDE that are helpful when coding a program. [4]

457591_05_CI_AS & A_Level_CS_136-158.indd 158 25/04/19 9:27 AM

159

6.1
D

ata security

	 6	

6.1	 Data security

In this chapter, you will learn about

★ the terms security, privacy and integrity of data
★ the need for security of data and security of computer systems
★ security measures to protect computer systems such as user

accounts, passwords, digital signatures, firewalls, antivirus and
anti-spyware software and encryption

★ security threats such as viruses and spyware, hacking, phishing and
pharming

★ methods used to reduce security risks such as encryption and access
rights

★ the use of validation to protect data integrity
★ the use of verification during data entry and data transfer to reduce or

eliminate errors.

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these five questions before you read the first
part of this chapter.
1	 a) What is meant by hacking?

b) Is hacking always an illegal act? Justify
your answer.

2 Contactless credit cards and debit cards are
regarded by some as a security risk.

 Discuss the advantages and disadvantages
of using contactless cards with particular
reference to data security.

3 What are the main differences between
cracking and hacking?

4	 a) What are pop-ups when visiting a website?
Are they a security risk?

b) What are cookies? Do cookies pose a
security threat?

c) Describe:
i) session cookies
ii) permanent cookies
iii) third party cookies.

5 Why must the correct procedures be carried
out when removing a memory stick from a
computer?

Security,	privacy	and	data	
integrity

Key	terms
Data	privacy – the privacy of personal information, or
other information stored on a computer, that should not
be accessed by unauthorised parties.
Data	protection	laws – laws which govern how data
should be kept private and secure.
Data	security – methods taken to prevent unauthorised
access to data and to recover data if lost or corrupted.

User	account – an agreement that allows an individual
to use a computer or network server, often requiring a
user name and password.
Authentication – a way of proving somebody or
something is who or what they claim to be.
Access	rights	(data	security) – use of access levels to ensure
only authorised users can gain access to certain data.

457591_06_CI_AS & A_Level_CS_159-177.indd 159 25/04/19 9:35 AM

160

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6

6.1.1	 Data privacy
Data stored about a person or an organisation must remain private and
unauthorised access to the data must be prevented – data privacy is required.

This is achieved partly by data protection laws. These laws vary from country
to country, but all follow the same eight guiding principles.

1 Data must be fairly and lawfully processed.

2 Data can only be processed for the stated purpose.

3 Data must be adequate, relevant and not excessive.

4 Data must be accurate.

5 Data must not be kept longer than necessary.

6 Data must be processed in accordance with the data subject’s rights.

7 Data must be kept secure.

8 Data must not be transferred to another country unless that country also has
adequate protection.

Data protection laws usually cover organisations rather than private
individuals. Such laws are no guarantee of privacy, but the legal threat of fines
or jail sentences deters most people.

6.1.2	 Preventing data loss and restricting data access
Data security refers to the methods used to prevent unauthorised access to
data, as well as to the data recovery methods if it is lost.

User accounts
User accounts are used to authenticate a user (prove that a user is who
they say they are). User accounts are used on both standalone and networked
computers in case the computer can be accessed by a number of people. This is
often done by a screen prompt asking for a username and password:

Malware – malicious software that seeks to damage or
gain unauthorised access to a computer system.
Firewall – software or hardware that sits between
a computer and external network that monitors and
filters all incoming and outgoing activities.
Anti-spyware	software – software that detects and
removes spyware programs installed illegally on a
user’s computer system.
Encryption – the use of encryption keys to make data
meaningless without the correct decryption key.
Biometrics – use of unique human characteristics to
identify a user (such as fingerprints or face recognition).
Hacking – illegal access to a computer system without
the owner’s permission.
Malicious	hacking – hacking done with the sole intent
of causing harm to a computer system or user (for

example, deletion of files or use of private data to the
hacker’s advantage).
Ethical	hacking – hacking used to test the security
and vulnerability of a computer system. The hacking is
carried out with the permission of the computer system
owner, for example, to help a company identify risks
associated with malicious hacking of their computer
systems.
Phishing – legitimate-looking emails designed to trick
a recipient into giving their personal data to the sender
of the email.
Pharming – redirecting a user to a fake website in order
to illegally obtain personal data about the user.
DNS	cache	poisoning	– altering IP addresses on a DNS
server by a ‘pharmer’ or hacker with the intention of
redirecting a user to their fake website.

457591_06_CI_AS & A_Level_CS_159-177.indd 160 25/04/19 9:35 AM

161

6.1
D

ata security

6

User accounts control access rights. This often involves levels of access. For
example, in a hospital it would not be appropriate for a cleaner to have
access to data about one of the patients. However, a consultant would need
such access. Therefore, most systems have a hierarchy of access levels
depending on a person’s level of security. This could be achieved by
username and password with each username (account) linked to the
appropriate level of access.

Use of passwords
Passwords are used to restrict access to data or systems. They should be hard
to crack and changed frequently to retain security. Passwords can also take the
form of biometrics (such as on a mobile phone, as discussed later). Passwords
are also used, for example, when

» accessing email accounts
» carrying out online banking or shopping
» accessing social networking sites.

It is important that passwords are protected. Some ways of doing this are to

» run anti-spyware software to make sure your passwords are not being relayed
to whoever put the spyware on your computer

» regularly change passwords in case they have been seen by someone else,
illegally or accidentally

» make sure passwords are difficult to crack or guess (for example, do not use
your date of birth or pet’s name).

Passwords are grouped as either strong (hard to crack or guess) or weak
(relatively easy to crack or guess). Strong passwords should contain

» at least one capital letter
» at least one numerical value
» at least one other keyboard character (such as @, *, &)

EXTENSION	
ACTIVITY	6A

An airport uses a
computer system
to control security,
flight bookings,
passenger lists,
administration and
customer services.
Describe how it is
possible to ensure
the safety of the
data on the system
so that senior staff
can see all data,
while customers can
only access flight
times (arrivals and
departures) and duty
free offers.

▲ Figure	6.1 A login screen

username

Need an account? Sign Up

User login

password

keep me logged in

Forgot your password? Click here

Sign In

457591_06_CI_AS & A_Level_CS_159-177.indd 161 25/04/19 9:35 AM

162

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
Example of a strong password: Sy12@#TT90kj=0

Example of a weak password: GREEN

Digital signatures
Digital signatures protect data by providing a way of identifying the sender of,
for example, an email. These are covered in more depth in Chapter 17.

Use of firewalls
A firewall can be software or hardware. It sits between the user’s computer and
an external network (such as the internet) and filters information in and out
of the computer. This allows the user to decide to allow communication with
an external source and warns a user that an external source is trying to access
their computer. Firewalls are the primary defence to any computer system to
protect from hacking, malware (viruses and spyware), phishing and pharming.

▲ Figure	6.2 Firewall

user’s computer firewall (software
or hardware) internet

The tasks carried out by a firewall include

» examining the traffic between the user’s computer (or internal network) and
a public network (such as the internet)

» checking whether incoming or outgoing data meets a given set of criteria
» blocking the traffic if the data fails to meet the criteria, and giving the user

(or network manager) a warning that there may be a security issue
» logging all incoming and outgoing traffic to allow later interrogation by the

user (or network manager)
» preventing access to certain undesirable sites – the firewall can keep a list

of all undesirable IP addresses
» helping to prevent viruses or hackers entering the user’s computer (or

internal network)
» warning the user if some software on their system is trying to access an

external data source (such as an automatic software upgrade). The user is given
the option of allowing it to go ahead or request that such access is denied.

The firewall can be a hardware interface which is located somewhere between
the computer (or internal network external link) and the internet connection. In

EXTENSION	ACTIVITY	6B

Which of the following are weak passwords and which are strong
passwords?

Explain your decision in each case.
a) 25-May-2000
b) Pas5word
c) ChapTer@06
d) AbC*N55!
e) 12345X

457591_06_CI_AS & A_Level_CS_159-177.indd 162 25/04/19 9:35 AM

163

6.1
D

ata security

6
these cases, it is often referred to as a gateway. Alternatively, the firewall can
be software installed on a computer, sometimes as part of the operating system.

However, sometimes the firewall cannot prevent potential harmful traffic. It
cannot

» prevent individuals, on internal networks, using their own modems to
by-pass the firewall

» control employee misconduct or carelessness (for example, control of
passwords or user accounts)

» prevent users on stand-alone computers from disabling the firewall.

These issues require management and/or personal control to ensure the firewall
can work effectively.

Antivirus software
Running antivirus software in the background on a computer will constantly
check for virus attacks. Although different types of antivirus software work in
different ways, they all

» check software or files before they are run or loaded on a computer
» compare possible viruses against a database of known viruses
» carry out heuristic checking (check software for behaviour that could

indicate a virus, which is useful if software is infected by a virus not yet on
the database)

» quarantine files or programs which are possibly infected and
– allow the virus to be automatically deleted, or
– allow the user to make the decision about deletion (it is possible that

the user knows that the file or program is not infected by a virus – this
is known as a false positive and is one of the drawbacks of antivirus
software).

Antivirus software needs to be kept up to date since new viruses are constantly
being discovered. Full system checks need to be carried out regularly (once a
week, for example), since some viruses lie dormant and would only be picked up
by this full system scan.

Anti-spyware software
Anti-spyware software detects and removes spyware programs installed
illegally on a user’s computer system. The software is either based on rules
(it looks for typical features associated with spyware) or based on known file
structures which can identify common spyware programs.

Encryption
If data on a computer has been accessed illegally (by a hacker, for example) it
is possible to encrypt the data, making it virtually impossible to understand
without encryption keys to decode it. This cannot stop a hacker from deleting
the files, but it will stop them using the data for themselves. This is covered in
more depth in Chapter 17.

Biometrics
In an attempt to stay one step ahead of hackers and malware writers, many
modern computer devices use biometrics as part of the password system.
Biometrics rely on the unique characteristics of human beings. Examples
include fingerprint scans, retina scans (pattern of blood capillary structure),
face recognition and voice recognition.

457591_06_CI_AS & A_Level_CS_159-177.indd 163 25/04/19 9:35 AM

164

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
Fingerprint scans
Images of fingerprints are compared against previously scanned fingerprints
stored in a database; if they match then access is allowed; the system
compares patterns of ‘ridges’ and ‘valleys’ which are fairly unique (accuracy
is about 1 in 500).

Retina scans
Retina scans use infra-red to scan the unique pattern of blood vessels in the retina
(at the back of the eye). It requires a person to stay still for 10 to 15 seconds
while the scan takes place; it is very secure since nobody has yet found a way to
duplicate the blood vessels patterns’ (accuracy is about 1 in 10 million).

▲ Figure	6.4 Retina scan

Mobile phones use biometrics to identify if the phone user is the owner.

6.1.3	 Risks to the security of stored data
Hacking
You will see the term hacking used throughout this textbook. There are two
types of hacking: malicious and ethical.

Malicious hacking is the illegal access to a computer system without the user’s
permission or knowledge. It is usually employed with the intention of deleting,
altering or corrupting files, or to gain personal details such as bank account
details. Strong passwords, firewalls and software which can detect illegal
activity all guard against hacking.

Ethical hacking is authorised by companies to check their security measures
and how robust their computer systems are to resist hacking attacks. It is
legal, and is done with a company’s permission with a fee paid to the ethical
hacker.

Malware
Malware is one of the biggest risks to the integrity and security of data on a
computer system. Many software applications sold as antivirus are capable of
identifying and removing most of the forms of malware described below.

Viruses
Programs or program code that can replicate and/or copy themselves with the
intention of deleting or corrupting files or causing the computer to malfunction.

▲ Figure	6.3 Fingerprint

457591_06_CI_AS & A_Level_CS_159-177.indd 164 25/04/19 9:35 AM

165

6.1
D

ata security

6
They need an active host program on the target computer or an operating
system that has already been infected before they can run.

Worms
A type of stand-alone virus that can replicate themselves with the intention of
spreading to other computers; they often use networks to search out computers
with weak security.

Logic bombs
Code embedded in a program on a computer. When certain conditions are met
(such as a specific date) they are activated to carry out tasks such as deleting
files or sending data to a hacker.

Trojan horses
Malicious programs often disguised as legitimate software. They replace all or
part of the legitimate software with the intent of carrying out some harm to
the user’s computer system.

Bots (internet robots)
Not always harmful and can be used, for example, to search automatically for
an item on the internet. However, they can cause harm by taking control over a
computer system and launching attacks.

Spyware
Software that gathers information by monitoring, for example, key presses on
the user’s keyboard. The information is then sent back to the person who sent
the software – sometimes referred to as key logging software.

Phishing
Phishing is when someone sends legitimate-looking emails to users. They
may contain links or attachments which, when clicked, take the user to a fake
website, or they may trick the user into responding with personal data such as
bank account details or credit card numbers. The email often appears to come
from a trusted source such as a bank or service provider. The key is that the
recipient has to carry out a task (click a link, for example) before the phishing
scam causes harm.

There are numerous ways to help prevent phishing attacks:

» Users need to be aware of new phishing scams. Those people in industry or
commerce should undergo frequent security awareness training to become
aware of how to identify phishing (and pharming) scams.

» Do not click on links unless certain that it is safe to do so; fake emails
can often be identified by greetings such as ‘Dear Customer’ or ‘Dear
emailperson@gmail.com’, and so on.

» It is important to run anti-phishing toolbars on web browsers (this includes
tablets and mobile phones) since these will alert the user to malicious
websites contained in an email.

» Look out for https and/or the green padlock symbol in the address bar (both
suggest that traffic to and from the website is encrypted).

» Regularly check online accounts and frequently change passwords.
» Ensure an up-to-date browser, with all of the latest security upgrades,

is running, and run a good firewall in the background at all times. A
combination of a desktop firewall (usually software) and a network firewall
(usually hardware) considerably reduces risk.

457591_06_CI_AS & A_Level_CS_159-177.indd 165 25/04/19 9:35 AM

mailto:emailperson@gmail.com$$$�

166

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
» Be wary of pop-ups – use the web browser to block them; if pop-ups get

through your defences, do not click on ‘cancel’ since this often leads to
phishing or pharming sites – the best option is to select the small X in the
top right hand corner of the pop-up window, which closes it down.

Pharming
Pharming is malicious code installed on a user’s computer or on a web
server. The code re-directs the user to a fake website without their
knowledge (the user does not have to take any action, unlike phishing). The
creator of the malicious code can gain personal data such as bank details
from users. Often, the website appears to belong to a trusted company and
can lead to fraud or identity theft.

Why does pharming pose a threat to data security?
Pharming redirects users to a fake or malicious website set up by, for example,
a hacker. Redirection from a legitimate website can be done using DNS cache
poisoning.

Every time a user types in a URL, their web browser contacts the DNS
server. The IP address of the website is then sent back to their web
browser. However, DNS cache poisoning changes the real IP address values
to those of the fake website consequently, the user’s computer connects to
the fake website.

Pharmers can also send malicious programming code to a user’s computer. The
code is stored on the HDD without their knowledge. Whenever the user types in
the website address of the targeted website, the malicious programming code
alters the IP address sent back to their browser which redirects it to the fake
website.

Protection against pharming
It is possible to mitigate the risk of pharming by

» using antivirus software, which can detect unauthorised alterations to a
website address and warn the user

» using modern web browsers that alert users to pharming and phishing
attacks

» checking the spelling of websites
» checking for https and/or the green padlock symbol in the address bar.

It is more difficult to mitigate risk if the DNS server itself has been infected
(rather than the user’s computer).

EXTENSION	ACTIVITY	6C

Pharmers alter IP addresses in order to send users to fake websites.
However, the internet does not only have one DNS server. Find out how a
user’s internet service provider (ISP) uses its own DNS servers which cache
information from other internet DNS servers.

457591_06_CI_AS & A_Level_CS_159-177.indd 166 25/04/19 9:35 AM

167

6.1
D

ata security

6
6.1.4	 Data recovery
This section covers the potential impact on data caused by accidental
mal-operation, hardware malfunction and software malfunction.

In each case, the method of data recovery and safeguards to minimise the risk
are considered.

accidental loss of
data (for example,
accidental deletion of
a file)

n use back-ups in case the data is lost
or corrupted through an accidental
operation

n save data on a regular basis
n use passwords and user IDs to restrict

access to authorised users only

hardware fault (such
as head crash on the
HDD)

n use back-ups in case data is lost or
corrupted through the hardware fault

n use uninterruptable power supply (USP)
in case power loss causes hardware
malfunction

n save data on a regular basis
n use parallel systems as back-up hardware

software fault (for
example, incompatible
software installed on
the system)

n use back-ups in case the data is lost or
corrupted through the software fault

n save data on a regular basis in case the
software suddenly ‘freezes’ or ‘crashes’
while the user is working on it

incorrect computer
operation (for example,
incorrect shutdown or
procedure for removing
memory stick)

n use back-ups in case data is lost or
corrupted through wrong operation

n correct training procedures so users
are aware of the correct operation of
hardware

▲ Figure	6.5 Safeguards

In all cases, the backing up of data regularly (automatically and/or manually at
the end of the day) onto another medium (such as cloud storage, or removable
HDD) is key to data recovery. The back-up should be stored in a separate
location in case of, for example, a fire or an office break-in. Somebody should
be given the role of carrying out back-ups, to ensure it it always done.

Backing up data may not be a suitable method of recovery in the case of a
virus infection, as the backed up data may contain strands of the virus which
could re-infect the ‘cleaned’ computer.

457591_06_CI_AS & A_Level_CS_159-177.indd 167 25/04/19 9:35 AM

168

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
ACTIVITY	6A

1 A company has offices in four different countries. Communication and
data sharing between the offices is done via computers connecting over
the internet.

 Describe three data security issues the company might encounter during
their day to day communications and data sharing.

 For each issue described, explain why it could be a threat to the security
of the company.

 For each issue described, describe a way to mitigate the threat which has
been posed.

2 Define these three terms.
a) Worm
b) Logic bomb
c) Trojan horse

3 John works for a car company. He maintains the database which contains
all the personal data of the people working for the car company. John was
born on 28 February 1990 and has two pet cats called Felix and Max.
a) John needs to use a password and a username to log onto the

database. Why would the following three passwords not be a good
choice?
i) 280290
ii) FeLix1234
iii) John04

b) Describe how John could improve his passwords.
 How should he maintain his passwords to maximise database

security?
c) When John enters a password on his computer, he is presented with

the following question on screen.

 Why is it important that John always says ‘no’ to this question?
d) John frequently orders goods from an online company called NILE.com.
 He opens an email which purports to be from NILE.com.

 Explain why John should be suspicious of the email.
 Include, in your explanation, the type of security threat identified by

this email.

Would you like to save the password on this device?

Dear NILE.com user

This is to confirm your recent order for:

01230123 A level Computer Science Workbook, $15.90

If this is not your order, please click on the following link and update your
details:

myorders@NILE.com

Thank you. Customer services.

457591_06_CI_AS & A_Level_CS_159-177.indd 168 25/04/19 9:35 AM

http://NILE.com
http://NILE.com
http://NILE.com
mailto:myorders@NILE.com

169

6.2
D

ata integrity

6
6.2	 Data integrity

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these three questions before you read the second part of this chapter.
1 Look at the following validation screen from a spreadsheet.

 Why is it important to have validation in applications such as
spreadsheets?

2 Why is proofreading not the same as verification?
3 Discuss one way online form designers can ensure that only certain

data can be input by a user. Use the date: 12 March 2019 as the
example.

Data stored on a computer should always be accurate, consistent and up to date.
Two of the methods used to ensure data integrity are validation and verification.

The accuracy (integrity) of data can be compromised

» during the data entry and data transmission stages
» by malicious attacks on the data, for example caused by malware and hacking
» by accidental data loss caused through hardware issues.

These risks – together with ways of mitigating them – are discussed in the rest
of this chapter.

6.2.1	 Validation
Validation is a method of checking if entered data is reasonable (and within a
given criteria), but it cannot check if data is correct or accurate. For example,
if somebody accidentally enters their age as 62 instead of 26, it is reasonable

Key	terms
Data	integrity	– the
accuracy, completeness
and consistency of data.
Validation – method
used to ensure entered
data is reasonable and
meets certain input
criteria.
Verification – method
used to ensure data is
correct by using double
entry or visual checks.
Check	digit	– additional
digit appended to a
number to check if
entered data is
error free.
Modulo-11	– method
used to calculate a
check digit based on
modulus division by 11.
Checksum –
verification method
used to check if data
transferred has been
altered or corrupted,
calculated from the
block of data to be sent.
Parity	check – method
used to check if data
has been transferred
correctly that uses
even or odd parity.
Parity	bit – an extra
bit found at the end
of a byte that is set to
1 if the parity of the
byte needs to change
to agree with sender/
receiver parity protocol.
Odd	parity – binary
number with an odd
number of 1-bits.
Even	parity – binary
number with an even
number of 1-bits.
Parity	block – horizontal
and vertical parity check
on a block of data being
transferred.

457591_06_CI_AS & A_Level_CS_159-177.indd 169 25/04/19 9:35 AM

170

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
but not accurate or correct. Validation is carried out by computer software; the
most common types are shown in Table 6.1.

Validation
test

Description Example of data
failing validation test

Example of data
passing validation
test

type checks whether
non-numeric data
has been input into a
numeric-only field

typing sk.34 in a field
which should contain
the price of an item

typing 34.50 in a field
which should contain
the price of an item

range checks whether data
entered is between
a lower and an upper
limit

typing in somebody’s
age as −120

typing in somebody’s
age as 48

format checks whether data
has been entered in the
agreed format

typing in the date as
12-12-20 where the
format is dd/mm/yyyy

typing in the date as
12/12/2020 where the
format is dd/mm/yyyy

length checks whether data
has the required
number of characters or
numbers

typing in a telephone
number as 012 345 678
when it should contain
11 digits

typing in a telephone
number as
012 345 678 90 when it
should contain 11 digits

presence checks to make sure a
field is not left empty
when it should contain
data

please enter passport
number:………………

please enter passport
number: AB 1234567 CD

existence checks if data in a file
or a file name actually
exists

data look up for car
registration plate A123
BCD which does not
exist

data look up for a file
called books_in_stock
which exists in a
database

limit check Checks only one of
the limits (such as
the upper limit OR the
lower limit)

typing in age as −25
where the data entered
should not be negative

typing in somebody’s
age as 72 where the
upper limit is 140

consistency
check

checks whether data
in two or more fields
match up correctly

typing in Mr in the title
field and then choosing
female in the sex field

typing in Ms in the
title field and then
choosing female in the
sex field

uniqueness
check

checks that each
entered value is unique

choosing the user name
MAXIMUS222 in a social
networking site but
the user name already
exists

choosing the website
name Aristooo.com
which is not already
used

▲ Table	6.1	Common validation

6.2.2	 Verification
Verification is a way of preventing errors when data is entered manually (using a
keyboard, for example) or when data is transferred from one computer to another.

Verification during data entry
When data is manually entered into a computer it needs to undergo verification
to ensure there are no errors. There are three ways of doing this: double entry,
visual check and check digits.

Key	terms

Parity	byte – additional
byte sent with
transmitted data to
enable vertical parity
checking (as well
as horizontal parity
checking) to be carried
out.
Automatic	repeat	
request	(ARQ) – a type
of verification check.
Acknowledgement –
message sent to a
receiver to indicate that
data has been received
without error.
Timeout – time allowed
to elapse before an
acknowledgement is
received.

457591_06_CI_AS & A_Level_CS_159-177.indd 170 25/04/19 9:35 AM

http://Aristooo.com

171

6.2
D

ata integrity

6
Double entry
Data is entered twice, using two different people, and then compared (either
after data entry or during the data entry process).

Visual check
Entered data is compared with the original document (in other words, what is
on the screen is compared to the data on the original paper documents).

Check digits
The check digit is an additional digit added to a number (usually in the right-
most position). They are often used in barcodes, ISBNs (found on the cover of a
book) and VINs (vehicle identification number). The check digit can be used to
ensure the barcode, for example, has been correctly inputted. The check digit
can catch errors including

» an incorrect digit being entered (such as 8190 instead of 8180)
» a transposition error where two numbers have been swapped (such as 8108

instead of 8180)
» digits being omitted or added (such as 818 or 81180 instead of 8180)
» phonetic errors such as 13 (thirteen) instead of 30 (thirty).

Figure 6.6 shows a barcode with an ISBN-13 code with check digit.

An example of a check digit calculation is modulo-11. The following algorithm
is used to generate the check digit for a number with seven digits:

1 Each digit in the number is given a weighting of 7, 6, 5, 4, 3, 2 or 1, starting
from the left.

2 The digit is multiplied by its weighting and then each value is added to
make a total.

3 The total is divided by 11 and the remainder subtracted from 11.
4 The check digit is the value generated; note if the check digit is 10 then

X is used.

For example:

Seven digit number: 4 1 5 6 7 1 0
Weighting values: 7 6 5 4 3 2 1
Sum: (7 × 4) + (6 × 1) + (5 × 5) + (4 × 6) + (3 × 7)

+ (2 × 1) + (1 × 0)

= 28 + 6 + 25 + 24 + 21 + 2 + 0
Total: = 106
Divide total by 11: 9 remainder 7
subtract remainder from 11: 11 – 7 = 4 (check digit)
final number: 4 1 5 6 7 1 0 4

When this number is entered, the check digit is recalculated and, if the same
value is not generated, an error has occurred. For example, if 4 1 5 7 6 1 0 4
was entered, the check digit generated would be 3, indicating an error.

9780340983829

▲ Figure	6.6 Barcode

457591_06_CI_AS & A_Level_CS_159-177.indd 171 25/04/19 9:35 AM

172

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
EXTENSION	ACTIVITY	6D

1 Find out how the ISBN-13 method works and confirm that the number
978 034 098 382 has a check digit of 9.

2 Find the check digits for the following numbers using both modulo-11 and
ISBN-13.
a) 213 111 000 428
b) 909 812 123 544

3 Find a common use for the modulo-11 method of generating check digits.

Verification during data transfer
When data is transferred electronically from one device to another, there is
always the possibility of data corruption or even data loss. A number of ways
exist to minimise this risk.

Checksums
A checksum is a method to check if data has been changed or corrupted
following data transmission. Data is sent in blocks and an additional value, the
checksum, is sent at the end of the block of data.

To explain how this works, we will assume the checksum of a block of data is
1 byte in length. This gives a maximum value of 28 − 1 (= 255). The value
0000 0000 is ignored in this calculation. The following explains how a
checksum is generated.

If the sum of all the bytes in the transmitted block of data is ≤ 255, then the
checksum is this value. However, if the sum of all the bytes in the data block
> 255, then the checksum is found using the following simple algorithm.

In the example we will assume the value of X is 1185.

① (X = 1185): 1185/256 = 4.629 divide the sum, X, of the bytes by
256

②
Rounding down to nearest whole
number gives Y = 4

round the answer down to the
nearest whole number, Y

③
Multiplying by 256 gives
Z = Y * 256 = 1024 Z = Y * 256

④
The difference (X – Z) gives the
checksum: (1185 – 1024) = 161 calculate the difference (X – Z)

⑤ This gives the checksum: 161 the value is the checksum
▲ Figure	6.7

When a block of data is about to be transmitted, the checksum for the bytes
is first calculated. This value is transmitted with the block of data. At the
receiving end, the checksum is re-calculated from the block of data received.
This calculated value is compared to the checksum transmitted. If they are the
same, then the data was transmitted without any errors; if they are different,
then a request is sent for the data to be re-transmitted.

457591_06_CI_AS & A_Level_CS_159-177.indd 172 25/04/19 9:35 AM

173

6.2
D

ata integrity

6
Parity checks
A parity check is another method to check whether data has been changed or
corrupted following transmission from one device or medium to another.

A byte of data, for example, is allocated a parity bit. This is allocated before
transmission. Systems that use even parity have an even number of 1-bits;
systems that use odd parity have an odd number of 1-bits.

Consider the following byte:

1 1 0 1 1 0 0

parity bit

▲ Figure	6.8

If this byte is using even parity, then the parity bit needs to be 0 since there is
already an even number of 1-bits (in this case, four).

If odd parity is being used, then the parity bit needs to be 1 to make the
number of 1-bits odd. Therefore, the byte just before transmission would be:

either (even parity): 0 1 1 0 1 1 0 0

 parity bit

or (odd parity): 1 1 1 0 1 1 0 0

 parity bit

▲ Figure	6.9

Before data is transferred, an agreement is made between sender and receiver
regarding which of the two types of parity are used. This is an example of a
protocol.

EXTENSION	ACTIVITY	6E

Find the parity bits for each of the following bytes:
1 1 1 0 1 1 0 1 even parity used
2 0 0 0 1 1 1 1 even parity used
3 0 1 1 1 0 0 0 even parity used
4 1 1 1 0 1 0 0 odd parity used
5 1 0 1 1 0 1 1 odd parity used

If a byte has been transmitted from ‘A’ to ‘B’, and even parity is used, an error
would be flagged if the byte now had an odd number of 1-bits at the receiver’s
end.

For example:

Sender’s byte: 0 1 0 1 1 1 0 0

 parity bit

Receiver’s byte: 0 1 0 0 1 1 0 0

 parity bit

▲ Figure	6.10

457591_06_CI_AS & A_Level_CS_159-177.indd 173 25/04/19 9:35 AM

174

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
In this case, the receiver’s byte has three 1-bits, which means it now has odd
parity, while the byte from the sender had even parity (four 1-bits). This means
an error has occurred during the transmission of the data.

The error is detected by the computer re-calculating the parity of the byte
sent. If even parity has been agreed between sender and receiver, then a
change of parity in the received byte indicates that a transmission error has
occurred.

EXTENSION	ACTIVITY	6F

1 Which of the following bytes have an error following data transmission?
a) 1 1 1 0 1 1 0 1 even parity used
b) 0 1 0 0 1 1 1 1 even parity used
c) 0 0 1 1 1 0 0 0 even parity used
d) 1 1 1 1 0 1 0 0 odd parity used
e) 1 1 0 1 1 0 1 1 odd parity used

2 In each case where an error occurs, can you work out which bit is
incorrect?

Naturally, any of the bits in the above example could have been changed
leading to a transmission error. Therefore, even though an error has been
flagged, it is impossible to know exactly which bit is in error.

One of the ways around this problem is to use parity blocks. In this method,
a block of data is sent and the number of 1-bits are totalled horizontally and
vertically (in other words, a parity check is done in both horizontal and vertical
directions). As the following example shows, this method not only identifies
that an error has occurred but also indicates where the error is.

In this example, nine bytes of data have been transmitted. Agreement has
been made that even parity will be used. Another byte, known as the parity
byte, has also been sent. This byte consists entirely of the parity bits
produced by the vertical parity check. The parity byte also indicates the end
of the block of data.

Table 6.2 shows how the data arrived at the receiving end:

parity bit bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8
byte 1 1 1 1 1 0 1 1 0

byte 2 1 0 0 1 0 1 0 1

byte 3 0 1 1 1 1 1 1 0

byte 4 1 0 0 0 0 0 1 0

byte 5 0 1 1 0 1 0 0 1

byte 6 1 0 0 0 1 0 0 0

byte 7 1 0 1 0 1 1 1 1

byte 8 0 0 0 1 1 0 1 0

byte 9 0 0 0 1 0 0 1 0

parity
byte

1 1 0 1 0 0 0 1

▲ Table	6.2	

457591_06_CI_AS & A_Level_CS_159-177.indd 174 25/04/19 9:35 AM

175

6.2
D

ata integrity

6
A careful study of the table shows that

» byte 8 (row 8) has incorrect parity (there are three 1-bits)
» bit 5 (column 5) also has incorrect parity (there are five 1-bits).

First, the table shows that an error has occurred following data transmission.

Second, at the intersection of row 8 and column 5, the position of the incorrect
bit value (which caused the error) can be found. This means that byte 8 should
have been:

0 0 0 1 0 0 1 0

which would also correct column 5 giving an even vertical parity (now has four
1-bits).

This byte could, therefore, be corrected automatically, as shown above, or an
error message could be relayed back to the sender asking them to re-transmit
the block of data. One final point; if two of the bits change value following
data transmission, it may be impossible to locate the error using the above
method.

For example, using the above example again:

0 1 0 1 1 1 0 0

This byte could reach the destination as:

0 1 1 1 1 1 0 1

or: 0 1 0 1 0 0 0 0

or: 0 1 0 1 0 1 1 0

All three are clearly incorrect, but they have retained even parity so will
not trigger an error message at the receiving end. Clearly, other methods to
complement parity when it comes to error checking of transmitted data are
required (such as checksum).

Automatic repeat request (ARQ)
Automatic repeat request (ARQ) is another method to check data following
data transmission. This method can be summarised as follows:

» ARQ uses acknowledgement (a message sent to the receiver indicating that
data has been received correctly) and timeout (the time interval allowed to
elapse before an acknowledgement is received).

» When the receiving device detects an error following data transmission, it
asks for the data packet to be re-sent.

» If no error is detected, a positive acknowledgement is sent to the sender.
» The sending device will re-send the data package if

– it receives a request to re-send the data, or
– a timeout has occurred.

» The whole process is continuous until the data packet received is correct or
until the ARQ time limit (timeout) is reached.

» ARQ is often used by mobile phone networks to guarantee data integrity.

457591_06_CI_AS & A_Level_CS_159-177.indd 175 25/04/19 9:35 AM

176

6
Se

c
u

r
it

y,
 p

r
iv

a
cy

 a
n

d
 d

at
a

 in
te

g
r

it
y

6
ACTIVITY	6B

1 The following block of data was received after transmission from a
remote computer; odd parity was being used by both sender and receiver.

 One of the bits has been changed during the transmission stage.
 Locate where this error is and suggest a corrected byte value:

parity
bit

bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

byte 1 0 1 1 0 0 0 1 0

byte 2 1 0 1 1 1 1 1 1

byte 3 1 0 0 1 1 0 0 0

byte 4 0 1 1 0 1 0 1 0

byte 5 1 1 1 0 0 1 1 0

byte 6 1 0 0 0 0 1 0 1

byte 7 0 1 1 1 0 0 0 0

byte 8 0 0 0 0 0 0 0 1

byte 9 0 1 1 1 1 0 1 0

parity
byte

1 0 1 1 1 1 0 0

2	 a) A company is collecting data about new customers and is using an
online form to collect the data, as shown below.

 Describe a suitable validation check for each of the four groups of fields.

① Name of person

② Date of birth

③ Telephone number

④ Title

Sex Female: Male:

b) Explain the differences between validation and verification.
 Why are both methods used to maintain the integrity of data?

3 A shopkeeper is populating a database containing information about
goods for sale in their shop.

 They are entering the data manually, using both validation and verification
to ensure the integrity of the entered data.

 Here is an example of a record:

A21516BX 25 205.50 03334445556

code of the item
NXXXXNN
(N = letter;
X = digit)

number in stock
(1–100)

unit cost in
dollars

telephone
number of

supplier of item

a) Describe how verification could be used to ensure the accuracy of the
entered data.

b) Describe suitable validation checks for all four fields and give
examples of data which would fail your chosen validation methods.

457591_06_CI_AS & A_Level_CS_159-177.indd 176 25/04/19 9:35 AM

177

6.2
D

ata integrity

6
1 A college is using a local area network (LAN) to access data from a database.

a) Give two security measures to protect the data on the college’s computer
system. [2]

b) Data regarding new students joining the college is being entered into the
database.

 Each student has a 7-digit identification number (ID).

 A check digit is used as a form of checking to ensure errors have not
been made when entering the ID numbers. The verification routine uses
modulo-11 with the check digit as the eighth (right-most) digit.

 The weightings used to calculate the check digit are: 7, 6, 5, 4, 3, 2 and 1;
the value 7 is the multiplier for the left-most digit.

 The ID number is: 1 5 6 3 4 1 2

 Calculate the check digit. [4]

c) Name and describe two validation checks that could be carried out on the
student ID number. [4]

2 a) Explain what antivirus software is and how it can be used to ensure data
security. [4]

b) Explain how a firewall can be used to identify illegal attempts at accessing a
computer system and how they can be used to keep data safe. [4]

3 The following block of data was received after transmission from a remote computer.

 Odd parity was being used by both sender and receiver.

 One of the bits has been changed during the transmission stage.

 Locate where this error is and suggest a corrected byte value. [5]

parity
bit

bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

byte 1 0 1 0 0 1 0 0 1

byte 2 0 0 1 1 1 1 1 0

byte 3 1 0 0 0 0 1 1 0

byte 4 1 0 1 1 0 0 0 0

byte 5 1 1 1 0 1 1 1 0

byte 6 0 1 0 0 0 1 0 1

byte 7 1 0 0 1 1 0 1 1

byte 8 1 1 0 1 1 0 0 1

byte 9 0 1 0 1 1 1 1 0

parity
byte

0 0 0 0 1 1 0 1

End of chapter
questions

457591_06_CI_AS & A_Level_CS_159-177.indd 177 25/04/19 9:35 AM

178

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

	 7	 Ethics	and	ownership

In this chapter, you will learn about

★ the need for and purpose of ethics as a computer science professional
★ the need to act ethically at all times
★ the impact of acting ethically or unethically in a given situation
★ the need for copyright legislation
★ the different types of software licensing, including free software, open

source software, shareware and commercial software
★ the impact of artificial intelligence (AI) on social, economic and

environmental issues.

WHAT YOU SHOULD ALREADY KNOW
Try these four questions before you
read this chapter.
1 a) What is meant by an expert

system?
b) Name four components of a

typical expert system.
c) Give three examples of the

use of an expert system.
2 a) What is meant by copyright?

b) Why is copyright important?
c) Give examples of items

which would be covered by
copyright laws.

d) Differentiate between
the terms plagiarism and
copyright.

3 a) What impact do computers
have on the general public
with regards to
i) jobs/employment
ii) the environment
iii) how we shop and bank
iv) human interactions?

b) Describe three positive
aspects of the impact of
computers on society.

4 What is the influence of social
media on
a) news reporting
b) world safety
c) personal and private lives of

people
d) politics?

457591_07_CI_AS & A_Level_CS_178-195.indd 178 4/30/19 7:52 AM

179

7.1
Legal, m

oral, ethical and cultural im
plications

7
7.1 Legal, moral, ethical and cultural

implications
Key terms
Legal – relating to, or permissible by, law.
Morality – an understanding of the difference between
right and wrong, often founded in personal beliefs.
Ethics – moral principles governing an individual’s or
organisation’s behaviour, such as a code of conduct.
Culture – the attitudes, values and practices shared by
a group of people/society.
Intellectual property rights – rules governing an
individual’s ownership of their own creations or ideas,
prohibiting the copying of, for example, software
without the owner’s permission.

Privacy – the right to keep personal information and
data secret and for it to not be unwillingly accessed or
shared through, for example, hacking.
Plagiarism – the act of taking another person’s work
and claiming it as one’s own.
BCS – British Computer Society.
IEEE – Institute of Electrical and Electronics Engineers.
ACM – Association for Computing Machinery.

The following definitions are important when considering ethical behaviour:

» Legal covers the law, whether or not an action is punishable by law.
» Morality concerns questions of right and wrong, and is more often thought

of in relation to personal or individual choices.
» Ethics also concerns questions of right and wrong, but is more often used in

a professional context.
» Culture refers to the attitudes, values and practices shared by a society or

group of people.

Anything which breaks the law is termed illegal. Examples include copying
software and then selling it without the permission of the copyright holders
(see Section 7.2).

Morality is the human desire to distinguish between right and wrong. This varies
from person to person, and between cultures (something that is considered
immoral in one culture, may be acceptable practice in another, for example).

Immoral does not mean something is illegal (and vice versa). Creating a fake
news website, for example, is not illegal, but it may be considered immoral if it
causes distress to others. If the creator tried to obtain personal and financial
data, then it would be become an illegal act.

Similarly, hacking is generally regarded as immoral, but not illegal. However, it
becomes illegal if it compromises national security, or results in financial gain,
or reveals personal information, for example.

In short, there is a fine line between an immoral act and an illegal act.

Unethical behaviour is the breaking of a code of conduct. For example, if
somebody works for a software company and passes on some ideas to a rival
company, this would be regarded as unethical behaviour. If the software is
related to national security or is formally copyrighted, then it is also illegal.

It is essential to be clear whether any law has been broken.

The importance of culture is less tangible. When writing computer games, for
example, programmers need to be careful that they do not include items which
some cultures would find offensive or obscene. Again, this may not be unethical or
illegal, but could still cause distress. It is important to realise that boundaries can
easily be crossed; in some countries making fun of religion, for example, is illegal.

457591_07_CI_AS & A_Level_CS_178-195.indd 179 25/04/19 9:52 AM

180

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
7.1.1 Computer ethics
Computer ethics is a set of principles set out to regulate the use of computers.
Three factors are considered:

» Intellectual property rights, for example, copying of software without the
permission of the owner.

» Privacy issues, for example, hacking or any illegal access to another person’s
personal data.

» Effect of computers on society, for example, job losses, social impacts, and
so on.

Internet use has led to an increase in plagiarism – this is when a person takes
another person’s idea or work and claims it was their own. While it is fine to
quote another person’s idea, it is essential that some acknowledgement is made
so that the originator of the idea or work is known to others. This can be done
by a series of references at the end of a document or footnotes on each page
where a reference needs to be made. Software exists that can scan text and
then look for examples of plagiarism by searching web pages on the internet.

7.1.2 Professional ethical bodies
There are a number of professional bodies representing individuals working in
the fields of computing and information technology that have developed their
own codes of conduct, to which members are expected to adhere. Belonging to
one of these organisations demonstrates your professional integrity by showing
that you are committed to upholding the standards they prescribe.

The British Computer Society (BCS)
The British Computer Society (BCS) is a professional body set up in the
UK, initially to represent the rights and ethical practices of all professionals
working in the IT and computing industries. It is now an international body
which works in close partnership with other groups to monitor and advise IT
practices across the globe.

The BCS Code of Conduct (www.bcs.org/category/6030) covers four main
areas:

1 The Public Interest
2 Professional Competence and Integrity
3 Duty to Relevant Authority
4 Duty to the Profession

The Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers (IEEE) was set up in the
USA with the aims of

» raising awareness of ethical issues
» promoting ethical behaviour among professionals working in the electronics

industry
» ensuring engineers and scientists respect the need for ethical behaviour.

457591_07_CI_AS & A_Level_CS_178-195.indd 180 25/04/19 9:52 AM

http://www.bcs.org/category/6030

181

7.1
Legal, m

oral, ethical and cultural im
plications

7
To help in this aim, the IEEE has also set out a code of ethics:

IEEE Code of Ethics

We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life
throughout the world, and in accepting a personal obligation to our profession, its members, and the communities we
serve, do hereby commit ourselves to the highest ethical and professional conduct and agree:

1 to hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design and sustainable
development practices, and to disclose promptly factors that might endanger the public or the environment;

2 to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when
they do exist;

3 to be honest and realistic in stating claims or estimates based on available data;

4 to reject bribery in all its forms;

5 to improve the understanding by individuals and society of the capabilities and societal implications of conventional
and emerging technologies, including intelligent systems;

6 to maintain and improve our technical competence and to undertake technological tasks for others only if qualified
by training or experience, or after full disclosure of pertinent limitations;

7 to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit
properly the contributions of others;

8 to treat fairly all persons and to not engage in acts of discrimination based on race, religion, gender, disability,
age, national origin, sexual orientation, gender identity, or gender expression;

9 to avoid injuring others, their property, reputation, or employment by false or malicious action;

10 to assist colleagues and co-workers in their professional development and to support them in following this code of
ethics.

Jointly with the Association for Computing Machinery (ACM), the IEEE
has also developed a set of eight principles which govern the code of ethics
specifically among software engineers. The principles set out to ensure all
engineers meet an acceptable and consistent code of ethics. There are certain
expectations of the scientists and engineers from the general public as well
as from their peers. The actual eight principles behind the code of ethics and
professional practice were published way back in 1999.

An abridged version is shown below; a full version can be found at:

www.computer.org/web/education/code-of-ethics

Software Engineering Code of Ethics
1 PUBLIC – Software engineers shall act consistently with the public interest (contains 8 sub-clauses).

2 CLIENT AND EMPLOYER – Software engineers shall act in a manner that is in the best interests of their client and
employer consistent with the public interest (contains 9 sub-clauses).

3 PRODUCT – Software engineers shall ensure that their products and related modifications meet the highest
professional standards possible (contains 15 sub-clauses).

4 JUDGEMENT – Software engineers shall maintain integrity and independence in their professional judgement
(contains 6 sub-clauses).

5 MANAGEMENT – Software engineering managers and leaders shall subscribe to and promote an ethical approach to
the management of software development and maintenance (contains 12 sub-clauses).

6 PROFESSION – Software engineers shall advance the integrity and reputation of the profession consistent with the
public interest (contains 13 sub-clauses).

7 COLLEAGUES – Software engineers shall be fair to and supportive of their colleagues (contains 8 sub-clauses).

8 SELF – Software engineers shall participate in life-long learning regarding the practice of their profession and shall
promote an ethical approach to the practice of the profession (contains 9 sub-clauses).

457591_07_CI_AS & A_Level_CS_178-195.indd 181 25/04/19 9:52 AM

http://www.computer.org/web/education/code-of-ethics

182

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
There are 80 clauses and sub-clauses in total. We shall consider one scenario
and see how it fits into a selection of the clauses.

Mikhail works during the day for a software company called EthicalGamz developing
new software in a number of applications. Mikhail is part of a large team of software
engineers writing and testing new code. The team also do market research to help in
their development of new software for the future. Much of the work is commercially
sensitive and multiple layers of access exist to protect the company from unauthorised
sharing of data.

In the evenings and at the weekend, Mikhail works for his own company, MikhailSoft,
which produces software available to buy on the internet only. To save costs, Mikhail
uses coding he helped develop for EthicalGamz in his own software. He also outsources
some of the work to software engineers in other countries where the wages are much
lower and ethics policies are more lax. This saves him a lot of time and money when
producing his own software. Mikhail does not pay any licensing fees to EthicalGamz and
makes no reference to any code used from that company in his own products.

We will now consider the ethical implications of the above scenario using the
following sub-clauses from the Software Engineering Code of Ethics.

1.03 approve software only if they have a well-founded belief that it is safe, meets
the specification and passes the appropriate tests and does not diminish the
quality of life, diminish privacy or harm the environment;

There is an ethical issue here since the software written by personnel from
other countries may not meet the specification requirements or appropriate
tests. It could lead to any of the three factors being violated, for example,
the software may contain spyware of which Mikhail is unaware.

2.02 not knowingly use software that is obtained or retained either illegally or
unethically;

Mikhail has no control over the coding being developed by his overseas team,
furthermore, using the coding from EthicalGamz is illegal use.

3.05 ensure an appropriate method is used for any project on which they work or
propose to work;

Using external companies (in his own country or overseas) may be used at
various steps in the production of Mikhail’s own software. Unless he applies
good managerial control, he will be unable to ensure methods used in projects
are appropriate or fully ethical in their implementation.

4.02 only endorse documents either prepared under their supervision or within their
areas of competence and with which they are in agreement;

Documentation produced by third party developers is not produced under
Mikhail’s direct supervision, indeed some of the work done overseas may be
outside Mikhail’s sphere of knowledge which probably removes his ability to
objectively endorse the external work being done.

5.03 ensure that software engineers know the employer’s policies and procedures
for protecting passwords, files and information that is confidential to the
employer or to others;

457591_07_CI_AS & A_Level_CS_178-195.indd 182 25/04/19 9:52 AM

183

7.1
Legal, m

oral, ethical and cultural im
plications

7
By using software developed by EthicalGamz for his own use, Mikhail may need
to give passwords and access to other files to engineers working for his own
company, MikhailSoft. This would allow non-authorised personnel access to files
and information stored on EthicalGamz computer systems leading to a potential
security breach.

6.05 not protect their own interest at the expense of the profession, client or
employer;

By using coding from EthicalGamz, Mikhail is enhancing his own interests at the
expense of the company and his colleagues at that company.

7.03 credit fully the work of others and refrain from taking undue credit;

By using coding from EthicalGamz illegally and unethically, and by making no
reference to the source of his ‘illegal’ code, Mikhail is effectively taking full
credit for all the work done by his colleagues.

8.07 do not give unfair treatment to anyone because of any irrelevant prejudices

Mikhail may dismiss overseas workers who do not agree with his own political
or religious beliefs and such dismissals would be deemed unfair and break this
code of practice.

EXTENSION ACTIVITY 7A

Using the example above, consider the following eight sub-clauses and
decide how (or if) Mikhail is breaking the code of ethics in each case.

1.01 accept full responsibility for their own work

2.03 use the property of a client or employer only in ways properly authorised,
and with the client’s or employer’s knowledge and consent

3.03 identify, define and address ethical, economic, cultural, legal and
environmental issues related to work projects

4.04 not engage in deceptive financial practices such as bribery, double billing
or other improper financial practices

5.02 ensure that software engineers are informed of standards before being
held to them

6.08 take responsibility for detecting, correcting, and reporting errors in
software and associated documents on which they work

7.02 assist colleagues in their professional development

8.09 recognise that personal violations of this Code are inconsistent with being
a professional software engineer

7.1.3 Impact on the public
Figure 7.1 summarises the potential impact of any software or hardware being
developed on the general public.

457591_07_CI_AS & A_Level_CS_178-195.indd 183 25/04/19 9:52 AM

184

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
health

and safety
concerns

in the
public

interest

benefits
to the
public

concerns
of the
public

PUBLIC
WELL
BEING

▲ Figure 7.1 Potential impact of software or hardware being developed on
the general public

While software engineers and scientists consider the Software Engineering Code
of Ethics, the impact on the general public cannot be ignored.

This section begins by considering three instances in which computer hardware
or software led to expensive errors, which impacted on the general public.

LA airport shutdown in 2007

In this example, aeroplanes at LA airport (in the USA) were grounded due to a simple software issue: a faulty network
card in a device continued to send incorrect data over the airport’s network. Eventually, the whole of the USA Customs
and Borders Agency came to an abrupt standstill at LA airport. This resulted in all flights leaving and landing at the
airport being cancelled for about eight hours until the fault was cleared. It cost several million US dollars in lost
revenue to the aeroplane operators. The impact on the general public was cancellation of holidays, loss of business
and general frustration.

Exploding laptop computers in 2008

Japan holds an annual trade show displaying the latest in computer technology. In 2008, during the trade show, a
number of Dell laptop computers burst into flames under the full view of the visiting public and television cameras.
The problem was traced back to faulty batteries in the laptops which had been overheating and eventually exploded
and burst into flames. As if this was not enough, the problem escalated when Apple reported similar problems with
some of its tablets, laptops and desktop computers. Some 100 million computer devices had to be recalled at an
estimated cost of over 300 million US dollars to the manufacturers. The impact on the general public would have been
devastating if this problem had not been discovered before the devices were generally available to buy.

Airbus A380 incompatible software issue in 2006

In Europe, Airbus Industries uses a number of factories throughout Europe where the design, development and
construction of aeroplanes takes place. During 2006, while the new A380 was being developed, a surprising issue
came to life: the software in two factories would not ‘talk to each other’. The factory in Hamburg (Germany) was
using an old version of CATIA design software while another plant in Toulouse (France) was using the latest version of
CATIA software. When a part of the A380 from Hamburg and a part of the A380 from Toulouse were brought together
for assembly, the wiring in the two parts did not match up (the cables could not be linked together). This was all
due to the fact that the two versions of the software produced different design specifications for the wiring. It cost
the company millions of Euros to redo the design and remanufacturing of parts where old software was still in use.
Fortunately, this was not a safety issue, but if some other design incompatibility had occurred after assembly of an
A380, the effect could have been catastrophic leading to possible loss of life.

457591_07_CI_AS & A_Level_CS_178-195.indd 184 25/04/19 9:52 AM

185

7.1
Legal, m

oral, ethical and cultural im
plications

7
All of these examples are cost-related, but still had – or potentially had – an
impact on the general public. Regrettably, there are many other examples.
Other issues which can affect the general public and businesses include

» companies selling software systems which do not meet the required standard
for security (inadequate protection against hacking, spyware and other
security issues)

» the covering up of security issues (such as the XEN security threat which
forced several cloud servers to become compromised – an attempt was made
to cover up the issue but the affected cloud operators had to come clean)

» the release of private data (such as the celebrity photo leaks, when a cloud
server was hacked)

» social media not policing subversive activity, such as hate mail and cyber
bullying. Such activity is undergoing close scrutiny by several countries
around the world

» search engines giving results at the top of the search due to donations to
the search engine operators.

EXTENSION ACTIVITY 7B

Bearing in mind some of the issues raised above, consider these two
questions.
1 Should we police the internet to stop certain activities taking place?
2 Should governments have the power to close down websites (such as

Twitter or Facebook) which do not remove hate mail, incitements to
violence or unacceptable photographs from their sites?

ACTIVITY 7A

1 Describe why it is necessary to produce a code of ethics to cover the
computing and electronics industries.

2 Mariam and Asma were having a discussion about whether or not the
internet should be policed.

 Mariam was in favour of the argument and put forward two reasons.
① It would prevent illegal material being posted on websites, such as

racist comments, pornography, terrorist activities and so on.
② Some form of control would prevent children and other vulnerable

groups being subjected to undesirable websites.
 Asma was against the argument and put forward two of her own reasons.

① Material published on websites is already available from other
sources.

② Policing would go against freedom of information and freedom of
speech.

 Put forward your own arguments and discuss whether you think Mariam’s
or Asma’s reasons are valid.

3 Describe the main differences between the terms: legal, morality, ethics
and culture.

 Give examples of each.

457591_07_CI_AS & A_Level_CS_178-195.indd 185 25/04/19 9:52 AM

186

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
7.2 Copyright issues

Key terms

Piracy – the practice of using or making illegal copies
of, for example, software.
Product key – security method used in software to
protect against illegal copies or use.
Digital rights management (DRM) – used to control the
access to copyrighted material.
Free Software Foundation – organisation promoting the
free distribution of software, giving users the freedom
to run, copy, change or adapt the coding as needed.
Open Source Initiative – organisation offering the same
freedoms as the Free Software Foundation, but with

more of a focus on the practical consequences of the
four shared rules, such as more collaborative software
development.
Freeware – software that can be downloaded free of
charge; however, it is covered by the usual copyright
laws and cannot be modified; nor can the code be used
for another purpose.
Shareware – software that is free of charge initially
(free trial period). The full version of the software can
only be downloaded once the full fee for the software
has been paid.

7.2.1 Software copyright and privacy
Software is protected by copyright laws in much the same way as music CDs,
videos and articles from magazines and books are protected.

When software is purchased, there are certain rules that must be obeyed:

» It is illegal to make a software copy and sell it or give it away.
» Software cannot be used on a network or used on multiple computers

without a multi-use licence.
» It is illegal to use coding from copyrighted software in your own software –

and then pass this software on or sell it as your own – without the
permission of the copyright holder.

» It is illegal to rent out a software package without permission to do so.
» It is illegal to use the name of copyrighted software on other software

without agreement to do so.

Software piracy (making illegal copies of software) is a major issue among
software companies. They take many steps to stop the illegal copying of
software and to stop illegal copies being used once they have been sold:

» When software is being installed, the user will be asked to key in a unique
reference number or product key (a string of letters and numbers) which
was supplied with the original copy of the software (for example: 4a3c 0efa
65ab a81e).

» The user will be asked to click a button or box which states they agree to
the licence agreement before the software continues to install.

» The original software packaging often comes with a sticker informing the
purchaser that it is illegal to make copies of the software; the label is often
in the form of a hologram indicating that this is a genuine copy.

» Some software will only run if the CD-ROM, DVD-ROM or memory stick is actually
in the drive; this stops illegal multiple use and network use of the software.

» Some software will only run if a dongle is plugged into one of the USB ports.

(See also Section 7.2.2 regarding further copyright protection using DRM.)

The Federation Against Software Theft (FAST) was set up in the UK to protect
the software industry against piracy. FAST prosecutes organisations and
individuals involved in any copyright infringements.

457591_07_CI_AS & A_Level_CS_178-195.indd 186 25/04/19 9:52 AM

187

7.2
C

opyright issues

7
Similar organisations exist in other countries. The following extract from a
newspaper article describes a typical example of how strict the anti-piracy laws
are in some countries.

TRADERS FINED $100 000

Two eBay traders from the United States of America agreed this week to pay a total of
$100 000 in damages after they were caught selling illegal copies of Norton security software.

The SIIA settled the case against the two traders who also agreed to stop selling illegal
software and provided SIIA with records identifying their customers and suppliers.

7.2.2 The internet and the World Wide Web (WWW)
Digital rights management (DRM) was originally set up to control what devices
a CD could play on. Preventing a CD from playing on a computer, for example,
would help stop it being copied illegally. DRM has since been updated to cover
more areas; it does this by using protection software to help stop the copying
of, for example, music tracks, video files or ebooks. DRM creates restrictions that
control what the users can do with the data. For example, allowing a music file
to be streamed over the internet but not copied, allowing an ebook to be read on
a tablet only, or a game requiring an internet connection to a certain website to
work, and so on. The aim of DRM is to ensure that any attempt made to break the
copyright protection will produce a defective copy which will not work.

When you buy a product protected by DRM, it may come with a key which
licences a single user on one device and this key must be registered. Another
example – of which there are many – is Apple Music’s use of DRM layers in
streamed music to prevent a user downloading all the music in the first month
of a subscription and then cancelling their subscription.

7.2.3 Software licensing
Commercial software
Commercial software is available to customers for a fee, providing a licence
for one genuine copy to be used on a single device, or a multi-use licence for
multiple users. Occasionally, software is offered free of charge if an earlier version
was bought by the user. This type of software is fully copyright-protected and
none of the code can be used without the prior consent of the copyright owner.

Free software and the Open Source Initiative
The Free Software Foundation and the Open Source Initiative are non-profit
organisations that promote the benefits of giving users the freedom to run,
copy, change and adapt software. Examples of software licensed in this way
include: F-spot (photographic manager), Scribus (DTP/word processor) and
LibreOffice (Office Suite). Users are allowed to follow the four freedoms:
» Run the software for any legal purpose they wish.
» Study the program source code and modify it where necessary to meet their

needs.
» Redistribute copies of the software to friends and family.
» Distribute code modified by the user to friends and family.

Users do not need to seek permission to do the above since the software is not
protected by copyright restrictions. However, there are still some rules that the
user must adhere to. Users cannot
» add source code from another piece of software unless this is also described

as free software or open source software

457591_07_CI_AS & A_Level_CS_178-195.indd 187 25/04/19 9:52 AM

188

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
» use the source code to produce software which copies existing software

which is subject to copyright laws
» adapt the source code in such a way that it infringes copyright laws

protecting other software
» use the source code to produce software which is deemed offensive by third

parties.

While the two organisations promote the same four freedoms, they have
different basic philosophies.

Free Software Foundation focuses on what the recipient of the software is
permitted to do with the software.

Open Source Initiative focuses on the practical consequences offered by the
four freedoms; the aims are to provide effective collaboration on software
development by the users. There are ten principles that have been developed to
ensure the philosophy of the Open Source Initiative is adhered to:

1 Free Redistribution The license shall not restrict any party from selling
or giving away the software as a component of an aggregate software
distribution containing programs from several different sources. The license
shall not require a royalty or other fee for such sale.

2 Source Code The program must include source code and must allow
distribution in source code as well as compiled form. Where some form of a
product is not distributed with source code there must be a well-publicised
means of obtaining the source code for no more than a reasonable reproduction
cost, preferably downloading via the internet without charge. The source code
must be the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such as
the output of a preprocessor or translator are not allowed.

3 Derived Works The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of
the original software.

4 Integrity of The Author’s Source Code The license may restrict source-
code from being distributed in modified form only if the license allows the
distribution of ‘patch files’ with the source code for the purpose of modifying
the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived
works to carry a different name or version number from the original software.

5 No Discrimination Against Persons or Groups The license must not
discriminate against any person or group of persons.

6 No Discrimination Against Fields of Endeavor The license must not
restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in a
business, or from being used for genetic research.

7 Distribution of License The rights attached to the program must apply to
all to whom the program is redistributed without the need for execution of
an additional license by those parties.

8 License Must Not Be Specific to a Product The rights attached to the
program must not depend on the program’s being part of a particular
software distribution. If the program is extracted from that distribution and
used or distributed within the terms of the program’s license, all parties to
whom the program is redistributed should have the same rights as those
that are granted in conjunction with the original software distribution.

9 License Must Not Restrict Other Software The license must not place
restrictions on other software that is distributed along with the licensed

457591_07_CI_AS & A_Level_CS_178-195.indd 188 25/04/19 9:52 AM

189

7.3
Artificial intelligence (AI)

7
software. For example, the license must not insist that all other programs
distributed on the same medium must be open-source software.

10 License Must Be Technology-Neutral No provision of the license may be
predicated on any individual technology or style of interface.

Freeware
Freeware is software a user can download from the internet free of charge.
Once it has been downloaded, there are no fees associated with using the
software (examples include: Adobe Reader, Skype and some media players).
Unlike free software, freeware is subject to copyright laws and users are often
requested to tick a box to say they understand and agree to the terms and
conditions governing the software. This means that a user is not allowed to
study or modify the source code in any way.

Shareware
Shareware allows users to try out some software free of charge for a trial period.
At the end of the trial period, the author of the software will request that
you pay a fee if you wish to continue using it. Once the fee is paid, a user is
registered with the originator of the software and free updates and help are then
provided. Often, the trial version of the software is missing some of the features
found in the full version, and these do not become available until the fee is paid.

This type of software is protected by copyright laws and users must not use the
source code in any of their own software without permission.

ACTIVITY 7B

1 a) What is meant by the term software piracy?
b) Describe three ways of protecting software against deliberate

attempts at making copies to sell or give away.
2 A software company offers a suite of shareware programs. It contains a

spreadsheet, word processor, database and drawing package.
 What are the benefits to the following two stakeholders of offering

software packages as shareware?
n The company
n The customer

7.3 Artificial intelligence (AI)
Key term

Artificial intelligence (AI) – machine or application which carries out a task that
requires some degree of intelligence when carried out by a human counterpart.

7.3.1 What is AI?
Artificial intelligence (AI) is a machine or application which carries out a
task that requires some degree of intelligence when carried out by a human
being. These tasks could include

» the use of a language
» carrying out a mathematical calculation or function

457591_07_CI_AS & A_Level_CS_178-195.indd 189 25/04/19 9:52 AM

190

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7

» recognising a person’s face
» the ability to operate machinery, such as a car, an aeroplane or a train
» analysing data to predict the outcome of a future event, such as weather

forecasting.

AI duplicates human tasks requiring decision-making and problem-solving skills.

7.3.2 The impact of AI
People often associate AI with science fiction, fantasy and robots. Numerous
films and books fuel this association. The science fiction author, Isaac Asimov,
went so far as to produce his own three laws of robotics:

1 A robot may not injure a human through action or inaction.
2 A robot must obey orders given by humans without question.
3 A robot must protect itself unless it conflicts with the two laws above.

However, AI goes way beyond robotics. It covers an ever-increasing number of
areas, such as

» autonomous (driverless) vehicles
» artificial limb technology
» drones, used to carry out dangerous or unpleasant tasks such as bomb

disposal, welding, or entering nuclear disaster areas
» climate change predictions
» medical procedures, such as eye operations where extreme precision is

required.

7.3.3 The impacts of AI on society, the economy and the
environment

As a result of increasing automation over the next few decades, the human race
will need to consider the impacts that AI will have on society, the economy
and the environment. So should we all be worried? In this section, we will
consider a number of existing AI technologies, plus some predictions for the
future, to help stimulate discussions. As mentioned in Section 7.3.2, AI is not
just about robots, but covers many areas (this is explored further in Chapter 18,
which explores specific AI technologies in more depth).

We will look at some of the areas mentioned in Section 7.3.2 in more depth and
consider the implications of using AI (the descriptions that follow will mix up
benefits and drawbacks – in Activity 7C you will need to consider the overall
impact).

▲ Figure 7.2 Examples of how AI can be used in every-day life

457591_07_CI_AS & A_Level_CS_178-195.indd 190 25/04/19 9:52 AM

191

7.3
Artificial intelligence (AI)

7
New developments in AI are constantly being announced and you are advised
to keep up to date by checking out the many websites that keep an eye on
AI development.

Below are some of the developments and impacts that are currently expected to
be seen in the near future.

Research has predicted that, by 2030, some 600 million jobs will be lost
globally and as many as 400 million people will need to retrain or switch jobs –
all caused by the inevitable advances in AI. The most likely jobs to be lost
are those doing medium- and low-skilled work, but high-skilled jobs (such as
hospital technicians, architects, engineers) are also at risk. This could lead to
civil unrest with large numbers of young people out of work, with few or no
employment prospects, unless they have a sought-after skill.

History has shown, however, that previous technological advances all ended up
creating a net increase in jobs. As automation takes over, jobs on the factory
floor are lost, but production becomes much faster and more efficient, thus
requiring an increase in the number people doing tasks that the automation
process cannot yet do, such as quality control, test driving new vehicles and
so on. Technology creates new jobs which are generally more interesting
to humans than the manual jobs which are lost. However, history does not
always repeat itself, so we need to prepare ourselves for a large reduction in
employment and think about how to redistribute wealth so that the overall
impact of AI will be positive.

It is predicted that, eventually, 99% of all jobs could be eliminated since the
increase in the use of AI is exponential – competition between countries
and companies to expand their economies will continue to fuel this growth.
One question that might be legitimately asked is, ‘if 99% of jobs disappear,
who will build the robots and maintain them?’ To answer that question,
let us consider a present-day solution to the question. 3D printers are
actually now being designed and made by other 3D printers with no human
interaction – the whole process is automatic with AI algorithms in control of
the building, design and maintenance of these printers. So, it seems logical
that other robots/machines will build and maintain future robots and other
AI systems.

An increase in AI will leave people with more time to pursue their hobbies
and have a better lifestyle. Previous industrial revolutions have led to steep
changes in the economies of countries that embrace the new technology.
Being left behind is not an economic option but is it a good environmental
option?

Improvements in AI technology can have a positive impact on the
environment. Scientists now have more information than ever about
what affects the environment. AI can help by finding patterns and
interconnections within the thousands of data sets. This helps scientists
make informed predictions about the environment and potential climate
change. Since this analysis is very complex, the use of AI systems can speed
up this process incredibly and allow the human race to take action much
faster than they could by present methods. Here are some potential ways in
which AI can help:

» AI can help us to conserve natural resources (for example, improve the
conservation of water supplies).

457591_07_CI_AS & A_Level_CS_178-195.indd 191 25/04/19 9:52 AM

192

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
» Detection of pollution in the air and in the seas using AI is much more

accurate, allowing scientists to pinpoint the source(s) of pollution more
accurately and much faster.

» In the future it could be possible to combine weather forecasting and AI
to allow for better predictions about renewable energy resources needed
for the next few days. This would lead to a more precise automated
renewable energy forecast using solar, tide, thermal and wind energy
generation.

» AI would allow us to learn from nature’s ecosystems by monitoring and
modelling, for example, a river’s ecosystem. This would enable us to gain a
better understanding of what can affect the delicate balance of life in the
river. Such real-time environmental monitoring would allow us to quickly
take remedial action before the affects became irreversible. AI would make
this possible due to the ability to analyse vast amounts of very complex
(inter-related) data.

We will now look at three particular areas where AI could have a large
impact.

Transport
Some taxi companies are already looking at the introduction of autonomous
(driverless) cars. A customer can call up the taxi using an app on their mobile
phone, which also automatically handles the payment. Information about the
taxi (such as its location and estimated arrival time) would be sent to the mobile
phone until the driverless taxi arrives at the exact pick-up point. There would not
be any people anywhere in the chain, with AI systems taking total control. Some
car manufacturers are on the brink of actually supplying autonomous vehicles
(cars, buses and trucks). This would be much more efficient but would put many
drivers out of a job.

Criminal justice system
Advances in facial recognition systems is making fingerprinting in forensic
science almost obsolete. AI is also being used to automate legal work and some
courts in the USA have trialled the use of AI to sentence criminals and even
decide if a prisoner is eligible for parole. Is this a bad thing? Here are some
questions to think about:

» Does government use of AI need a warrant to allow online data to be
searched for all potential criminal activity?

» Can AI be used to listen in to our mobile phone conversations and assess our
emails? Social media companies are already coming under pressure in this
area – would AI help this or could criminals make use of it to hide criminal
activity?

» What about legal malpractice – what would be the mechanism to challenge
an AI inspired legal decision?

» How do we ensure no bias creeps into AI decision making processes? The
software being trialled in the USA to determine a prisoner’s suitability for
parole is already showing bias against black African Americans. How do
we ensure such prejudices by governments and individuals when using AI
systems is not allowed to occur?

457591_07_CI_AS & A_Level_CS_178-195.indd 192 25/04/19 9:52 AM

193

7.3
Artificial intelligence (AI)

7
Advertising and use of data
You may remember the Cambridge Analytica scandal in 2018 which hinged
around potential misuse of data obtained from a social media company (nearly
90 million profiles had been used by the company leading some people to
believe it had influenced the 2016 USA presidential elections). AI could reduce
such occurrences by allowing much closer monitoring. It would need to be very
sophisticated and act quickly to have any real impact – human beings certainly
could not respond fast enough.

Algorithms can now tailor advertising aimed at specific people by using AI
machine learning – this is done by building personality profiles of every
internet and mobile phone user. Data is picked up from search engines, social
media and visits to websites – all this data can be analysed by machine
learning algorithms (see Chapter 18 for more details).

ACTIVITY 7C

Look through this chapter on the impacts of AI and produce a short essay or
wall display highlighting the pros and cons. Draw a reasoned conclusion and
debate the overall impact of AI with your classmates.

ACTIVITY 7D

1 In 2017, Diane Bryant, the chief operating officer of Google Cloud, claimed
that AI can:
n help us manage the Earth’s very scarce resources
n improve cancer diagnosis using precision medicine leading to

customised treatments
n lead to improvements in human rights in many countries due to cloud

computing, better connectivity and reduced costs in developing faster
computers.

 Describe, with examples, why Ms Bryant’s claims could help people in the
future.

2 Give three different examples of AI.
 For each of your examples, give one benefit and one drawback to the

general public.

1 Nicolae has joined a software company as a new team manager. During his
induction he was given a presentation on the company’s code of conduct and the
company’s expected ethical behaviour.

 He was given hand-outs after the presentation which included the code of
conduct and ethical behaviour.
a) Explain what is meant by the term ethics. [2]
b) Describe the differences between behaving in an unethical manner and in an

illegal manner. [3]
c) Nicolae joins a team writing new software in a programming language

unfamiliar to him. Part of his job will be to visit a client and oversee the team
writing the software to meet the client’s requirements.

End of chapter
questions

➔

457591_07_CI_AS & A_Level_CS_178-195.indd 193 25/04/19 9:52 AM

194

7
E

th
ic

s
a

n
d

 o
w

n
E

r
sh

ip

7
 He has little previous experience of working off-site at the client’s premises,

and has to depend on a junior colleague to help him through the process. This
makes Nicolae uncomfortable in his role as project manager.

 After six months with the company, Nicolae will have a meeting with his
own line manager. The line manager will check Nicolae’s progress against the
IEEE eight principles and code of practice. Nicolae has decided to raise three
issues with his line manager.
i) Describe three issues he could legitimately raise. [3]
ii) State which of the IEEE’s eight principles each issue described in

part c) i) comes under. [3]
iii) Describe what actions the line manager should take to address the

three issues you raised in part c) i). [3]
2 a) Name three types of software licensing. [3]

b) For each example, describe three features which identify the differences
between them. [3]

c) Describe how copyright issues affect each type of named software
licensing. [3]

3 a) Computers over the years have been described as first to fifth generation.
 Identify the generation that is associated with AI. [1]

A first
B second
C third

D fourth
E fifth

b) AI is involved in problem-solving.
 Identify the term that is used to describe the ‘common sense’ part of problem-

solving. [1]
A analysis
B critical design
C heuristics

D programming
E sampling

c) Identify the statement that best describes AI. [1]
A inputting knowledge into a computer
B programming a computer using an expert’s experiences
C playing a strategic game, such as chess
D making a machine behave in an intelligent way
E using a computer to mimic human behaviour

d) Identify the AI process that involves repetition, evaluation and then
refinement. [1]

A diagnostics

B fact finding

C heuristics

D interpretation

E iteration

4 The IEEE Software Engineering Code of Ethics uses eight key principles shown
in the right-hand column of the following diagram.

 Tom is employed as a tester with a software company. He is keen to become a
trainee programmer.

 The middle column in the diagram labels six incidents which have happened to
Tom this week. The table that follows the diagram describes each incident.

457591_07_CI_AS & A_Level_CS_178-195.indd 194 25/04/19 9:52 AM

195

7.3
Artificial intelligence (AI)

7
PUBLIC

Incident A CLIENT & EMPLOYER

Incident B PRODUCT

ETHICAL BEHAVIOUR

Incident C JUDGEMENT

Incident D MANAGEMENT

UNETHICAL BEHAVIOUR

Incident E PROFESSION

Incident F COLLEAGUES

SELF

Incident Description

A Tom has received some phishing emails. He reported this to the bank they
were supposed to come from.

B Tom has asked his manager if they will pay for him to attend a
programming course.

C Tom is testing beta versions of new games software at work. He copies
the software on to CD-Rs and sells them to his friends.

D Tom has completed the application forms to join the Chartered Institute for IT.

E Tom finds it difficult to work with one of his colleagues. His way of
dealing with this has been to refuse to speak with the colleague.

F Tom’s manager had considered the testing of a new game was completed.
Tom reported to his manager that he thought there were still bugs which
needed to be rectified.

a) Copy the diagram above and connect each of the six incidents to either ethical
behaviour or unethical behaviour. [2]

b) Consider each incident you have identified as ethical behaviour.

 Indicate the IEE category each incident maps to. [4]

Adapted from Cambridge International AS & A Level Computer Science 9608
Paper 12 Q5 November 2017

457591_07_CI_AS & A_Level_CS_178-195.indd 195 25/04/19 9:52 AM

196

8
D

at
a

b
a

se
s

	 8	 Databases

In this chapter, you will learn about

★ the limitations of a file-based approach to storage and retrieval of data
★ the features of a relational database that overcome the limitations of a

file-based approach
★ the terminology associated with a relational database model
★ entity-relationship (E-R) diagrams to document database design
★ normalisation to third normal form (3NF)
★ producing a normalised database design for a given set of data or

tables
★ the features provided by a database management system (DBMS)
★ the software tools provided by a DBMS
★ the creation and modification of a database structure using a database

definition language (DDL)
★ queries and the maintenance of a database using a database

manipulation language (DML)
★ using SQL as a DDL and as a DML
★ how to understand a given SQL script
★ how to write an SQL script.

Key terms
Database – a structured collection of
items of data that can be accessed by
different applications programs.
Relational database – a database where
the data items are linked by internal
pointers.

Table – a group of similar data, in a
database, with rows for each instance of
an entity and columns for each attribute.
Record (database) – a row in a table in a
database.

WHAT YOU SHOULD ALREADY KNOW
Try these three questions before you read the
first part of this chapter.
1 Databases are commonly used to store large

amounts of data in a well organised way.
 Identify three databases that are storing

information about you.
2 a) Name three of the most commonly used

database management systems.
b) Give four benefits of using a database.

3 Relational databases use their own
terminology.
a) Explain what the terms table, field and

record mean.
b) Identify and explain the meaning of three

or more terms used with relational
databases.

c) What is a normalised relational database?

8.1 Database concepts

457591_08_CI_AS & A_Level_CS_196-216.indd 196 25/04/19 10:01 AM

197

8.1
D

atabase concepts

8

8.1.1 The limitations of a file-based approach
A file is a collection of items of data. It can be structured as a collection of
records, where each record is made up of fields containing data about the same
‘thing’. Individual elements of data can be called data items.

When a program is used for data processing, the organisation of any records
used depends on how the program is written. Records can be fixed or variable
in length and each record may also contain information about its structure, for
example, the number of fields or the length of the record. If these records are
to be processed by another program, that program must be written to use the
exact same record structure. If the structure is changed by one program, the
other program must be rewritten as well. This can cause problems if updating
programs is not carefully managed.

For example, a business keeps separate payroll files and sales files. Each file is
used by a different application.

Field – a column in a table in a database.
Tuple – one instance of an entity, which
is represented by a row in a table.
Entity – anything that can have data
stored about it, for example, a person,
place, event, thing.
Attribute (database) – an individual data
item stored for an entity, for example, for
a person, attributes could include name,
address, date of birth.
Candidate key – an attribute or smallest
set of attributes in a table where no tuple
has the same value.
Primary key – a unique identifier for a
table. It is a special case of a candidate
key.
Secondary key – a candidate key that is
an alternative to the primary key.
Foreign key – a set of attributes in one
table that refer to the primary key in
another table.
Relationship – situation in which one
table in a database has a foreign key that
refers to a primary key in another table
in the database.
Referential integrity – property of a
database that does not contain any
values of a foreign key that are not
matched to the corresponding primary
key.

Index (database) – a data structure
built from one or more columns in a
database table to speed up searching
for data.
Entity-relationship (E-R) model or E-R
diagram – a graphical representation
of a database and the relationships
between the entities.
Normalisation (database) – the
process of organising data to be
stored in a database into two or more
tables and relationships between the
tables, so that data redundancy is
minimised.
First normal form (1NF) – the status of
a relational database in which entities
do not contain repeated groups of
attributes.
Second normal form (2NF) – the
status of a relational database in which
entities are in 1NF and any non-key
attributes depend upon the primary
key.
Third normal form (3NF) – the status of
a relational database in which entities
are in 2NF and all non-key attributes are
independent.
Composite key – a set of attributes that
form a primary key to provide a unique
identifier for a table.

457591_08_CI_AS & A_Level_CS_196-216.indd 197 25/04/19 10:01 AM

198

8
D

at
a

b
a

se
s

8
Payroll Program

- record description
- validation rules
- processing code

Sales Program

- record description
- validation rules
- processing code

First Name
Second Name
Address
Phone Number
Staff Number

Record Structure

Name
Staff Number
Target Sales
Actual Sales

Record Structure

▲ Figure 8.1 File-based approach

Several problems have occurred using this file-based approach. The name of
a member of staff and their staff number are stored twice. The way the staff
name is stored is different for each program. If the staff number was changed
by the payroll program and not by the sales program, these fields may contain
different values for the same member of staff. The fields in the two files are
also in a different order: the staff number is the fifth field in the payroll record
and the second field in the sales file.

A file-based approach is limited because

» storage space is wasted when data items are duplicated by the separate
applications and some data is redundant

» data can be altered by one application and not by another; it then becomes
inconsistent

» enquiries available can depend on the structure of the data and the software
used so the data is not independent.

ACTIVITY 8A

Match the problems with the payroll and sales system to the limitations of a
file-based approach set out above.

8.1.2 The advantages of a relational database over a
file-based approach

What is a database? There are many different definitions of a database, such as:

… A (large) collection of data items and links between them, structured in a way that
allows it to be accessed by a number of different applications programs. The term is
also used loosely to describe any collection of data.

BCS Glossary of Computing, 14th Edition

… An electronic filing cabinet which allows the user to perform various tasks
including: adding new empty files, inserting data into existing files, retrieving data
from existing files, updating data in existing files and cross-referencing data in files.

An Introduction to Database Systems (sixth edition) by CJ Date

More straightforwardly, a database is a structured collection of items of
data that can be accessed by different applications programs. Data stored in
databases is structured as a collection of records, where each record is made
up of fields containing data about the same ‘thing’. A relational database is a
database in which the data items are linked by internal pointers.

457591_08_CI_AS & A_Level_CS_196-216.indd 198 25/04/19 10:01 AM

199

8.1
D

atabase concepts

8
Using the same example as previously, a business keeps a database for payroll
and sales data. A payroll application is used for the payroll and a sales
processing application is used for sales.

Tables Design

Payroll Application

Sales Application

Validation Rules

Users and
Access Rights

Data

▲ Figure 8.2 Database approach

The problems that occurred using the file-based approach have been solved.
The name of a member of staff and their staff number are only stored once. So,
any changes made to the data by the payroll application will be seen by the
sales processing application and vice versa. The fields are the same and in the
same order.

A database approach is beneficial because

» storage space is not wasted as data items are only stored once, meaning
little or no redundant data

» data altered in one application is available in another application, so the
data is consistent

» enquiries available are not dependent on the structure of the data and the
software used, so the data is independent.

8.1.3 Relational database model terminology
In order to rigorously define the structure of a relational database we need to be
able to understand and use the terminology associated with a relational database.

A relational database data structure can look similar to a file-based structure
as it also consists of records and fields. A table is a group of similar data,
in a database, with rows for each instance of an entity and columns for each
attribute. A record is a row in a table in a database. A field is a column in a
table in a database.

For example, a database of students in a school could contain the table
Student with a record for each student that contains the fields First Name,
Second Name, Date of Birth and Class ID.

First Name Second Name Date Of Birth Class ID

Noor Baig 09/22/2010 7A ← row is a record

Ahmed Sayed 06/11/2010 7B

Tahir Hassan 01/30/2011 7A

↑
column is a field

▲ Table 8.1 Part of a student table

457591_08_CI_AS & A_Level_CS_196-216.indd 199 25/04/19 10:01 AM

200

8
D

at
a

b
a

se
s

8
Now data is independent of the program processing it. The terms record and
field are also used in file processing, so there is more rigorous terminology
used specifically for relational databases. Files of data are replaced by tables,
with each row of a table representing a record (a tuple, sometimes called a
logical record or an occurrence of an entity). Each column of the table is an
attribute that can also be referred to as a field.

An entity is anything that can have data stored about it, such as a person,
place, event or object. An attribute is an individual data item stored for an
entity; to use the same example as before, for a student attributes could
include first name, second name, date of birth and class. As stated before, a
table is a group of similar data, in a database, with rows for each instance of
an entity and columns for each attribute. A tuple is one instance of an entity,
which is represented by a row in a table.

First Name Second Name Date Of Birth Class ID

Noor Baig 09/22/2010 7A ← each row is a tuple

Ahmed Sayed 06/11/2010 7B

Tahir Hassan 01/30/2011 7A

↑
each column is an attribute

▲ Table 8.2 Part of a table for student entity

Data is shared between applications using the database. In order to ensure the
consistency of data updating is controlled or automatic, so that any copies of a
data item are changed to the new value. Also, in order to reduce the number of
copies of a data item to a minimum, a relational database uses pointers between
tables. These pointers are keys that provide relationships between tables.

There are different types of keys.

» A candidate key is an attribute or smallest set of attributes in a table
where no tuple has the same value.

» A primary key is a unique identifier for a table, it is a special case of a
candidate key.

» A secondary key is a candidate key that is an alternative to the primary key.
» A foreign key is a set of attributes in one table that refer to the primary

key in another table.

For example, a database of chemical elements contains a table Elements with
attributes Symbol, Name and Atomic Weight. As all these attributes are
unique to each element, all are candidate keys. One of these could be chosen as
the primary key, for example Symbol. Then the other two attributes, Name and
Atomic Weight, would be secondary keys.

all attributes are candidate keys
 ↓

Symbol Name Atomic Weight

H Hydrogen 1.008

Li Lithium 6.94

Na Sodium 22.990

↑
Symbol is the primary key

↑
Name and Atomic Weight are secondary keys

▲ Table 8.3 Part of a table of elements

↓ ↓

↓

457591_08_CI_AS & A_Level_CS_196-216.indd 200 25/04/19 10:01 AM

201

8.1
D

atabase concepts

8
Most tables have only one candidate key, which is used as the primary key. For
example, the student table could have an extra attribute Student ID, which is
unique to each student.

Student ID First Name Second Name Date Of Birth Class ID

S1276 Noor Baig 09/22/2010 7A

S1277 Ahmed Sayed 06/11/2010 7B

S2199 Tahir Hassan 01/30/2011 7A

▲ Table 8.4 Part of a table for student entity

Relationships
A relationship is formed when one table in a database has a foreign key that
refers to a primary key in another table in the database. In order to ensure
referential integrity the database must not contain any values of a foreign
key that are not matched to the corresponding primary key.

Most databases include more than one table. For example, a school database
could contain the table Student and another table Class that contains the
Class ID, the Teacher Name and Location of classroom. Only values for Class
ID that are stored in the Class table can be used as the foreign key in the
Student table.

Student ID First Name Second Name Date Of Birth Class ID

S1276 Noor Baig 09/22/2010 7A

S1277 Ahmed Sayed 06/11/2010 7B

S2199 Tahir Hassan 01/30/2011 7A

↑
Class ID is the

foreign key
▲ Table 8.5 Part of a table for student entity

Class ID Teacher Name Location

7A Mr Khan Floor 2 Room 3

7B Miss Malik Floor 2 Room 4

7C Miss Gill Floor 2 Room 5

↑
Class ID is the
primary key

▲ Table 8.6 Part of a table for class entity

Relationships can take several forms

» one-to-one, 1:1
» one-to-many, 1:m
» many-to-one, m:1
» many-to-many, m:m.

 ↑
Student ID is the primary key and the candidate key

457591_08_CI_AS & A_Level_CS_196-216.indd 201 25/04/19 10:01 AM

202

8
D

at
a

b
a

se
s

8
The relationship between Student and Class is many-to-one, as one value of
the attribute Class ID may appear many times in the Student table but only
once in the Class table.

In order to speed up searching for data, an index can be used. This is a data
structure built from one or more columns in a database table. The Student
table could be indexed on Class, Second Name and First Name to provide class
lists in alphabetical order of Second Name.

8.1.4 Entity-relationship (E-R) diagrams
An E-R diagram can be used to document the design of a database. This
provides an easily understandable visual representation of how the entities in a
database are related.

Student

Student ID
First Name
Second Name
Date of Birth
Class ID

one class has
many students

entity name and
attributes

Class

Class ID
Teacher Name
Location

▲ Figure 8.3 E-R diagram for school database

Relationships may be mandatory or optional. For example, in a workroom
with desks, each employee has one desk, but there could be spare desks. The
relationship between desk and employee is zero or one, so this relationship
is optional. The relationship between mother and child is mandatory because
every mother must have at least one child, so the relationship is one or many.
The type of relationship and whether it is mandatory or optional gives the
cardinality of the relationship. The cardinality of relationships is shown in
Figure 8.4.

one

many

one (and only one)

zero or one

one or many

zero or many

▲ Figure 8.4 Cardinality of relationships

457591_08_CI_AS & A_Level_CS_196-216.indd 202 25/04/19 10:01 AM

203

8.1
D

atabase concepts

8
ACTIVITY 8B

The School database will also include the following details about each
teacher:
n teaching licence number
n date of birth
n address.

A teacher can have more than one class. A table Teacher is to be added.

List the attributes for this new table. Show the change that should be made
to the attributes in the Class table.

Draw the new E-R diagram for the three tables in the database.

EXTENSION ACTIVITY 8A

In small groups, identify suitable entity relationships for each example of
cardinality shown above. Explain your findings to another group or the whole
class.

8.1.5 The normalisation process

Normalisation is used to construct a relational database that has integrity and in
which data redundancy is reduced. Tables that are not normalised will be larger.
As more data is stored, it will be harder to update the database when changes are
made and more difficult to extract the required data to answer queries.

For example, if the School database is held in a single table it could look like this:

Student ID First Name Second
Name

Date Of
Birth

Class ID Location Teacher
Name

Licence
Number

Address Teacher Date
Of Birth

S1276 Noor Baig 09/22/2010 7A Floor 2
Room 3

Mr Khan 37952 School
House 1

03/27/1985

S1277 Ahmad Sayed 06/11/2010 7B Floor 2
Room 4

Miss Malik 68943 School
House 2

12/14/1988

S1299 Tahir Hassan 01/30/2011 7A Floor 2
Room 3

Mr Khan 37952 School
House 1

03/27/1985

▲ Table 8.7

This could cause problems when alterations are made to the records. Every
time a new student is added, the teacher’s name, address, licence number, date
of birth, and the location of the classroom need to be added as well. If Mr
Khan leaves the school and is replaced by another teacher, then every record
containing his name and other details needs to be changed. If all the students
from Class 7B leave, then all the details about Class 7B will be lost.

The rules for normalisation are set out as follows.

1 First normal form (1NF) – entities do not contain repeated groups of
attributes.

2 Second normal form (2NF) – entities are in 1NF and any non-key attributes
depend upon the primary key. There are no partial dependencies.

3 Third normal form (3NF) – entities are in 2NF and all non-key attributes
are independent. The table contains no non-key dependencies.

457591_08_CI_AS & A_Level_CS_196-216.indd 203 25/04/19 10:01 AM

204

8
D

at
a

b
a

se
s

8
When the database is in 3NF, all attributes in a table depend upon the key, the
whole key and nothing but the key.

The School database also includes subject choices for each student. For this
database to be normalised, the process is:

Student
ID

First
Name

Second
Name

Date Of
Birth

Subject
Name

Subject
Teacher

Class
ID

Location Teacher
Name

Licence
Number

Address Teacher
Date Of
Birth

S1276 Noor Baig 09/22/2010 Maths,
History,
Geography

Mr Yee,
Miss Wu,
Mr Khan

7A Floor 2
Room 3

Mr Khan 37952 School
House 1

03/27/1985

S1277 Ahmad Sayed 06/11/2010 Maths,
Science,
Geography

Mr Yee,
Miss Yo,
Mr Khan

7B Floor 2
Room 4

Miss
Malik

68943 School
House 2

12/14/1988

S1299 Tahir Hassan 01/30/2011 Maths,
Science,
History

Mr Yee,
Miss Yo,
Miss Wu

7A Floor 2
Room 3

Mr Khan 37952 School
House 1

03/27/1985

▲ Table 8.8

First normal form (1NF)
The un-normalised School database can be represented as follows.

STUDENT(StudentID, FirstName, SecondName, DateOfBirth, SubjectName,
SubjectTeacher, SubjectName, SubjectTeacher, SubjectName, SubjectTeacher,
ClassID, Location, TeacherName, LicenceNumber, Address, TeacherDateOfBirth).

STUDENT is the table name; the attributes are listed in order and the primary
key is underlined.

The student’s subjects and the subject teacher are the repeating attributes.
For the database to be in first normal form, these need to be removed to a
separate table and linked to the original table with a foreign key.

Student
ID

First Name Second
Name

Date Of Birth Class ID Location Teacher
Name

Licence
Number

Address Teacher Date Of
Birth

S1276 Noor Baig 09/22/2010 7A Floor 2 Room 3 Mr Khan 37952 School
House 1

03/27/1985

S1277 Ahmad Sayed 06/11/2010 7B Floor 2 Room 4 Miss
Malik

68943 School
House 2

12/14/1988

S1299 Tahir Hassan 01/30/2011 7A Floor 2 Room 3 Mr Khan 37952 School
House 1

03/27/1985

Student ID Subject Name Subject
Teacher

S1276 Maths Mr Yee

S1276 History Miss Wu

S1276 Geography Mr Khan

S1277 Maths Mr Yee

S1277 Science Miss Yo

S1277 Geography Mr Khan

S1299 Maths Mr Yee

S1299 Science Miss Yo

S1299 History Miss Wu

▲ Table 8.9 School database in 1NF

457591_08_CI_AS & A_Level_CS_196-216.indd 204 25/04/19 10:01 AM

205

8.1
D

atabase concepts

8
The School database can now be represented in 1NF as follows.

STUDENT(StudentID, FirstName, SecondName, DateOfBirth, ClassID, Location,
TeacherName, LicenceNumber, Address, TeacherDateOfBirth).

STUDENTSUBJECT(StudentID, SubjectName, SubjectTeacher).

The primary key for the STUDENTSUBJECT table is a composite key formed
from the two attributes StudentID and SubjectName; the attribute StudentID
is also a foreign key that links to the STUDENT table.

Second normal form (2NF)
There are now two tables; in the STUDENTSUBJECT table the primary key is a
composite key and the SubjectTeacher is only dependent on the SubjectName
part of the primary key. This is a partial dependence and needs to be removed
by introducing a third table, SUBJECT.

Student ID First Name Second
Name

Date Of Birth Class ID Location Teacher
Name

Licence
Number

Address Teacher
Date Of
Birth

S1276 Noor Baig 09/22/2010 7A Floor 2
Room 3

Mr Khan 37952 School
House 1

03/27/1985

S1277 Ahmad Sayed 06/11/2010 7B Floor 2
Room 4

Miss Malik 68943 School
House 2

12/14/1988

S1299 Tahir Hassan 01/30/2011 7A Floor 2
Room 3

Mr Khan 37952 School
House 1

03/27/1985

Student ID Subject Name

S1276 Maths

S1276 History

S1276 Geography

S1277 Maths

S1277 Science

S1277 Geography

S1299 Maths

S1299 Science

S1299 History

Subject Name Subject Teacher

Maths Mr Yee

History Miss Wu

Geography Mr Khan

Science Miss Yo

▲ Table 8.10 School database in 2NF

The School database can now be represented in 2NF as follows.

STUDENT(StudentID, FirstName, SecondName, DateOfBirth, ClassID, Location,
TeacherName, LicenceNumber, Address, TeacherDateOfBirth)

STUDENTSUBJECT(StudentID, SubjectName)

SUBJECT(SubjectName, SubjectTeacher)

457591_08_CI_AS & A_Level_CS_196-216.indd 205 25/04/19 10:01 AM

206

8
D

at
a

b
a

se
s

8
Third normal form (3NF)
There are now three tables. In the STUDENT table, the attributes Location
and TeacherName depend upon the attribute ClassID and the attributes
LicenceNumber, Address and TeacherDateOfBirth depend upon the attribute
TeacherName. These are non-key dependencies that need to be removed to
ensure that the database is in 3NF.

At this stage it is also worth inspecting the database and its contents to
consider any other problems that could arise, such as the following:

» Teacher names might not be unique; therefore, it is better to use the licence
number as a primary key.

» Teachers can be both class teachers and subject teachers; these need to be
combined in one table.

Student ID First Name Second Name Date Of Birth Class ID

S1276 Noor Baig 09/22/2010 7A

S1277 Ahmad Sayed 06/11/2010 7B

S1299 Tahir Hassan 01/30/2011 7A

Licence Number Teacher Name Address Teacher Date Of Birth

37952 Mr Khan School House 1 03/27/1985

68943 Miss Malik School House 2 12/14/1988

35859 Mr Yee School House 1 10/07/1985

77248 Miss Yo School House 2 05/05/1987

72691 Miss Wu School House 2 11/21/1989

37952 Mr Khan School House 1 03/27/1985

Class ID Location Licence Number

7A Floor 2 Room 3 37952

7B Floor 2 Room 4 68943

Student ID Subject Name

S1276 Maths

S1276 History

S1276 Geography

S1277 Maths

S1277 Science

S1277 Geography

S1299 Maths

S1299 Science

S1299 History

Subject Name Licence Number

Maths 35859

History 72691

Geography 37952

Maths 77248

▲ Table 8.11 School database in 3NF

457591_08_CI_AS & A_Level_CS_196-216.indd 206 25/04/19 10:01 AM

207

8.1
D

atabase concepts

8
The improved School database can now be represented in 3NF as follows.

STUDENT(StudentID, FirstName, SecondName, DateOfBirth,)

CLASS(ClassID, Location, LicenceNumber)

TEACHER(LicenceNumber, TeacherName, Address, TeacherDateOfBirth)

STUDENTSUBJECT(StudentID, SubjectName)

SUBJECT(SubjectName, LicenceNumber).

ACTIVITY 8C

Construct an E-R diagram to represent the database structure of the fully
normalised school database shown above.

EXTENSION ACTIVITY 8B

Discuss any other possible problems that could occur with this database.

Hint: look at the subject table and think about subjects that could have more
than one teacher or different levels. Identify an improved database structure
that could solve the problem.

The School database example showed at each stage why the database was not
normalised. Here is another example for you to try.

A database has been set up as a single table to store employees of a business
and their contacts. Part of the database is shown below.

Employee
Number

Employee Name Position Contact Number Contact Name Contact Email
Address

7001 James Tey Financial
Director

28 Mary Jones mary@xyz.com

31 James Smith james@pqr.com

17 Mishal Hussani mh@xyz.com

7002 Paul Leigh Accountant 19 Mary Cheung mch@abc.com

27 Dean Knight knd@swz.com

7011 Suzy Mey Personnel
Manager

28 Mary Jones mary@xyz.com

▲ Table 8.12 Un-normalised employee database

This table is not in 1NF because there are repeating attributes and the table
is not in 3NF because there are non-key dependencies. The employee database
can be represented as:

EMPLOYEE(EmployeeNumber, EmployeeName, Position, ContactNumber,
ContactName, ContactEmailAddress).

Where EmployeeNumber is the primary key ContactNumber, ContactName and
ContactEmailAddress may be repeated as often as required.

ACTIVITY 8D

Normalise the Employee database and show the new tables. Draw the E-R
diagram for the normalised database.

457591_08_CI_AS & A_Level_CS_196-216.indd 207 25/04/19 10:01 AM

mailto:mary@xyz.com
mailto:james@pqr.com
mailto:mh@xyz.com
mailto:mch@abc.com
mailto:knd@swz.com
mailto:mary@xyz.com

208

8
D

at
a

b
a

se
s

8
ACTIVITY 8E

1 a) i) Describe the limitations of a file-based approach to storage and
retrieval of data.

ii) Give two benefits of using a database management system.
b) A new relational database is to be developed. The developer needs to

produce a normalised database design.
i) Explain what is meant by normalisation.
ii) Describe the process of normalisation.

2 A warehouse stores parts for cars for several manufacturers. A database
stores the following data for each part:

 Part number, part description, date last ordered, minimum order level,
manufacturer name, manufacturer address, manufacturer contact
details, position in warehouse, number in stock
a) Design a fully normalised database for the parts.
b) Draw the E-R diagram.

8.2 Database management systems
(DBMSs)

WHAT YOU SHOULD ALREADY KNOW
Try these two questions before
you read the second part of this
chapter.
1 a) Name a database

management system (DBMS)
you have used.

b) Describe three tasks that you
have used the DBMS for.

2 Most DBMSs include back-up
procedures and access rights to
keep the data secure.
a) Describe what is meant by

back-up.
b) Describe what is meant by

access rights.
c) How do these features help to

keep data secure?

Key terms
Database management system
(DBMS) – systems software for the
definition, creation and manipulation of
a database.
Data management – the organisation
and maintenance of data in a database to
provide the information required.
Data dictionary – a set of data that
contains metadata (data about other
data) for a database.

Data modelling – the analysis and
definition of the data structures required
in a database and to produce a data
model.
Logical schema – a data model for a
specific database that is independent of
the DBMS used to build that database.
Access rights (database) – the
permissions given to database users to
access, modify or delete data.

457591_08_CI_AS & A_Level_CS_196-216.indd 208 25/04/19 10:01 AM

209

8.2
D

atabase m
anagem

ent system
s (D

B
M

Ss)

8
Developer interface – feature of a
DBMS that provides developers with
the commands required for definition,
creation and manipulation of a database.
Structured query language (SQL) – the
standard query language used with

relational databases for data definition
and data modification.
Query processor – feature of a DBMS
that processes and executes queries
written in structured query language
(SQL).

8.2.1 How a DBMS addresses the limitations of a
file-based approach

Data redundancy issue
This is solved by storing data in separate linked tables, which reduces the
duplication of data as most items of data are only stored once. Items of data
used to link tables by the use of foreign keys are stored more than once. The
DBMS will flag any possible errors when any attempt is made to accidentally
delete this type of item.

Data inconsistency issue
This is also solved by storing most items of data only once, allowing updated
items to be seen by all applications. As data is not inconsistent, the integrity
of the data stored is improved. Consistent data is easier to maintain as an item
of data will only be changed once, not multiple times, by different applications.

Data dependency issue
Data is independent of the applications using the database, so changes made
to the structure of the data will be managed by the DBMS and have little or no
effect on the applications using the database. Any fields or tables added to
or removed from the database will not affect the applications that do not use
those fields/tables, as each application only has access to the fields/tables it
requires.

Information from a database is more easily available in a form that is required
so it is not dependent on the structure of the data and the application used. A
DBMS usually includes facilities to query the data stored using a defined query
language or a query-by-example facility.

The DBMS approach
A DBMS uses a more structured approach to the management, organisation and
maintenance of data in a database. An already-defined data structure can be
used to set up and create the database. The entry of new data, the storage of
data, the alteration and deletion of data are all managed by the DBMS.

A DBMS uses a data dictionary to store the metadata, including the definition
of tables, attributes, relationships between tables and any indexing. The
data dictionary can also define the validation rules used for the entry of data
and contain data about the physical storage of the data. The use of a data
dictionary improves the integrity of the data stored, helping to ensure that it is
accurate, complete and consistent.

457591_08_CI_AS & A_Level_CS_196-216.indd 209 25/04/19 10:01 AM

210

8
D

at
a

b
a

se
s

8
Data modelling is an important tool used to show the data structure of a
database. An E-R diagram is an example of a data model. A logical schema is
a data model for a specific database that is independent of the DBMS used to
build the database.

A DBMS helps to provide data security to prevent the unwanted alteration,
corruption, deletion or sharing of data with others that have no right to
access it.

Security measures taken by a DBMS can include

» using usernames and passwords to prevent unauthorised access to the
database

» using access rights to manage the actions authorised users can take, for
example, users could read/write/delete, or read only, or append only

» using access rights to manage the parts of the database they have access
to, for example, the provisions of different views of the data for different
users to allow only certain users access to some tables

» automatic creation and scheduling of regular back-ups
» encryption of the data stored
» automatic creation of an audit trail or activity log to record the actions

taken by users of the database.

8.2.2 The use and purpose of DBMS software tools
Developer interface
The developer interface allows a developer to write queries in structured
query language (SQL) rather than using query-by-example. These queries
are then processed and executed by the query processor. This allows the
construction of more complex queries to interrogate the database.

Query processor
The query processor takes a query written in SQL and processes it. The query
processor includes a DDL interpreter, a DML compiler and a query evaluation
engine. Any DDL statements are interpreted and recorded in the database’s data
dictionary. DML statements are compiled into low level instructions that are
executed by the query evaluation engine. The DML compiler will also optimise
the query.

ACTIVITY 8F

1 a) Describe how a DBMS overcomes the limitations of a file-based
approach to the storage and retrieval of data.

b) Describe how a DBMS ensures that data stored in a database is
secure.

2 a) Describe three features provided by a DBMS.
b) A school stores timetabling data for all pupils and classes.
 Which features could a DBMS use to ensure that the administrators,

teachers and pupils can only see the information available to them?

457591_08_CI_AS & A_Level_CS_196-216.indd 210 25/04/19 10:01 AM

211

8.3
D

ata definition language (D
D

L) and data m
anipulation language (D

M
L)

8
8.3 Data definition language (DDL) and

data manipulation language (DML)

WHAT YOU SHOULD ALREADY KNOW
Try this exercise before you read
the third part of this chapter.

Using a DBMS with a graphical user
interface (GUI), create the student
database used in Section 8.1.5.

Write the following queries using a
query-by-example form.

1 A list of all the teachers and
their subjects.

2 A list of the pupils in class 7A
in alphabetical order of second
name.

3 A list of the students studying
each subject.

You may want to save this database
to practise your SQL commands.

Key terms
Data definition language (DDL) – a
language used to create, modify and
remove the data structures that form a
database.

Data manipulation language (DML) – a
language used to add, modify, delete and
retrieve the data stored in a relational
database.
SQL script – a list of SQL commands that
perform a given task, often stored in a
file for reuse.

8.3.1 Industry standard methods for building and
modifying a database

DBMSs use a data definition language (DDL) to create, modify and remove the
data structures that form a relational database. DDL statements are written as
a script that uses syntax similar to a computer program.

DBMSs use a data manipulation language (DML) to add, modify, delete and
retrieve the data stored in a relational database. DML statements are written in
a script that is similar to a computer program.

These languages have different functions: DDL is used for working on the
relational database structure, whereas DML is used to work with the data stored
in the relational database.

Most DBMSs use structured query language (SQL) for both data definition and
data manipulation. SQL was developed in the 1970s and since then it has been
adopted as an industry standard.

8.3.2 SQL (DDL) commands and scripts
In order to be able to understand and write SQL, you should have practical
experience of writing SQL scripts. There are many applications that allow you
to do this. For example, MySQL and SQLite are freely available ones. When using
any SQL application it is important that you check the commands available to
use as these may differ slightly from those listed below.

457591_08_CI_AS & A_Level_CS_196-216.indd 211 25/04/19 10:01 AM

212

8
D

at
a

b
a

se
s

8
You will need to be able to understand and use the following DDL commands.

SQL (DDL) command Description
CREATE DATABASE Creates a database

CREATE TABLE Creates a table definition

ALTER TABLE Changes the definition of a table

PRIMARY KEY Adds a primary key to a table

FOREIGN KEY … REFERENCES … Adds a foreign key to a table

▲ Table 8.13 DDL commands

You also need to be familiar with the following data types used for attributes
in SQL.

Data types for attributes Description
CHARACTER Fixed length text

VARCHAR(n) Variable length text

BOOLEAN True or False; SQL uses the integers 1 and 0

INTEGER Whole number

REAL Number with decimal places

DATE A date usually formatted as YYYY-MM-DD

TIME A time usually formatted as HH:MM:SS

▲ Table 8.14 Data types for attributes

Here are some examples of DDL that could have been used when the school
database was created.

CREATE DATABASE School

CREATE TABLE Student(

 StudentID CHARACTER,

 FirstName CHARACTER,

 SecondName CHARACTER,

 DateOfBirth DATE,

 ClassID CHARACTER);

ALTER TABLE Student ADD PRIMARY KEY (StudentID)

CREATE TABLE Class(

 ClassID CHARACTER,

 Location CHARACTER,

 Licence Number CHRACTER);

ALTER TABLE Class ADD PRIMARY KEY (ClassID)

ALTER TABLE Student ADD FOREIGN KEY ClassID REFERENCES

Class(ClassID)

The database is created first

then the table

followed by the a�ributes

the primary key is added after
the table is created; this can also

be done during table creation

the foreign key is added after
the Class table is created

ACTIVITY 8G

Create the Teacher table and add the Licence Number as a foreign key to the
Class table.

457591_08_CI_AS & A_Level_CS_196-216.indd 212 25/04/19 10:01 AM

213

8.3
D

ata definition language (D
D

L) and data m
anipulation language (D

M
L)

8
8.3.3 SQL (DML) commands and scripts
In order to be able to understand and write SQL, you should have practical
experience of writing SQL scripts and queries. There are many applications that
allow you to do this. Again, MySQL and SQLite are freely available ones. You
can also write SQL commands in Access. When using any SQL application, it is
important that you check the commands available to use as these may differ
slightly from those listed below.

You will need to be able to understand and use the following DML commands.

SQL (DML) query command Description
SELECT FROM Fetches data from a database. Queries always begin

with SELECT.

WHERE Includes only rows in a query that match a given
condition

ORDER BY Sorts the results from a query by a given column either
alphabetically or numerically

GROUP BY Arranges data into groups

INNER JOIN Combines rows from different tables if the join
condition is true

SUM Returns the sum of all the values in the column

COUNT Counts the number of rows where the column is not NUL

AVG Returns the average value for a column with a numeric
data type

SQL (DML) maintenance commands Description
INSERT INTO Adds new row(s) to a table

DELETE FROM Removes row(s) from a table

UPDATE Edits row(s) in a table

▲ Table 8.15 DML commands

Here are some examples of DML that could have been used to query and update
the school database.

This query will show, in alphabetical order of second name, the first and second
names of all students in class 7A:

SELECT FirstName, SecondName

FROM Student

WHERE ClassID = '7A'

ORDER BY SecondName

This query will show the teacher’s name and the subject taught:

SELECT Teacher.TeacherName AND Subject.SubjectName

FROM Teacher INNER JOIN Subject ON Teacher.
LicenceNumber = Subject.LicenceNumber

457591_08_CI_AS & A_Level_CS_196-216.indd 213 25/04/19 10:01 AM

214

8
D

at
a

b
a

se
s

8
ACTIVITY 8H

Create a query to show each student’s First Name, Second Name and the
subjects studied by each student.

This statement will insert a row into the Student table:

INSERT INTO Student VALUES(S1301, Peter, Probert,
06/06/2011, 7A)

If the values for all the columns are not known, then the table columns need to
be specified before the values are inserted:

INSERT INTO Student(StudentID, FirstName, SecondName)

VALUES(S1301, Peter, Probert)

These statements will delete the specified row(s) from the Student table (take
care: DELETE FROM Student will delete the whole table!):

DELETE FROM Student

WHERE StudentID = 'S1301'

The values for any column can be counted, totalled or averaged.

For example, if an extra column was added to the STUDENTSUBJECT table
showing each student’s exam mark in that subject, the following query could be
used to total all of the students’ exam marks:

SELECT SUM (ExamMark)

FROM STUDENTSUBJECT

ACTIVITY 8I

Use the SQL statements AVG and COUNT to find the average mark and count
how many marks have been recorded.

End of chapter
questions

1 A database has been designed to store data about programmers and the programs
they have developed.

 These facts help to define the structure of the database:

– Each programmer works in a particular team.

– Each programmer has a unique first name.

– Each team has one or more programmer.

– Each program is for one customer only.

– Each programmer can work on any program.

– The number of days that each programmer has worked on a program is
recorded.

 The table ProgDev was the first attempt at designing the database.

457591_08_CI_AS & A_Level_CS_196-216.indd 214 25/04/19 10:01 AM

215

8.3
D

ata definition language (D
D

L) and data m
anipulation language (D

M
L)

8
FirstName Team ProgramName NoOfDays Customer

Alice WC TV control

Ice alert

Digital camera

3

2

6

SKM

WZP

HNC

Charles PC Oil flow

Rescue Pack

1

8

GEB

BGF

Ahmad QR TV control

Accounts

Digital camera

Test Pack

2

8

4

3

SKM

ARC

HNC

GKN

a) State why the table is not in first normal form (1NF). [1]

b) The database design is changed to:

 Programmer (FirstName, Team)

 Program (FirstName, ProgramName, NoOf Days,
Customer)

 Using the data given in the first attempt table (ProgDev), copy and complete
these revised table designs to show how these data are now stored.
 [3]

Table: Programmer
FirstName Team

Table: Program
FirstName ProgramName NoOfDays Customer

c) i) A relationship between the two tables has been implemented.

 Explain how this has been done. [2]

ii) Explain why the Program table is not in third normal
form (3NF). [2]

iii) Write the table definitions to give the database in 3NF. [2]

➔

457591_08_CI_AS & A_Level_CS_196-216.indd 215 25/04/19 10:01 AM

216

8
D

at
a

b
a

se
s

8
2 A school stores a large amount of data. This includes student attendance,

qualification, and contact details. The school’s software uses a file-based approach
to store this data.

a) The school is considering changing to a DBMS.

i) State what DBMS stands for. [1]

ii) Describe two ways in which the Database Administrator (DBA) could use
the DBMS software to ensure the security of the student data. [4]

iii) A feature of the DBMS software is a query processor.

 Describe how the school secretary could use this software. [2]

iv) The DBMS has replaced software that used a file-based approach with a
relational database.

 Describe how using a relational database has overcome the previous
problems associated with a file-based approach. [3]

b) The database design has three tables to store the classes that students attend.

 STUDENT(StudentID, FirstName, LastName, Year,
TutorGroup)

 CLASS(ClassID, Subject)

 CLASS-GROUP(StudentID, ClassID)

 Primary keys are not shown.

 There is a one-to-many relationship between CLASS and CLASS-GROUP.

i) Describe how this relationship is implemented. [2]

ii) Describe the relationship between CLASS-GROUP and STUDENT. [1]

iii) Write an SQL script to display the StudentID and FirstName of all
students who are in the tutor group 10B.

 Display the list in alphabetical order of LastName. [4]

iv) Write an SQL script to display the LastName of all students who attend
the class whose ClassID is CS1. [4]

Cambridge International AS & A Level Computer Science 9608
Paper 12 Q8 June 2016

457591_08_CI_AS & A_Level_CS_196-216.indd 216 25/04/19 10:01 AM

217

9.1
C

om
putational thinking skills

	 9	

In order to design a computer system that performs a specific task, or solves
a given problem, the task or problem has to be rigorously defined and set out,
showing what is going to be computed and how it is going to be computed.

This chapter introduces tools and techniques that can be used to design
a software solution to work with associated computer hardware to form a
computer system.

Practice is essential to develop skills in computational thinking. Designs shown
with pseudocode or flowcharts can be traced to check if the proposed solution
works, but the best way to actually test that a computer system works is to code
it and use it or, even better, get somebody else to use it. Therefore, practical
programming activities, alongside other activities, will be suggested at every stage
to help reinforce the skills being learnt and develop the skill of programming.

The programming languages to use are:

» Java » Python » VB.NET.

9.1	 Computational	thinking	skills

In this chapter, you will learn about

★ computational thinking skills (abstraction and decomposition)
★ how to write algorithms that provide solutions to problems using

structured English, flowcharts and pseudocode
★ the process of stepwise refinement.

WHAT YOU SHOULD ALREADY KNOW
Can	you	answer	these	six	questions	and	
complete	the	following	activity?
1	 What	is	a	procedure?
2	 What	is	a	function?
3	 What	is	an	algorithm?
4	 What	is	structured	English?
5	 What	is	a	flowchart?
6	 What	is	pseudocode?

Write	an	algorithm	using	a	flowchart	to	find	
the	average	of	a	number	of	integers.	Both	the	
number	of	values	and	each	integer	are	to	be	
input,	and	the	average	is	to	be	output.

Use	the	flowchart	of	your	algorithm	to	write	the	
algorithm	in	pseudocode.

Use	your	pseudocode	to	write	and	test	a	
program	that	includes	a	function	to	solve	the	
problem.

Algorithm	design	and		
problem	solving

Key terms
Abstraction	–	the	process	of	extracting	information	that	
is	essential,	while	ignoring	what	is	not	relevant,	for	the	
provision	of	a	solution.

Decomposition	–	the	process	of	breaking	a	complex	
problem	into	smaller	parts.
Pattern recognition	–	the	identification	of	parts	of	a	
problem	that	are	similar	and	could	use	the	same	solution.

457591_09_CI_AS & A_Level_CS_217-237.indd 217 26/04/19 7:32 AM

http://VB.NET

218

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
Computational thinking is used to study a problem and formulate an effective
solution that can be provided using a computer. There are several techniques
used in computational thinking, including abstraction, decomposition,
algorithms and pattern recognition.

9.1.1 Using abstraction
Abstraction is an essential part of computational thinking. It enables computer
scientists to develop clear models for the solution to complex problems.
Abstraction involves extracting information that is essential while ignoring
what is not relevant for the provision of a solution, only including what is
necessary to solve that problem.

Abstraction encourages the development of simplified models that are suited to a
specific purpose by eliminating any unnecessary characteristics from that model.
Many everyday items use abstraction, such as maps, calendars and timetables.

Maps use abstraction to show what is required for a specific purpose, for
example, a road map should only show the necessary detail required to
drive from one place to another. The road map in Figure 9.1 has reduced the
complexity by only showing the essential details needed, such as roads, road
numbers and towns, and removing other information about the terrain that
would not be helpful (as shown in the satellite view).

The benefits of eliminating any unnecessary characteristics from the model include
» the time required to develop the program is reduced so the program can be

delivered to the customer more quickly
» the program is smaller in size so takes up less space in memory and

download times are shortened
» customer satisfaction is greater as their requirements are met without any

extraneous features.

Map Data © 2018 Google, Imagery © 2018 Landsat/Copernicus

▲ Figure 9.1 Road map and satellite view

The first stage of abstraction is to identify the purpose of the model of the
situation that is to be built. The situation could be one that occurs in real life, an
imaginary one, or a future event such as modeling the route of a deep space probe.

Once the purpose has been identified, sources of information need to be
identified. These can include observations, views of potential users, and
evidence from other existing models.

The next stage is to use the information gathered from appropriate sources
to identify what details need to be included in the model, how these details
should be presented and what details are extraneous and need to be removed
from the model.

For example, maps are used for many different purposes and can take different
forms depending on the identified use. The purpose of the road map model in
Figure 9.1 is to allow a driver to plan a journey, therefore, it includes towns and

457591_09_CI_AS & A_Level_CS_217-237.indd 218 26/04/19 7:32 AM

219

9.2
Algorithm

s

9
roads with their numbers. The roads depicted are a scaled down version of the
actual road to help the driver visualise the route.

A rail map model has another purpose and, therefore, looks very different,
only showing rail lines, stations and perhaps details about accessibility for
wheelchair users at different stations. A train passenger has no need to
visualise the route, so the rail lines are simplified for clarity.

9.1.2 Using decomposition
Decomposition is also an essential part of computational thinking. It enables
computer scientists to break a complex problem into smaller parts that can be
further subdivided into even smaller parts until each part is easy to examine
and understand, and a solution can be developed for it. When a rigorous
decomposition is undertaken, many simple problems are found to be more
complex than at first sight.

Pattern recognition is used to identify those parts that are similar and could
use the same solution. This leads to the development of reusable program code
in the form of subroutines, procedures and functions. When writing a computer
program, each final part is defined as a separate program module that can be
written and tested as a separate procedure or function, as shown in Figure 9.2.
Program modules already written and tested can also be identified and reused,
thus saving development time. See Chapter 12 for further details.

Decomposition

Module 1 Module 2

Module 1.1 Module 1.2 Module 2.1 Module 2.2

Module 2.2.1 Module 2.2.2

Program

▲ Figure 9.2 Decomposition of a program into modules

9.2	 Algorithms

Key terms

Structured English	–	a	method	of	showing	the	logical	
steps	in	an	algorithm,	using	an	agreed	subset	of	
straightforward	English	words	for	commands	and	
mathematical	operations.
Flowchart	–	a	diagrammatic	representation	of	an	
algorithm.
Algorithm	–	an	ordered	set	of	steps	to	be	followed	in	
the	completion	of	a	task.

Pseudocode	–	a	method	of	showing	the	detailed	logical	
steps	in	an	algorithm,	using	keywords,	identifiers	with	
meaningful	names,	and	mathematical	operators.
Stepwise refinement	–	the	practice	of	subdividing	each	
part	of	a	larger	problem	into	a	series	of	smaller	parts,	
and	so	on,	as	required.

457591_09_CI_AS & A_Level_CS_217-237.indd 219 26/04/19 7:32 AM

220

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
9.2.1 Writing algorithms that provide solutions to problems
There are several methods of writing algorithms before attempting to program
a solution. Here are three frequently used methods.
» Structured English is a method of showing the logical steps in an

algorithm, using an agreed subset of straightforward English words for
commands and mathematical operations to represent the solution. These
steps can be numbered.

» A flowchart shows diagrammatically, using a set of symbols linked together
with flow lines, the steps required for a task and the order in which they
are to be performed. These steps, together with the order, are called an
algorithm. Flowcharts are an effective way to show the structure of an
algorithm.

» Pseudocode is a method of showing the detailed logical steps in an
algorithm, using keywords, identifiers with meaningful names and
mathematical operators to represent a solution. Pseudocode does not need to
follow the syntax of a specific programming language, but it should provide
sufficient detail to allow a program to be written in a high-level language.

Below, you will see the algorithm from the What you should already know
section on page 217 written using each of these three methods.

Structured English

Pseudocode

Total ← 0

PRINT "Enter the number of values to average"

INPUT Number

FOR Counter ← 1 TO Number

 PRINT "Enter value"

 INPUT Value

 Total ← Total + Value

NEXT Counter

Average ← Total / Number

PRINT "The average of ", Number, " values is ", Average

1 Ask for the number of values

2 Loop that number of times

3 Enter a value in loop

4 Add the value to the Total in loop

5 Calculate and output average

ACTIVITY 9A

You	have	been	asked	
to	write	an	algorithm	
for	drawing	regular	
polygons	of	any	size.

In	pairs,	divide	
the	problem	into	
smaller	parts,	
identifying	those	
parts	that	are	
similar.

Write	down	your	
solution	as	an	
algorithm	in	
structured	English.

Swap	your	algorithm	
with	another	pair.

Test	their	algorithm	
by	following	their	
instructions	to	
draw	a	regular	
polygon.	Discuss	
any	similarities	and	
differences	between	
your	solutions.

457591_09_CI_AS & A_Level_CS_217-237.indd 220 26/04/19 7:32 AM

221

9.2
Algorithm

s

9
Flowchart

Start

End

Total = 0
Counter = 1

Total = Total + Value
Counter = Counter + 1

Average =
Total/Number

OUTPUT "Enter the
number of values

to average"

OUTPUT "The average
of ", Number, " values

is ", Average

INPUT
Number

OUTPUT
"Enter
value"

INPUT
Value

Counter >
Number?

No

Yes

▲ Figure 9.3

9.2.2 Writing simple algorithms using pseudocode
Each line of pseudocode is usually a single step in an algorithm. The
pseudocode used in this book follows the rules in the Cambridge International
AS & A Level Computer Science Pseudocode Guide for Teachers and is set out using
a fixed width font and indentation, where required, of four spaces, except for
THEN, ELSE and CASE clauses that are only indented by two spaces.

All identifier names used in pseudocode should be meaningful; for example, the
name of a person could be stored in the variable identified by Name. They should
also follow some basic rules: they should only contain the characters A–Z, a–z and
0–9, and should start with a letter. Pseudocode identifiers are usually considered
to be case insensitive, unlike identifiers used in a programming language.

457591_09_CI_AS & A_Level_CS_217-237.indd 221 26/04/19 7:32 AM

222

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
It is good practice to keep track of any identifiers used in an identifier table,
such as Table 9.1.

Identifier name Description
StudentName Store a student name

Counter Store a loop counter

StudentMark Store a student mark

▲ Table 9.1

Pseudocode statements to use for writing algorithms.

To input a value:

To output a message or a value or a combination:

To assign a value to a variable (the value can be the result of a process or a
calculation):

Operators used in pseudocode assignment statements:

To perform a selection using IF statements for a single choice or a choice
and an alternative, and CASE statements when there are multiple choices or
multiple choices and an alternative:

INPUT StudentName

OUTPUT "You have made an error"

OUTPUT StudentName

OUTPUT "Student name is ", StudentName

Counter ← 1

Counter ← Counter + 1

MyChar ← "A"

LetterValue ← ASC(MyChar)

StudentMark ← 40

Percentage ← (StudentMark / 80) * 100

Oldstring ← "Your mark is"

NewString ← OldString & " ninety-seven"

+ Addition

- Subtraction

* Multiplication

/ Division

& String concatenation

← Assignment

ACTIVITY 9B

Identify	the	values	
stored	in	the	
variables	when	
the	assignment	
statements	in	the	
example	above	have	
all	been	completed.	
The	function	ASC	
returns	the	ASCII	
value	of	a	character.

457591_09_CI_AS & A_Level_CS_217-237.indd 222 26/04/19 7:32 AM

223

9.2
Algorithm

s

9

Relational operators used in pseudocode selection statements:

Programming languages may not always have the same selection constructs as
pseudocode, so it is important to be able to write a program that performs the
same task as a solution given in pseudocode.

Here are three programs, one in each of the three prescribed programming
languages, to demonstrate the single choice IF statement. Note the
construction of the IF statement, as it is different from the pseudocode.

While the Cambridge International AS Level syllabus does not require you
to be able to write program code, the ability to do so will increase your
understanding, and will be particularly beneficial if you are studying the full
Cambridge International A Level course.

IF – single choice

IF MyValue > YourValue

 THEN

 OUTPUT "I win"

ENDIF

CASE – multiple choices

CASE OF Direction

 "N": Y ← Y + 1

 "S": Y ← Y – 1

 "E": X ← X + 1

 "W": X ← X – 1

ENDCASE

CASE – multiple choices with alternative

CASE OF Direction

 "N": Y ← Y + 1

 "S": Y ← Y – 1

 "E": X ← X + 1

 "W": X ← X – 1

 OTHERWISE : OUTPUT "Error"

ENDCASE

= Equal to

<> Not equal to

> Greater than

> Less than

>= Greater than or equal to

<= Less than or equal to

IF – single choice with alternative

IF MyValue > YourValue

 THEN

 OUTPUT "I win"

 ELSE

 OUTPUT "You win"

ENDIF

457591_09_CI_AS & A_Level_CS_217-237.indd 223 26/04/19 7:32 AM

224

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
Python

IF - single choice Python

myValue = int(input("Please enter my value "))

yourValue = int(input("Please enter your value "))

if myValue > yourValue:

 print ("I win")

VB

'IF - single choice VB

Module Module1

 Sub Main()

 Dim myValue, yourValue As Integer

 Console.Write("Please enter my value ")

 myValue = Integer.Parse(Console.ReadLine())

 Console.Write("Please enter your value ")

 yourValue = Integer.Parse(Console.ReadLine())

 If myValue > yourValue Then

 Console.WriteLine("I win")

 Console.ReadKey() 'wait for keypress

 End If

 End Sub

End Module

Java

//IF - single choice Java

import java.util.Scanner;

class IFProgram

{

 public static void main(String args[])

 {

 Scanner myObj = new Scanner(System.in);

 System.out.println("Please enter my value ");

 int myValue = myObj.nextInt();

 System.out.println("Please enter your value ");

 int yourValue = myObj.nextInt();

 if (myValue > yourValue)

 {

 System.out.println("I win");

 }

 }

}

{} are used to show
the start and end of
the THEN clause

The colon indicates the start of the THEN clause. All
statements in the THEN clause are indented as shown

Use of THEN and END IF

457591_09_CI_AS & A_Level_CS_217-237.indd 224 4/30/19 7:53 AM

http://Scanner(System.in

225

9.2
Algorithm

s

9

To perform iteration using FOR, REPEAT–UNTIL and WHILE loops:

A FOR loop has a fixed number of repeats, the STEP increment is an optional
expression that must be a whole number.

Statements in a REPEAT loop are always executed at least once.

Statements in a WHILE loop may sometimes not be executed.

Programming languages may not always use the same iteration constructs as
pseudocode, so it is important to be able to write a program that performs the
same task as a solution given in pseudocode.

ACTIVITY 9C

1	 In	the	programming	language	you	have	chosen	to	use,	write	a	short	
program	to	input	MyValue	and	YourValue	and	complete	the	single	
choice	with	an	alternative	IF	statement	shown	on	page	224.	Note	any	
differences	in	the	command	words	you	need	to	use	and	the	construction	
of	your	programming	statements	compared	with	the	pseudocode.

2	 In	the	programming	language	you	have	chosen	to	use,	write	a	short	
program	to	set	X	and	Y	to	zero,	input	Direction	and	complete	the	
multiple	choice	with	an	alternative	CASE	statement	shown	on	page	224	
and	output	X	and	Y.	Note	any	differences	in	the	command	words	you	need	
to	use	and	the	construction	of	your	programming	statements	compared	
to	the	pseudocode.

Total ← 0

FOR Counter ← 1 TO 10

 OUTPUT "Enter a number "

 INPUT Number

 Total ← Total + Number

NEXT Counter

OUTPUT "The total is ", Total

FOR Counter ← 1 TO 10 STEP 2

 OUTPUT Counter

NEXT Counter

REPEAT

 OUTPUT "Please enter a positive number "

 INPUT Number

UNTIL Number > 0

Number ← 0

WHILE Number >= 0 DO

 OUTPUT "Please enter a negative number "

 INPUT Number

ENDWHILE

457591_09_CI_AS & A_Level_CS_217-237.indd 225 26/04/19 7:32 AM

226

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
Here are three programs to demonstrate a simple FOR loop, one in each of the
three prescribed programming languages. Note the construction of the FOR
statement, as it is different from the pseudocode.

Python

FOR - simple loop Python

for Counter in range (1,10,2):

 print(Counter)

VB

'FOR - simple loop VB

 Module Module1

 Sub Main()

 Dim Counter As Integer

 For Counter = 1 To 10 Step 2

 Console.WriteLine(Counter)

 Next

 Console.ReadKey() 'wait for keypress

 End Sub

End Module

Java

//FOR - simple loop Java

class FORProgram

{

 public static void main(String args[])

 {

 for (int Counter = 1; Counter <= 10; Counter = Counter + 2)

 {

 System.out.println(Counter);

 }

 }

}

WHILE and REPEAT loops and IF statements make use of comparisons to
decide whether statements within a loop are repeated or a statement or group
of statements are executed. The comparisons make use of relational operators
and the logic operators AND, OR and NOT. The outcome of these comparisons
is always either true or false.

The colon indicates the start of the
FOR loop. All statements in the FOR
loop are indented as shown

Use of STEP
and NEXT

{} are used to show
the start and end of
the FOR loop

ACTIVITY 9D

In	the	programming	
language	you	have	
chosen	to	use,	write	
a	short	program	to	
perform	the	same	
tasks	as	the	other	
three	loops	shown	
in	pseudocode.	Note	
any	differences	in	
the	command	words	
you	need	to	use,	and	
the	construction	of	
your	programming	
statements	
compared	to	the	
pseudocode.

457591_09_CI_AS & A_Level_CS_217-237.indd 226 26/04/19 7:32 AM

227

9.2
Algorithm

s

9

A simple algorithm can be clearly documented using these statements. A more
realistic algorithm to find the average of a number of integers input would
include checks that all the values input are whole numbers and that the number
input to determine how many integers are input is also positive.

This can be written in pseudocode by making use of the function INT(x) that
returns the integer part of x:

The identifier table for this algorithm is presented in Table 9.2.

Identifier name Description
Total Running total of integer values entered

Number Number of integer values to enter

Value Integer value input

Average Average of all the integer values entered

▲ Table 9.2

Here are three programs to find the average of a number of integers input, one
in each of the three prescribed programming languages. Note the construction
of the loops, as they are different from the pseudocode. All the programming
languages check for an integer value.

REPEAT

 OUTPUT "Please enter a positive number less than fifty"

 INPUT Number

UNTIL (Number > 0) AND (Number < 50)

Total ← 0

REPEAT

 PRINT "Enter the number of values to average"

 INPUT Number

UNTIL (Number > 0) AND (Number = INT(Number))

FOR Counter ← 1 TO Number

 REPEAT

 PRINT "Enter an integer value "

 INPUT Value

 UNTIL Value = INT(Value)

 Total ← Total + Value

NEXT Counter

Average ← Total / Number

PRINT "The average of ", Number, " values is ", Average

ACTIVITY 9E

In	pseudocode,	
write	statements	to	
check	that	a	number	
input	is	between	
10	and	20	or	over	
100.	Make	use	of	
brackets	to	ensure	
that	the	order	of	
the	comparisons	is	
clear.

457591_09_CI_AS & A_Level_CS_217-237.indd 227 26/04/19 7:32 AM

228

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
Python

Find the average of a number of integers input Python

Total = 0

Number = int(input("Enter the number of values to average "))

while Number <= 0:

 Number = int(input("Enter the number of values to average "))

for Counter in range (1, Number + 1):

 Value = int(input("Enter an integer value "))

 Total = Total + Value

Average = Total / Number

print ("The average of ", Number, " values is ", Average)

VB

'Find the average of a number of integers input VB

 Module Module1

 Public Sub Main()

 Dim Total, Number, Counter, Value As Integer

 Dim Average As Decimal

 Do

 Console.Write("Enter the number of values to average ")

 Number = Integer.Parse(Console.ReadLine())

 Loop Until Number > 0

 For Counter = 1 To Number

 Console.Write("Enter an integer value ")

 Value = Integer.Parse(Console.ReadLine())

 Total = Total + Value

 Next

 Average = Total / Number

 Console.WriteLine("The average of " & Number & " values is " & Average)

 Console.ReadKey()

 End Sub

End Module

An extra input
is needed, as a
WHILE loop
must be usedThe loop ends

before the
final value is
reached

Use of DO and LOOP UNTIL

457591_09_CI_AS & A_Level_CS_217-237.indd 228 26/04/19 7:32 AM

229

9.2
Algorithm

s

9
Java

//Find the average of a number of integers input Java

import java.util.Scanner;

class AverageAlg

{

 public static void main(String args[])

 {

 Scanner myObj = new Scanner(System.in);

 int Number;

 int Total = 0;

 do

 {

 System.out.println("Enter the number of values to average ");

 Number = myObj.nextInt();

 }

 while (Number < 0);

 for (int Counter = 1; Counter <= Number; Counter ++)

 {

 System.out.println("Enter an integer value ");

 int Value = myObj.nextInt();

 Total = Total + Value;

 }

 float Average = (float)Total / Number;

 System.out.println("The average of " + Number + " values is " + Average);

 }

}

9.2.3 Writing pseudocode from a structured English
description

There are no set rules for writing structured English – the wording just needs
to be unambiguous and easily understandable. Pseudocode is more precise and
usually follows an agreed set of rules.

From a structured English description, the following things need to be possible:

» Any variables that need to be used can be identified and put in an identifier
table – these can be items input or output as the results of calculations.

ACTIVITY 9F

In	pseudocode,	write	an	algorithm	to	set	a	password	for	a	user	when	they	
have	to	input	the	same	word	twice.	Then	allow	the	user	three	attempts	to	
enter	the	correct	password.	Complete	an	identifier	table	for	your	algorithm.

Finally,	check	your	pseudocode	algorithm	works	by	writing	a	short	program	
from	your	pseudocode	statements	using	the	same	names	for	your	identifiers.

Use of DO WHILE loop

Java automatically performs integer
division when two integers are used

457591_09_CI_AS & A_Level_CS_217-237.indd 229 26/04/19 7:32 AM

http://Scanner(System.in

230

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
» Input and output can be identified from the wording used, for example,

Enter, Read, Print, Write.
» Selection can be identified from the wording used, for example, If, Then,

Choose.
» Any iteration required can be identified from the wording used, for example,

Loop, Repeat.
» Any processes needed can be identified from the wording used, for example,

Set, Calculate.

When the identifier table is complete, each structured English statement can be
used to write one or more pseudocode statements, keeping the same order as
the structured English.

Here is an example of an algorithm to calculate a runner’s marathon time in
seconds, using structured English.

This can be used to identify the variables required and complete the identifier
table (Table 9.3).

Identifier name Description
MarathonHours The hours part of the marathon time

MarathonMinutes The minutes part of the marathon time

MarathonSeconds The seconds part of the marathon time

TotalMarathonTimeSeconds Total marathon time in seconds

▲ Table 9.3

Using these identifiers, each step of the structured English algorithm can be
converted to pseudocode, as demonstrated below.

There are three variables used: MarathonHours, MarathonMinutes and
MarathonSeconds. This is explicitly input and implicitly output as the user
needs to understand what input is required. The pseudocode required is as
follows.

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

1 Enter time taken to run marathon in hours, minutes and seconds

OUTPUT "Enter the time you took to run the marathon"

OUTPUT "Enter hours"

INPUT MarathonHours

OUTPUT "Enter minutes"

INPUT MarathonMinutes

OUTPUT "Enter seconds"

INPUT MarathonSeconds

457591_09_CI_AS & A_Level_CS_217-237.indd 230 26/04/19 7:32 AM

231

9.2
Algorithm

s

9
This is a process using the variables MarathonHours, MarathonMinutes
and MarathonSeconds and using an assignment statement to store the
result in TotalMarathonTimeSeconds. The pseudocode required is as
follows.

This is output using the variable TotalMarathonTimeSeconds. The
pseudocode required is as follows.

9.2.4 Writing pseudocode from a flowchart
Flowcharts are diagrams showing the structure of an algorithm using an agreed
set of symbols, as shown in Table 9.4.

2 Calculate and store marathon time in seconds

TotalMarathonTimeSeconds ← (MarathonHours * 3600

 + MarathonMinutes) * 60 + MarathonSeconds

3 Output marathon time in seconds

OUTPUT "Time for marathon in seconds ",
TotalMarathonTimeSeconds

ACTIVITY 9G

The	structured	English	description	has	been	extended	below	to	check	the	
runner’s	time	against	their	personal	best.

Extend	the	identifier	table	and	write	the	extra	pseudocode	to	complete	the	
algorithm.	Then	check	your	algorithm	works	by	writing	a	short	program	
from	your	pseudocode	statements	using	the	same	names	for	your	
identifiers.

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

4 Enter personal best time in seconds

5 If marathon time in seconds is shorter than the personal best time then

6 Reset personal best time in seconds

7 Output the personal best time

457591_09_CI_AS & A_Level_CS_217-237.indd 231 26/04/19 7:32 AM

232

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
Pseudocode Flowchart symbol

INPUT or OUTPUT

IF or CASE

Part of FOR, REPEAT and WHILE

FOR, REPEAT and WHILE

Returning flow line

Assignment ← using a calculation or a pre-defined process,
for example, INT

▲ Table 9.4

Flowcharts can be used to identify any variables required and you can then
complete an identifier table. Each flowchart symbol can be used to identify and
write one or more pseudocode statements.

Here is an example of a flowchart of an algorithm that can be used to check an
exam grade:

▲ Figure 9.4

Start

End

Grade =
"Distinction"

Grade = "Fail"

Grade = "Pass"

Grade = "Merit"

INPUT Mark

OUTPUT "Enter
your exam mark"

OUTPUT "Your
grade is ", Grade

Mark < 40?

Mark < 60?

Mark < 80?

No

Yes

No

Yes

No

Yes

1

2

3

4

5

6

7

457591_09_CI_AS & A_Level_CS_217-237.indd 232 26/04/19 7:32 AM

233

9.2
Algorithm

s

9
The same algorithm is presented in
pseudocode on the left. Below is the
identifier table:

Identifier name Description
Mark Exam mark

Grade Exam grade

▲ Table 9.5

3 4 5 and 6 form a nested
selection (IF) structure, as each following
statement is part of the ELSE clause. It is
only at 7 that the selection is complete.
The flowchart shows this clearly and the
pseudocode uses indentation to show the
nesting.

 OUTPUT "Enter your exam mark"

 INPUT Mark

 IF Mark < 40

 THEN

 Grade ← "Fail"

 ELSE

 IF Mark < 60

 THEN

 Grade ← "Pass"

 ELSE

 IF Mark < 80

 THEN

 Grade ← "Merit"

 ELSE

 Grade ← "Distinction"

 ENDIF

 ENDIF

 ENDIF

 OUTPUT "Your grade is ", Grade

1

2

3

4

5

6

7

9.2.5 Stepwise refinement
The algorithms looked at so far have been short and simple. When an
algorithm is written to solve a more complex problem, decomposition is used to
break the problem down into smaller and more manageable parts. These parts
then need to be written as a series of steps where each step can be written
as a statement in a high-level programming language, this process is called
stepwise refinement.

Many problems are more complex than they seem if a robust solution is to be
developed. Look at the first step of the structured English to calculate a time
in seconds.

The first step can be further broken down, as follows:

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

1.1 Enter the hours

1.2 Enter the minutes

1.3 Enter the seconds

457591_09_CI_AS & A_Level_CS_217-237.indd 233 26/04/19 7:32 AM

234

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
ACTIVITY 9H

The	flowchart	on	page	232	has	been	extended	to	allow	more	than	one	mark	
to	be	input.

Extend	the	identifier	table	and	write	the	extra	pseudocode	to	complete	the	
algorithm.	Then	check	your	algorithm	works	by	writing	a	short	program	
from	your	pseudocode	statements	using	the	same	names	for	your	
identifiers.

Start

End

Grade =
"Distinction"

Grade = "Fail"

Grade = "Pass"

Grade = "Merit"

OUTPUT "Enter
your exam mark"

OUTPUT "Your
grade is ", Grade

OUTPUT "Enter another
exam mark Y/N"

INPUT Mark

INPUT "Reply"

Mark < 40?

Mark < 60?

Mark < 80?

Reply = "Y"?

No

Yes

No

Yes

Yes

No

No

Yes

457591_09_CI_AS & A_Level_CS_217-237.indd 234 26/04/19 7:32 AM

235

9.2
Algorithm

s

9
Each of these steps can be broken down further:

These steps can now be written in pseudocode. For example, the input routine
for the seconds:

1.1.1 Input value for hours

1.1.2 Check input in the range 2 to 8

1.1.3 Reject if out of range or not a whole number and re-input value step 1.1.1

1.1.4 Accept and store value in hours

1.2.1 Input value for minutes

1.2.2 Check input in the range 0 to 59

1.2.3 Reject if out of range or not a whole number and re-input value step 1.2.1

1.2.4 Accept and store value in minutes

1.3.1 Input value for seconds

1.3.2 Check input in the range 0 to 59

1.3.3 Reject if out of range or not a whole number and re-input value step 1.3.1

1.3.4 Accept and store value in seconds

REPEAT

 OUTPUT "Enter seconds"

 INPUT Value

UNTIL (Value >= 0) AND (Value <= 59) AND (Value = INT(Value))

MarathonSeconds ← Value

ACTIVITY 9I

Look	at	the	algorithm	to	calculate	the	area	of	a	chosen	shape	written	in	
structured	English	below.	Use	stepwise	refinement	to	break	each	step	into	
more	manageable	parts	then	rewrite	the	algorithm	using	pseudocode.

1 Choose the shape (square, triangle, circle)

2 Enter the length(s)

3 Calculate the area

4 Output the area

Then	check	your	pseudocode	algorithm	works	by	writing	a	short	program	
from	your	pseudocode	statements	using	the	same	names	for	your	
identifiers.

457591_09_CI_AS & A_Level_CS_217-237.indd 235 26/04/19 7:32 AM

236

9
A

lg
o

r
it

h
m

 d
e

si
g

n
 A

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

9
1 Algorithms can be shown as structured English, f lowcharts and

pseudocode.

 Explain what is meant by

a) structured English [2]

b) a f lowchart [2]

c) pseudocode. [2]

2 Several techniques are used in computational thinking.

 Explain what is meant by

a) abstraction [2]

b) decomposition [2]

c) pattern recognition. [2]

3 Describe, using an example, the process of stepwise refinement. [2]

4 Computer programs have to evaluate expressions.

– Study the sequence of pseudocode statements.

– Write down the value assigned to each variable.

DECLARE h, w, r, Perimeter, Area : REAL

DECLARE A, B, C, D, E : BOOLEAN

h ← 13.6 w ← 6.4

Perimeter ← (h + w) * 2
r ← 10

Area 3.142 * r^2

Z ← 11 + r / 5 + 3
A ← NOT(r > 10)

a) Perimeter [1]

b) Area [1]

c) Z [1]

d) A [1]

Cambridge International AS & A Level Computer Science 9608
Paper 21 Q1 November 2015

End of chapter
questions

457591_09_CI_AS & A_Level_CS_217-237.indd 236 4/30/19 7:56 AM

237

9.2
Algorithm

s

9
5 Study the pseudocode and answer the following questions. Line numbers have

been added to help you.

a) Give the line number of:

i) an assignment statement [1]

ii) a selection [1]

iii) an iteration. [1]

b) Complete an identifier table for the algorithm. [3]

c) Extend the algorithm to only allow four tries for a correct choice. [3]

01 REPEAT

02 OUTPUT "Menu Temperature Conversion"

03 OUTPUT "Celsius to Fahrenheit 1"

04 OUTPUT "Fahrenheit to Celsius 2"

05 OUTPUT "Exit 3"

06 OUTPUT "Enter choice"

07 IF Choice = 1 OR Choice = 2

08 THEN

09 OUTPUT "Enter temperature"

10 INPUT Temperature

11 IF Choice = 1

12 THEN

13 ConvertedTemperature ← 1.8*Temperature + 32

14 ELSE

15 ConvertedTemperature ← (Temperature – 32) * 5 / 9

16 ENDIF

17 OUTPUT "Converted temperature is ", ConvertedTemperature

18 ELSE

19 IF Choice <> 3

20 THEN

21 OUTPUT "Error in choice"

22 ENDIF

23 ENDIF

24 UNTIL Choice = 3

457591_09_CI_AS & A_Level_CS_217-237.indd 237 4/30/19 9:16 AM

238

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

	 10	 Data	types	and	structures

In this chapter, you will learn about

★ basic data types, and how to select and use them
★ two different data structures: records and arrays
★ how to handle text files consisting of many lines, using pseudocode
★ three different abstract data types (ADTs): stacks, queues and

linked lists.

WHAT YOU SHOULD ALREADY KNOW
Try this activity to see if you can use one-
dimensional arrays before you read the first part
of this chapter.

Write an algorithm, using pseudocode, to find
the largest and smallest of five numbers.

The numbers are to be input with appropriate
prompts, stored in an array, and the largest
and smallest are to be output with appropriate
messages. If you haven’t used an array before
store the values in five separate variables.

Key terms
Data type – a classification attributed to an item of data,
which determines the types of value it can take and how
it can be used.
Identifier – a unique name applied to an item of data.
Record (data type) – a composite data type comprising
several related items that may be of different data
types.
Composite data type – a data type constructed using
several of the basic data types available in a particular
programming language.
Array – a data structure containing several elements of
the same data type.
Index (array) – a numerical indicator of an item of
data’s position in an array.
Lower bound – the index of the first element in an
array, usually 0 or 1.

Upper bound – the index of the last element in an array.
Linear search – a method of searching in which each
element of an array is checked in order.
Bubble sort – a method of sorting data in an array into
alphabetical or numerical order by comparing adjacent
items and swapping them if they are in the wrong order.
File – a collection of data stored by a computer
program to be used again.
Abstract data type (ADT) – a collection of data and a set
of operations on that data.
Stack – a list containing several items operating on the
last in, first out (LIFO) principle.
Queue – a list containing several items operating on the
first in, first out (FIFO) principle.
Linked list – a list containing several items in which
each item in the list points to the next item in the list.

10.1 Data types and records
Any computer system that is reusable needs to store data in a structured
way so that it can be reused in the future. One of the most powerful tools in
computer science is the ability to search large amounts of data and obtain
results very quickly. This chapter introduces data structures that enable
effective and efficient computer-based storage and searching to take place.

457591_10_CI_AS & A_Level_CS_238-263.indd 238 26/04/19 7:35 AM

239

10.1 D
ata types and records

10
10.1.1 Data types
Data types allow programming languages to provide different classifications
for items of data, so they can be used for different purposes. For example,
integers are discrete whole numbers used for counting and indexing, whereas
real numbers can be used to provide accurate measurements.

You need to be able to understand and make appropriate use of data types
when writing pseudocode or programs to provide a solution to a problem.

Programming languages have a number of built in data types. Table 10.1 lists
the basic data types that you need to know and how they are referred to in
pseudocode and different programming languages.

Data type Description Pseudocode Python Java VB.NET
Boolean Logical values, True (1) and False (2) BOOLEAN bool boolean Boolean

char Single alphanumerical character CHAR Not used char Char

date Value to represent a date DATE class datetime class Date Date

integer Whole number, positive or negative INTEGER int byte

short

int

long

Integer

real Positive or negative number with a
decimal point

REAL float float

double

single

string Sequence of alphanumerical
characters

STRING str class
String

String

▲ Table 10.1 Basic data types

In pseudocode and some programming languages, before data can be used, the
type needs to be decided. This is done by declaring the data type for each item
to be used. Each data item is identified by a unique name, called an identifier.

In pseudocode a declaration statement takes this form:

 DECLARE <identifier> : <data type>

For example:

 DECLARE myBirthday : DATE

ACTIVITY 10A

Decide which data type would be the best one to use for each item.
a) Your name
b) The number of children in a class
c) The time taken to run a race
d) Whether a door is open or closed
e) My birthday

457591_10_CI_AS & A_Level_CS_238-263.indd 239 26/04/19 7:35 AM

http://typeDescriptionPseudocodePythonJavaVB.NET

240

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

10.1.2 Records
Records are composite data types formed by the inclusion of several related
items that may be of different data types. This allows a programmer to refer to
these items using the same identifier, enabling a structured approach to using
related items. A record will contain a fixed number of items. For example, a
record for a book could include title, author, publisher, number of pages, and
whether it is fiction or non-fiction.

A record data type is one example of a composite user-defined data type. A
composite data type references other existing data types when it is defined. A
composite data type must be defined before it can be used. Any data type not
provided by a programming language must be defined before it can be used.

In pseudocode, a record data type definition takes the following form:

 TYPE

 <Typename>

 DECLARE <identifier> : <data type>

 DECLARE <identifier> : <data type>

 DECLARE <identifier> : <data type>

 ::

 ::

 ENDTYPE

For example, the book record data type could be defined like this:

 TYPE

 TbookRecord

 DECLARE title : STRING

 DECLARE author : STRING

 DECLARE publisher : STRING

 DECLARE noPages : INTEGER

 DECLARE fiction : BOOLEAN

 ENDTYPE

The data type, TbookRecord, is now available for use and an identifier may
now be declared in the usual way:

 DECLARE Book : TbookRecord

ACTIVITY 10B

Write declaration statements in pseudocode for each item.
a) Your name
b) The number of children in a class
c) The time taken to run a race
d) Whether a door is open or closed

Write these declaration statements in your chosen programming language.
If this is Python, you may need to write assignment statements.

457591_10_CI_AS & A_Level_CS_238-263.indd 240 26/04/19 7:35 AM

241

10.2 Arrays

10
Items from the record are now available for use and are identified by:

 <identifier>.<item identifier>

For example:

 Book.author ← "David Watson"

 Book.fiction ← FALSE

10.2 Arrays
An array is a data structure containing several elements of the same data type;
these elements can be accessed using the same identifier name. The position of
each element in an array is identified using the array’s index. The index of the
first element in an array is the lower bound and the index of the last element
is the upper bound.

The lower bound of an array is usually set as zero or one. Some programming
languages can automatically set the lower bound of an array.

Arrays can be one-dimensional or multi-dimensional. In this chapter, we will
look at one-dimensional (1D) and two-dimensional (2D) arrays.

10.2.1 1D arrays
A 1D array can be referred to as a list. Here is an example of a list with nine
elements and a lower bound of zero.

Index myList
Lower bound → [0] 27

[1] 19
[2] 36
[3] 42
[4] 16
[5] 89
[6] 21
[7] 16

Upper bound → [8] 55

▲ Figure 10.1 Example of a 1D array

ACTIVITY 10C

1 Write definition statements in pseudocode for a student record type
containing these items.
a) Name
b) Date of birth
c) Class
d) Gender

2 Use this record type definition to declare a record myStudent and set up
and output a record for a male student Ahmad Sayed, in Class 5A, who
was born on 21 March 2010.

3 In your chosen programming language, write a short program to
complete this task.

457591_10_CI_AS & A_Level_CS_238-263.indd 241 26/04/19 7:35 AM

242

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

When a 1D array is declared in pseudocode, the lower bound (LB), upper bound
(UB) and data type are included:

 DECLARE <identifier> : ARRAY[LB:UB] OF <data type>

For example:

 DECLARE myList : ARRAY[0:8] OF INTEGER

The declared array can then be used, as follows:

 myList[7] ← 16

ACTIVITY 10D

1 Write statements in pseudocode to populate the array myList, as shown
in Figure 10.1, using a FOR … NEXT loop.

2 In your chosen programming language, write a short program to complete
this task, then output the contents of the array. Before writing your program
find out how your programming language sets up array bounds.

10.2.2 2D arrays
A 2D array can be referred to as a table, with rows and columns. Here is an
example of a table with nine rows and three columns (27 elements) and lower
bounds of zero.

MyArray
Column index

Row index

[r,0] [r,1] [r,2]
[0,c] 27 31 17 ← lower bound row
[1,c] 19 67 48
[2,c] 36 98 29
[3,c] 42 22 95
[4,c] 16 35 61
[5,c] 89 46 47
[6,c] 21 71 28
[7,c] 16 23 13
[8,c] 55 11 77 ← upper bound row

↑
lower
bound
column

↑
upper
bound
column

▲ Figure 10.2 Example of a 2D array

When a 2D array is declared in pseudocode, the lower bound for rows (LBR) and
the upper bound for rows (UBR), the lower bound for columns (LBC) and the
upper bound for columns (UBC), and data type are included:

 DECLARE <identifier> : ARRAY[LBR:UBR, LBC:UBC] OF <data type>

457591_10_CI_AS & A_Level_CS_238-263.indd 242 26/04/19 7:35 AM

243

10.2 Arrays

10

ACTIVITY 10E

1 Write statements in pseudocode to populate the array myArray, as shown
in Figure 10.2, using a nested FOR … NEXT loop.

2 In your chosen programming language, write a short program to
complete this task, then output the contents of the array.

For example:

 DECLARE myArray : ARRAY[0:8,0:2] OF INTEGER

The declared array can then be used, as follows:

 myArray[7,0] ← 16

EXTENSION
ACTIVITY 10A

Write a program to
populate a three-
dimensional (3D)
array.

ACTIVITY 10F

In small groups
of three or four,
identify at least
three uses for a
1D array and three
uses for a 2D array.
Compare array
structures with
record structures,
decide if any of
your uses would be
better structured as
records.

Arrays are used to store multiple data items in a uniformly accessible manner.
All the data items use the same identifier and each data item can be accessed
separately by the use of an index. In this way, lists of items can be stored,
searched and put into an order. For example, a list of names can be ordered
alphabetically, or a list of temperatures can be searched to find a particular value.

10.2.3 Using a linear search
To find an item stored in an array, the array needs to be searched. One method
of searching is a linear search. Each element of the array is checked in order,
from the lower bound to the upper bound, until the item is found or the upper
bound is reached.

For example, the search algorithm to find if an item is in the populated 1D
array myList could be written in pseudocode as:

 DECLARE myList : ARRAY[0:8] OF INTEGER

 DECLARE upperBound : INTEGER

 DECLARE lowerBound : INTEGER

 DECLARE index : INTEGER

 DECLARE item : INTEGER

 DECLARE found : BOOLEAN

 upperBound ← 8

 lowerBound ← 0

 OUTPUT "Please enter item to be found"

 INPUT item

 found ← FALSE

 index ← lowerBound

 REPEAT

 IF item = myList[index]

457591_10_CI_AS & A_Level_CS_238-263.indd 243 26/04/19 7:35 AM

244

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

ACTIVITY 10G

Extend the pseudocode algorithm to output the value of the index if the item
is found. In your chosen programming language write a short program
to complete this task. You will need to populate the array myList before
searching for an item. Use the sample data shown in myList in Figure 10.1
and search for the values 89 and 77.

 THEN

 found ← TRUE

 ENDIF

 index ← index + 1

 UNTIL (found = TRUE) OR (index > upperBound)

 IF found

 THEN

 OUTPUT "Item found"

 ELSE

 OUTPUT "Item not found"

 ENDIF

This algorithm uses the variables upperBound and lowerBound so that
the algorithm is easier to adapt for different lengths of list. The REPEAT …
UNTIL loop makes use of two conditions, so that the algorithm is more
efficient, terminating as soon as the item is found in the list.

As stated in Chapter 9, it is good practice to provide an identifier table to keep
track of and explain the use of each identifier in an algorithm. This allows the
programmer to keep track of the identifiers used and provides a useful summary
of identifiers and their uses if the algorithm requires modification at a later date.
Table 10.2 is the identifier table for the linear search algorithm.

Identifier Description
item The integer to be found
myList Array to be searched
upperBound Upper bound of the array
lowerBound Lower bound of the array
index Pointer to current array element
found Flag to show when item has been found

▲ Table 10.2

EXTENSION ACTIVITY 10B

Extend your program created in Activity 10G to find any repeated items in a
list and print out how many items were found.

457591_10_CI_AS & A_Level_CS_238-263.indd 244 26/04/19 7:35 AM

245

10.2 Arrays

10
10.2.4 Using a bubble sort
Lists can be more useful if the items are sorted in a meaningful order. For
example, names could be sorted in alphabetical order, or temperatures could be
sorted in ascending or descending order. There are several sorting algorithms
available. One method of sorting is a bubble sort. Each element of the array
is compared with the next element and swapped if the elements are in the
wrong order, starting from the lower bound and finishing with the element
next to the upper bound. The element at the upper bound is now in the correct
position. This comparison is repeated with one less element in the list, until
there is only one element left or no swaps are made.

For example, the bubble sort algorithm to sort the populated 1D array myList
could be written in pseudocode as:

 DECLARE myList : ARRAY[0:8] OF INTEGER

 DECLARE upperBound : INTEGER

 DECLARE lowerBound : INTEGER

 DECLARE index : INTEGER

 DECLARE swap : BOOLEAN

 DECLARE temp : INTEGER

 DECLARE top : INTEGER

 upperBound ← 8

 lowerBound ← 0

 top ← upperBound

 REPEAT

 FOR index = lowerBound TO top - 1

 Swap ← FALSE

 IF myList[index] > myList[index + 1]

 THEN

 temp ← myList[index]

 myList[index] ← myList[index + 1]

 myList[index + 1] ← temp

 swap ← TRUE

 ENDIF

 NEXT

 top ← top -1

 UNTIL (NOT swap) OR (top = 0)

457591_10_CI_AS & A_Level_CS_238-263.indd 245 26/04/19 7:35 AM

246

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

Table 10.3 is the identifier table for the bubble sort algorithm.

Identifier Description
myList Array to be searched
upperBound Upper bound of the array
lowerBound Lower bound of the array
index Pointer to current array element
swap Flag to show when swaps have been made
top Index of last element to compare
temp Temporary storage location during swap

▲ Table 10.3

The following eight tables show the changes to the 1D array myList as the
bubble sort is completed. After each iteration of the FOR … NEXT loop, the
highest value in the list is correctly placed and the lower values of the list are
swapped and move towards the start of the list, until no more swaps are made.

First pass of bubble sort
All nine elements compared and five swaps:

index myList
[0] 27 19 19 19 19 19 19 19 19
[1] 19 27 27 27 27 27 27 27 27
[2] 36 36 36 36 36 36 36 36 36
[3] 42 42 42 42 16 16 16 16 16
[4] 16 16 16 16 42 42 42 42 42
[5] 89 89 89 89 89 89 21 21 21
[6] 21 21 21 21 21 21 89 16 16
[7] 16 16 16 16 16 16 16 89 55

top → [8] 55 55 55 55 55 55 55 55 89

▲ Figure 10.3

Second pass of bubble sort
Eight elements compared and three swaps:

index myList
[0] 19 19 19 19 19 19 19 19
[1] 27 27 27 27 27 27 27 27
[2] 36 36 36 16 16 16 16 16
[3] 16 16 16 36 36 36 36 36
[4] 42 42 42 42 42 21 21 21
[5] 21 21 21 21 21 42 16 16
[6] 16 16 16 16 16 16 42 42

top → [7] 55 55 55 55 55 55 55 55
[8] 89 89 89 89 89 89 89 89

▲ Figure 10.4

457591_10_CI_AS & A_Level_CS_238-263.indd 246 26/04/19 7:36 AM

247

10.2 Arrays

10
Third pass of bubble sort
Seven elements compared and three swaps:

index myList
[0] 19 19 19 19 19 19 19
[1] 27 27 27 27 27 27 27
[2] 16 36 36 16 16 16 16
[3] 36 16 16 36 36 36 36
[4] 21 42 42 42 42 21 21
[5] 16 21 21 21 21 42 16

top → [6] 42 16 16 16 16 16 42
[7] 55 55 55 55 55 55 55
[8] 89 89 89 89 89 89 89

▲ Figure 10.5

Fourth pass of bubble sort
Six elements compared and three swaps:

index myList
[0] 19 19 19 19 19 19
[1] 27 27 16 16 16 16
[2] 16 16 27 27 27 27
[3] 36 36 36 36 21 21
[4] 21 21 21 21 36 16

top → [5] 16 16 16 16 16 36
[6] 42 42 42 42 42 42
[7] 55 55 55 55 55 55
[8] 89 89 89 89 89 89

▲ Figure 10.6

Fifth pass of bubble sort
Five elements compared and three swaps:

index myList
[0] 19 16 16 16 16
[1] 16 19 19 19 19
[2] 27 27 21 21 21
[3] 21 21 27 27 16

top → [4] 16 16 16 16 27
[5] 36 36 36 36 36
[6] 42 42 42 42 42
[7] 55 55 55 55 55
[8] 89 89 89 89 89

▲ Figure 10.7

457591_10_CI_AS & A_Level_CS_238-263.indd 247 26/04/19 7:36 AM

248

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

Sixth pass of bubble sort
Four elements compared and one swap:

index myList
[0] 16 16 16 16
[1] 19 19 19 19
[2] 21 21 21 16

top → [3] 16 16 16 21
[4] 27 27 27 27
[5] 36 36 36 36
[6] 42 42 42 42
[7] 55 55 55 55
[8] 89 89 89 89

▲ Figure 10.8

Seventh pass of bubble sort
Three elements compared and one swap:

index myList
[0] 16 16 16
[1] 19 19 16

top → [2] 16 16 19
[3] 21 21 21
[4] 27 27 27
[5] 36 36 36
[6] 42 42 42
[7] 55 55 55
[8] 89 89 89

▲ Figure 10.9

Eighth pass of bubble sort
Two elements compared and no swaps:

index myList
[0] 16 16

top → [1] 16 16
[2] 19 19
[3] 21 21
[4] 27 27
[5] 36 36
[6] 42 42
[7] 55 55
[8] 89 89

▲ Figure 10.10

ACTIVITY 10H

In your chosen
programming
language, write a
short program to
complete a bubble
sort on the array
myList. Use the
sample data shown
in myList in Figure
10.1 to populate the
array before sorting.
Output the sorted
list once the bubble
sort is completed.

457591_10_CI_AS & A_Level_CS_238-263.indd 248 26/04/19 7:36 AM

249

10.3 Files

10
10.3 Files
Computer programs store data that will be required again in a file. Every file is
identified by its filename. In this chapter, we are going to look at how to use
text files. Text files contain a sequence of characters. Text files can include an
end of line character that enables the file to be read from and written to as
lines of characters.

In pseudocode, text files are handled using the following statements.

To open a file before reading from it or writing to it:

 OPEN <file identifier> FOR <file mode>

Files can be opened in one of the following modes:

READ reads data from the file
WRITE writes data to the file, any existing data stored in the file will

be overwritten
APPEND adds data to the end of the file

Once the file is opened in READ mode, it can be read from a line at
a time:

 READFILE <file identifier>, <variable>

Once the file is opened in WRITE or APPEND mode, it can be written to a line
at a time:

 WRITEFILE <file identifier>, <variable>

In both cases, the variable must be of data type STRING.

The function EOF is used to test for the end of a file. It returns a value TRUE
if the end of a file has been reached and FALSE otherwise.

 EOF(<file identifier>)

When a file is no longer being used it should be closed:

 CLOSEFILE <file identifier>

This pseudocode shows how the file myText.txt could be written to and read
from:

 DECLARE textLn : STRING

 DECLARE myFile : STRING

 myFile ← "myText.txt"

 OPEN myFile FOR WRITE

 REPEAT

 OUTPUT "Please enter a line of text"

 INPUT textLn

457591_10_CI_AS & A_Level_CS_238-263.indd 249 26/04/19 7:36 AM

250

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

Identifier name Description

textLn Line of text
myFile File name

▲ Table 10.4

10.4 Abstract data types (ADTs)
An abstract data type (ADT) is a collection of data and a set of operations on that
data. For example, a stack includes the items held on the stack and the operations
to add an item to the stack (push) or remove an item from the stack (pop). In this
chapter we are going to look at three ADTs: stack, queue and linked list.
Table 10.5 lists some of the uses of stacks, queues and linked lists mentioned
in this book.

Stacks Queues Linked lists
Memory management
(see Section 16.1)

Management of files sent to a printer
(see Section 5.1)

Using arrays to implement a stack
(see Section 19.1)

Expression evaluation
(see Section 16.3)

Buffers used with keyboards (see
Section 5.1)

Using arrays to implement a queue
(see Section 19.1)

Backtracking in recursion
(see Section 19.2)

Scheduling (see Section 16.1) Using arrays to implement a binary tree
(see Section 19.1)

▲ Table 10.5 Uses of stacks, queues and linked lists

» Stack – a list containing several items operating on the last in, first out
(LIFO) principle. Items can be added to the stack (push) and removed
from the stack (pop). The first item added to a stack is the last item to be
removed from the stack.

» Queue – a list containing several items operating on the first in, first out
(FIFO) principle. Items can be added to the queue (enqueue) and removed
from the queue (dequeue). The first item added to a queue is the first item
to be removed from the queue.

» Linked list – a list containing several items in which each item in the list
points to the next item in the list. In a linked list a new item is always
added to the start of the list.

ACTIVITY 10I

Extend this
pseudocode to
append further
lines to the end
of myFile. In
your chosen
programming
language write a
short program to
complete this file
handling routine.

 IF textLn <> ""

 THEN

 WRITEFILE, textLn

 ELSE

 CLOSEFILE(myFile)

 ENDIF

 UNTIL textLn = ""

 OUTPUT "The file contains these lines of text:"

 OPEN myFile FOR READ

 REPEAT

 READFILE, textLn

 OUTPUT textLn

 UNTIL EOF(myFile)

 CLOSEFILE(myFile)

457591_10_CI_AS & A_Level_CS_238-263.indd 250 26/04/19 7:36 AM

251

10.4 Abstract data types (AD
Ts)

10
7 1 27 ← frontPointer

6 2 34
5 3 82
4 79 ← topPointer 4 79 ← endPointer

3 82 5
2 34 6
1 27 ← basePointer 7

Stack Queue

▲ Figure 10.11 Stack and queue

startPointer

27 34 82 79

node node node node

▲ Figure 10.12 Linked list

Stacks, queues and linked lists all make use of pointers to manage their
operations. Items stored in stacks and queues are always added at the end.
Linked lists make use of an ordering algorithm for the items, often ascending
or descending.

A stack uses two pointers: a base pointer points to the first item in the stack
and a top pointer points to the last item in the stack. When they are equal
there is only one item in the stack.

A queue uses two pointers: a front pointer points to the first item in the
queue and a rear pointer points to the last item in the queue. When they are
equal there is only one item in the queue.

A linked list uses a start pointer that points to the first item in the linked
list. Every item in a linked list is stored together with a pointer to the next
item. This is called a node. The last item in a linked list has a null pointer.

10.4.1 Stack operations
The value of the basePointer always remains the same during stack operations:

7 7 7
6 6 6
5 5 5
4 79 ← topPointer 4 4 31 ← topPointer
3 82 3 82 ←topPointer 3 82
2 34 2 34 2 34
1 27 ← basePointer 1 27 ← basePointer 1 27 ← basePointer

Stack Stack after pop
(79 removed)

Stack after push
(31 added)

▲ Figure 10.13

A stack can be implemented using an array and a set of pointers. As an array has
a finite size, the stack may become full and this condition must be allowed for.

457591_10_CI_AS & A_Level_CS_238-263.indd 251 26/04/19 7:36 AM

252

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

In pseudocode, stack operations are handled using the following statements. Please
note that you are not expected to be able to write the pseudocode statements
included in this section at Cambridge AS Level. However, you may find them useful
to refer back to if you are studying the full Cambridge A Level syllabus.

To set up a stack

 DECLARE stack ARRAY[1:10] OF INTEGER

 DECLARE topPointer : INTEGER

 DECLARE basePointer : INTEGER

 DECLARE stackful : INTEGER

 basePointer ← 1

 topPointer ← 0

 stackful ← 10

To push an item, stored in item, onto a stack

IF topPointer < stackful

 THEN

 topPointer ← topPointer + 1

 stack[topPointer] ← item

 ELSE

 OUTPUT "Stack is full, cannot push"

ENDIF

To pop an item, stored in item, from the stack

 IF topPointer = basePointer - 1

 THEN

 OUTPUT "Stack is empty, cannot pop"

 ELSE

 Item ← stack[topPointer]

 topPointer ← topPointer - 1

 ENDIF

ACTIVITY 10J

Look at this stack.

9
8
7
6
5
4 21 ← topPointer
3 87
2 18
1 32 ← basePointer

Stack

Show the stack and the value of
topPointer and basePointer
when an item has been popped off
the stack and 67 followed by 92
have been pushed onto the stack.

457591_10_CI_AS & A_Level_CS_238-263.indd 252 26/04/19 7:36 AM

253

10.4 Abstract data types (AD
Ts)

10
10.4.2 Queue operations
The value of the frontPointer changes after dequeue but the value of the
rearPointer changes after enqueue:

1 27 ← frontPointer 1 1
2 34 2 34 ← frontPointer 2 34 ← frontPointer

3 82 3 82 3 82
4 79 ← rearPointer 4 79 ← rearPointer 4 79
5 5 5 31 ← rearPointer

6 6 6

7 7 7

Queue Queue after dequeue
(27 removed)

Queue after enqueue
(31 added)

▲ Figure 10.14

A queue can be implemented using an array and a set of pointers. As an array
has a finite size, the queue may become full and this condition must be allowed
for. Also, as items are removed from the front and added to the end of a queue,
the position of the queue in the array changes. Therefore, the queue should be
managed as a circular queue to avoid moving the position of the items in the
array every time an item is removed.

1 31 1 31 ← frontPointer 1 31 ← frontPointer

2 44 2 44 2 44
3 19 ← rearPointer 3 19 ← rearPointer 3 19
4 4 4 57 ← rearPointer

5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

10 23 ← frontPointer 10 10
Queue length = 4 Queue length = 3 after

dequeue (23 removed)
Queue length = 4 after
enqueue (57 added)

▲ Figure 10.15 Circular queue operation

When a queue is implemented using an array with a finite number of elements,
it is managed as a circular queue. Both pointers, frontPointer and
rearPointer, are updated to point to the first element in the array (lower
bound) after an operation where that pointer was originally pointing to the last
element of the array (upper bound), providing the length of the queue does not
exceed the size of the array.

457591_10_CI_AS & A_Level_CS_238-263.indd 253 26/04/19 7:36 AM

254

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

In pseudocode, queue operations are handled using the following statements.

To set up a queue

 DECLARE queue ARRAY[1:10] OF INTEGER

 DECLARE rearPointer : INTEGER

 DECLARE frontPointer : INTEGER

 DECLARE queueful : INTEGER

 DECLARE queueLength : INTEGER

 frontPointer ← 1

 endPointer ← 0

 upperBound ← 10

 queueful ← 10

 queueLength ← 0

To add an item, stored in item, onto a queue

 IF queueLength < queueful

 THEN

 IF rearPointer < upperBound

 THEN

 rearPointer ← rearPointer + 1

 ELSE

 rearPointer ← 1

 ENDIF

 queueLength ← queueLength + 1

 queue[rearPointer] ← item

 ELSE

 OUTPUT "Queue is full, cannot enqueue"

 ENDIF

To remove an item from the queue and store in item

 IF queueLength = 0

 THEN

 OUTPUT "Queue is empty, cannot dequeue"

 ELSE

 Item ← queue[frontPointer]

 IF frontPointer = upperBound

 THEN

 frontPointer ← 1

 ELSE

 frontPointer ← frontPointer + 1

 ENDIF

 queueLength ← queueLength - 1

 ENDIF

457591_10_CI_AS & A_Level_CS_238-263.indd 254 26/04/19 7:36 AM

255

10.4 Abstract data types (AD
Ts)

10
ACTIVITY 10K

Look at this queue.

1 31

2 55

3 19 ← rearPointer

4

5

6

7

8 61 ← frontPointer

9 38

Queue

Show the circular queue and the value of the length of the queue,
frontPointer and rearPointer when three items have been removed
from the queue and 25 followed by 75 have been added to the queue.

10.4.3 Linked list operations
A linked list can be implemented using two 1D arrays, one for the items in the
linked list and another for the pointers to the next item in the list, and a set of
pointers. As an array has a finite size, the linked list may become full and this
condition must be allowed for. Also, as items can be removed from any position
in the linked list, the empty positions in the array must be managed as an
empty linked list, usually called the heap.

The following diagrams demonstrate the operations of linked lists.

The startPointer = –1, as the list has no elements. The heap is set up as
a linked list ready for use.

0 ← heapPointer 0 1
1 1 2
2 2 3
3 3 4

4 4 5
5 5 6
6 6 7
7 7 8
8 8 9
9 9 10

10 10 11
11 11 –1

Empty linked list elements Empty linked list pointers

▲ Figure 10.16

457591_10_CI_AS & A_Level_CS_238-263.indd 255 26/04/19 7:36 AM

256

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

The startPointer is set to the element pointed to by the heapPointer where
37 is inserted. The heapPointer is set to point to the next element in the heap
by using the value stored in the element with the same index in the pointer list.
Since this is also the last element in the list the node pointer for it is reset to –1.

0 37 ← startPointer 0 –1
1 ← heapPointer 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 7
7 7 8
8 8 9
9 9 10

10 10 0
11 11 –1

Linked list with element
37 added

Linked list pointers with one
element 37 added

▲ Figure 10.17

The startPointer is changed to the heapPointer and 45 is stored in the
element indexed by the heapPointer. The node pointer for this element is
set to the old startPointer. The node pointer for the heapPointer is
reset to point to the next element in the heap by using the value stored in the
element with the same index in the pointer list.

0 37 0 –1
1 45 ← startPointer 1 2
2 ← heapPointer 2 3
3 3 4
4 4 5
5 5 6
6 6 7
7 7 8
8 8 9
9 9 10

10 10 0
11 11 –1

Linked list with element
37 then 45 added

Linked list pointers with
element 37 then 45 added

▲ Figure 10.18

457591_10_CI_AS & A_Level_CS_238-263.indd 256 26/04/19 7:36 AM

257

10.4 Abstract data types (AD
Ts)

10
The process is repeated when 12 is added to the list.

0 37 0 –1
1 45 1 2
2 12 ← startPointer 2 3
3 ← heapPointer 3 4
4 4 5
5 5 6
6 6 7
7 7 8
8 8 9
9 9 10

10 10 0
11 11 –1

Linked list with elements 37, 45
then 12 added

Linked list pointers with
elements 37, 45 then 12 added

▲ Figure 10.19

To set up a linked list

DECLARE mylinkedList ARRAY[0:11] OF INTEGER

DECLARE myLinkedListPointers ARRAY[0:11] OF INTEGER

DECLARE startPointer : INTEGER

DECLARE heapStartPointer : INTEGER

DECLARE index : INTEGER

heapStartPointer ← 0

startPointer ← –1 // list empty

FOR index ← 0 TO 11

 myLinkedListPointers[index] ← index + 1

NEXT index

// the linked list heap is a linked list of all the
spaces in the linked list, this is set up when the
linked list is initialised

myLinkedListPointers[11] ← –1

// the final heap pointer is set to –1 to show no
further links

457591_10_CI_AS & A_Level_CS_238-263.indd 257 26/04/19 7:36 AM

258

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

The above code sets up a linked list ready for use. Below is the identifier table.

Identifier Description
myLinkedList Linked list to be searched
myLinkedListPointers Pointers for linked list
startPointer Start of the linked list
heapStartPointer Start of the heap
index Pointer to current element in the linked list

▲ Table 10.6

The table below shows an empty linked list and its corresponding pointers.

myLinkedList myLinkedListPointers

heapstartPointer [0] 1

[1] 2

[2] 3

[3] 4

[4] 5

[5] 6

[6] 7

[7] 8

[8] 9

[9] 10

[10] 11

[11] –1

startPointer = –1

▲ Table 10.7 Empty myLinkedList and myLinkedListPointers

You will not be expected to write pseudocode to implement and use these
structures, but you will need to be able to show how data can be added to and
deleted from these ADTs.

ACTIVITY 10L

Look at this linked list.

0 37 0 –1
1 45 1 2
2 12 ← startPointer 2 3
3 ← heapPointer 3 4
4 4 5
5 5 6
6 6 7
7 7 8
8 8 9
9 9 10

10 10 0
11 11

Show the linked
list and the value
of startPointer
and heapPointer
when 37 has been
removed from the
linked list and 18
followed by 75
have been added to
the linked list.

457591_10_CI_AS & A_Level_CS_238-263.indd 258 26/04/19 7:36 AM

259

10.4 Abstract data types (AD
Ts)

10

End of chapter
questions

EXTENSION ACTIVITY 10C

Write programs to set up and manage a stack and a queue using a 1D array.
Use the data in the examples to test your programs.

1 Abstract data types (ADTs) are collections of data and the operations used on that
data.

 Explain what is meant by

a) stack [2]

b) queue [2]

c) linked list. [2]

2 Explain, using an example, what is meant by a composite data type. [2]

3 Explain, using diagrams, the process of reversing a queue using a stack. [4]

4 a) Write pseudocode to set up a text file to store records like this, with
one record on every line. [4]

 TYPE

 TstudentRecord

 DECLARE name : STRING

 DECLARE address : STRING

 DECLARE className : STRING

 ENDTYPE

b) Write pseudocode to append a record. [4]

c) Write pseudocode to find and delete a record. [4]

d) Write pseudocode to output all the records. [4]

5 Data is stored in the array NameList[1:10]. This data is to be sorted using a
bubble sort:

 FOR ThisPointer ← 1 TO 9

 FOR Pointer ← 1 TO 9

 IF NameList[Pointer] > NameList[Pointer + 1]

 THEN

 Temp ← NameList[Pointer]

 NameList[Pointer] ← NameList[Pointer + 1]

 NameList[Pointer + 1] ← Temp

 ENDIF

 NEXT

 NEXT

a) A special case is when NameList is already in order. The algorithm above is
applied to this special case.

 Explain how many iterations are carried out for each of the loops. [2]

➔

457591_10_CI_AS & A_Level_CS_238-263.indd 259 26/04/19 7:36 AM

260

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

b) Rewrite the algorithm using pseudocode, to reduce the number of
unnecessary comparisons.

 Use the same variable names where appropriate. [5]

 Adapted from Cambridge International AS & A Level Computer Science 9608
Paper 41 Q5 part (b) June 2015

6 A queue Abstract Data Type (ADT) has these associated operations:

– create queue

– add item to queue

– remove item from queue

 The queue ADT is to be implemented as a linked list of nodes.

 Each node consists of data and a pointer to the next node.

a) The following operations are carried out:

 CreateQueue

 AddName("Ali")

 AddName("Jack")

 AddName("Ben")

 AddName("Ahmed")

 RemoveName

 AddName("Jatinder")

 RemoveName

 Copy the diagram below and add appropriate labels to show the final state of
the queue.

 Use the space on the left as a workspace.

 Show your final answer in the node shapes on the right: [3]

b) Using pseudocode, a record type, Node, is declared as follows:

 TYPE Node

 DECLARE Name : STRING

 DECLARE Pointer : INTEGER

 ENDTYPE

457591_10_CI_AS & A_Level_CS_238-263.indd 260 26/04/19 7:36 AM

261

10.4 Abstract data types (AD
Ts)

10
 The statement

 DECLARE Queue : ARRAY[1:10] OF Node

 reserves space for 10 nodes in array Queue.

i) The CreateQueue operation links all nodes and initialises the three
pointers that need to be used: HeadPointer, TailPointer and
FreePointer.

 Copy and complete the diagram to show the value of all pointers after
CreateQueue has been executed. [4]

Queue

Name Pointer

HeadPointer [1]

[2]

[3]

TailPointer [4]

[5]

[6]

FreePointer [7]

[8]

[9]

[10]

ii) The algorithm for adding a name to the queue is written, using
pseudocode, as a procedure with the header:

 PROCEDURE AddName(NewName)

 where NewName is the new name to be added to the queue.

 The procedure uses the variables as shown in the identifier table.

Identifier Data type Description
Queue Array[1:10] OF

Node
Array to store node data

NewName STRING Name to be added
FreePointer INTEGER Pointer to next free node in array
HeadPointer INTEGER Pointer to first node in queue
TailPointer INTEGER Pointer to last node in queue
CurrentPointer INTEGER Pointer to current node

➔

457591_10_CI_AS & A_Level_CS_238-263.indd 261 26/04/19 7:36 AM

262

10

10
 D

at
a

 t
y

p
e

s
a

n
D

 s
tr

u
c

tu
r

e
s

 PROCEDURE AddName(BYVALUE NewName : STRING)

 // Report error if no free nodes remaining

 IF FreePointer = 0

 THEN

 Report Error

 ELSE

 // new name placed in node at head of free list

 CurrentPointer ← FreePointer

 Queue[CurrentPointer].Name ← NewName

 // adjust free pointer

 FreePointer ← Queue[CurrentPointer].Pointer

 // if first name in queue then adjust head pointer

 IF HeadPointer = 0

 THEN

 HeadPointer ← CurrentPointer

 ENDIF

 // current node is new end of queue

 Queue[CurrentPointer].Pointer ← 0

 TailPointer ← CurrentPointer

 ENDIF

 ENDPROCEDURE

 Copy and complete the pseudocode for the procedure RemoveName.
Use the variables listed in the identifier table. [6]

 PROCEDURE RemoveName()

 // Report error if Queue is empty

 ...

 ...

 ...

 ...

 OUTPUT Queue[…………………………………………………………].Name

 // current node is head of queue

 ...

 // update head pointer

 ...

457591_10_CI_AS & A_Level_CS_238-263.indd 262 26/04/19 7:36 AM

263

10.4 Abstract data types (AD
Ts)

10
 // if only one element in queue then update tail

pointer

 ...

 ...

 ...

 ...

 // link released node to free list

 ...

 ...

 ...

 ENDPROCEDURE

Cambridge International AS & A Level Computer Science 9608
Paper 41 Q6 June 2015

457591_10_CI_AS & A_Level_CS_238-263.indd 263 26/04/19 7:36 AM

264

	
11

	P
r

o
g

r
a

m
m

in
g

11.1	 Programming basics
Key	terms
Constant – a named value that cannot
change during the execution of a program.
Variable – a named value that can change
during the execution of a program.
Function – a set of statements that can
be grouped together and easily called
in a program whenever required, rather
than repeating all of the statements
each time. Unlike a procedure, a function
always returns a value.

Library	routine	– a tested and ready-to-
use routine available in the development
system of a programming language that
can be incorporated into a program.
Procedure – a set of statements that can
be grouped together and easily called
in a program whenever required, rather
than repeating all of the statements
each time.

	 11	 Programming

In this chapter, you will learn about

★ declaring and assigning values to variables and constants
★ using programming constructs, including iteration with IF and CASE

structures
★ using programming constructs, including selection with three

different types of loop: count controlled, post-condition and
pre-condition

★ writing structured programs defining and using procedures and
functions.

WHAT	YOU	SHOULD	ALREADY	KNOW
Try this activity before you read the first part of
this chapter.

Write an algorithm, using pseudocode, to sort a list
of ten numbers. The numbers are to be input with
appropriate prompts, stored in an array, sorted in
ascending order and then searched for the number

27. The sorted list is to be output, as well as a
message stating whether 27 was found or not.

Write and test your algorithm using your chosen
programming language. Ensure that you test
your program with test data that includes 27 and
test data without 27.

457591_11_CI_AS & A_Level_CS_264-282.indd 264 02/05/19 7:25 AM

265

11.1
Program

m
ing basics

11
In order to write a program that performs a specific task or solves a given
problem, the solution to the task or problem needs to be designed and then
coded. This chapter demonstrates the programming tools used when coding a
solution, including basic statements, constructs and structures.

11.1.1	 Constants and variables
A constant is a named value that cannot change during the execution of a
program. A variable is a named value that can change during the execution of
a program. All variables and constants should be declared before use. Constants
will always be assigned a value when declared. It is good practice to assign a
value to any variables that are used, so that the programmer is certain of the
starting value.

It is good practice to create an identifier list and check that every variable on
that list has been declared and a value assigned before any data manipulation
is programmed.

Note that some programming languages (for example, Python) do not support
the declaration of variables and the concept of a constant; in such cases, the
assignment of a value at the start of a program will ensure that a variable
of the correct data type can be used. An identifier that is to be used as a
constant can also be assigned a value. However, it is important that the
programming concepts of data declaration and the difference between
variables and constants are clearly understood and can be demonstrated using
pseudocode.

Write an algorithm using pseudocode to calculate and output the volume and
surface area of a sphere for any radius that is input.

Example 11.1

Solution
First create an identifier table.

Identifier name Description
radius Stores radius input

volume Stores result of volume calculation

surfaceArea Stores result of surface area calculation

pi Constant set to 3.142

Then declare constants and variables in pseudocode.

 DECLARE radius : REAL

 DECLARE volume : REAL

 DECLARE surfaceArea : REAL

 CONSTANT pi ← 3.142

Provide pseudocode for input, process and output.

Input usually includes some output in the form of prompts stating what should be
input.

457591_11_CI_AS & A_Level_CS_264-282.indd 265 25/04/19 11:21 AM

266

	
11

	P
r

o
g

r
a

m
m

in
g

11

Table 11.1 shows the declaration of some of the constants and variables from
Example 11.1 in the three prescribed programming languages.

While the Cambridge International AS Level syllabus does not require you
to be able to write program code, the ability to do so will increase your
understanding, and will be particularly beneficial if you are studying the full
Cambridge International A Level course.

 OUTPUT "Please enter the radius of the sphere "

 INPUT radius

Check the value of the radius, to ensure that it is suitable.

 WHILE radius <= 0 DO

 OUTPUT "Please enter a positive number "

 INPUT radius

 ENDWHILE

Calculate the volume and the surface area; this is the processing part of the
algorithm.

 volume ← (4 / 3) * pi * radius * radius * radius

 surfaceArea ← 4 * pi * radius * radius

Finally, the results of the calculations need to be output.

 OUTPUT "Volume is ", volume

 OUTPUT "Surface area is ", surfaceArea

Declarations of constants and variables Language
pi = 3.142 Python does not require any separate

declarations and makes no difference
between constants and variables

Dim radius As Decimal

Dim volume As Decimal

Dim surfaceArea As Decimal

Const pi As Decimal = 3.142

Or

Dim radius, volume, surfaceArea As Decimal

Public Const pi As Decimal = 3.142

In VB, constants and variables are
declared before use. Declarations
can be single statements or can
contain multiple declarations in a
single statement. Constants can
be explicitly typed as shown or
implicitly typed, for example:

Const pi = 3.142

final double PI = 3.142;

:

:

double volume = (4 / 3) * PI * radius * radius * radius;

In Java, constant values are declared
as variables with a final value so no
changes can be made. These final
variable names are usually capitalised
to show they cannot be changed.
Variables are often declared as they
are used rather than at the start of
the code

▲ Table 11.1

457591_11_CI_AS & A_Level_CS_264-282.indd 266 25/04/19 11:21 AM

267

11.1
Program

m
ing basics

11

Table 11.3 below shows how to check the value of the radius in each of the
three programming languages.

Check that the value of the radius is a
positive number

Language

while radius <= 0: Python uses a check at the start of
the loop

Do

:

Loop Until radius > 0

VB uses a check at the end of the
loop

do

{

:

}

while (radius <= 0);

Java uses a check at the end of the
loop

▲ Table 11.3

Table 11.4 below shows how to calculate the volume and the surface area in
each of the three programming languages.

Table 11.2 below gives examples of the input statements in the three
prescribed programming languages.

Calculate the volume and the surface area Language
volume = (4 / 3) * pi * radius * radius * radius

surfaceArea = 4 * pi * radius * radius

Python

volume = (4 / 3) * pi * radius * radius * radius

surfaceArea = 4 * pi * radius * radius

VB

double volume = (4 / 3) * PI * radius * radius * radius;

double surfaceArea = 4 * PI * radius * radius;

Java (variables declared as used)

▲ Table 11.4

Input statements Language
radius = float(input("Please enter the radius of the sphere ")) Python combines the prompt

with the input statement and
the type of the input

Console.Write("Please enter the radius of the sphere ")

radius = Decimal.Parse(Console.ReadLine())

VB uses a separate prompt
and input. The input specifies
the type

import java.util.Scanner;

:

Scanner myObj = new Scanner(System.in);

:

System.out.println("Please enter the radius of the sphere ");

double radius = myObj.nextDouble();

In Java, the input library has
to be imported at the start of
the program and an input object
is set up. Java uses a separate
prompt and input. The input
specifies the type and declares
the variable of the same type

▲ Table 11.2

457591_11_CI_AS & A_Level_CS_264-282.indd 267 25/04/19 11:21 AM

http://Scanner(System.in

268

	
11

	P
r

o
g

r
a

m
m

in
g

11

The complete programs are shown below:

Python

pi = 3.142

radius = float(input("Please enter the radius of the sphere "))

while radius <= 0:

 radius = float(input("Please enter the radius of the sphere "))

volume = (4 / 3) * pi * radius * radius * radius

surfaceArea = 4 * pi * radius * radius

print("Volume is ", volume)

print("Surface area is ", surfaceArea)

VB

Module Module1

 Public Sub Main()

 Dim radius As Decimal

 Dim volume As Decimal

 Dim surfaceArea As Decimal

 Const pi As Decimal = 3.142

 Do

 Console.Write("Please enter the radius of the sphere ")

 radius = Decimal.Parse(Console.ReadLine())

 Loop Until radius > 0

 volume = (4 / 3) * pi * radius * radius * radius

 surfaceArea = 4 * pi * radius * radius

 Console.WriteLine("Volume is " & volume)

 Console.WriteLine ("Surface area is " & surfaceArea)

 Console.ReadKey()

 End Sub

End Module

Table 11.5 below shows how to output the results in each of the three
programming languages.

Output the results Language
print("Volume is ", volume)

print("Surface area is ", surfaceArea)

Python uses a comma

Console.WriteLine("Volume is " & volume)

Console.WriteLine ("Surface area is " & surfaceArea)

VB uses &

System.out.println("Volume is " + volume);

System.out.println("Surface area is " + surfaceArea);

Java uses +

▲ Table 11.5

Every console program
in VB must contain a
main module. These
statements are shown
in red

457591_11_CI_AS & A_Level_CS_264-282.indd 268 25/04/19 11:21 AM

269

11.1
Program

m
ing basics

11
Java

import java.util.Scanner;

class Activity11A

{

 public static void main(String args[])

 {

 Scanner myObj = new Scanner(System.in);

 final double PI = 3.142;

 double radius;

 do

 {

 System.out.println("Please enter the radius of the sphere ");

 radius = myObj.nextDouble();

 }

 while (radius <= 0);

 double volume = (4 / 3) * PI * radius * radius * radius;

 double surfaceArea = 3 * PI * radius * radius;

 System.out.println("Volume is " + volume);

 System.out.println("Surface area is " + surfaceArea);

 }

}

Many programming languages contain built-in functions ready to be used.
For example, DIV returns the integer part of a division and MOD returns the
remainder. For example, DIV(10,3) will return 3, and MOD(10,3) will return 1.
See Section 11.3.2 for guidance on how to define a function.

Functions are used for string manipulation. Strings are one of the best ways
of storing data. The comparison of data stored in a string has many uses, for
example, checking passwords, usernames and other memorable data.

ACTIVITY	11A

Write and test the algorithm in your chosen programming language. Extend
the algorithm to allow for more than one calculation, ending when –1 is
input, and test it with this test data: 4.7, 34, –11, 0 and –1.

Every console program
in Java must contain a
class with the file name
and a main procedure.
These statements are
shown in red

457591_11_CI_AS & A_Level_CS_264-282.indd 269 25/04/19 11:21 AM

http://Scanner(System.in

270

	
11

	P
r

o
g

r
a

m
m

in
g

11
Write an algorithm using pseudocode to check that the length of a password and the
first and last letter of a password input is correct.

You can use these string manipulation functions:

LENGTH(anyString : STRING) RETURNS INTEGER returns the integer value
representing the length of anyString.

RIGHT(anyString: STRING, x : INTEGER) RETURNS STRING returns
rightmost x characters from anyString.

LEFT(anyString: STRING, x : INTEGER) RETURNS STRING returns
leftmost x characters from anyString.

MID(anyString: STRING, x : INTEGER, y : INTEGER) RETURNS
STRING returns y characters starting at position x from anyString.

Example 11.2

Solution
First create an identifier table.

Identifier name Description
storedPassword Stores password

inputPassword Stores password to be checked

size Stores length of password to be checked

 CONSTANT storedPassword ← "Secret"

 DECLARE inputPassword : STRING

 DECLARE size : INTEGER

 OUTPUT "Please enter your password "

 INPUT inputPassword

 size ← LENGTH(inputPassword)

 IF size = LENGTH(storedPassword)

 THEN

 IF (LEFT(inputPassword, 1) = LEFT(storedPassword, 1)) AND

 (RIGHT(inputPassword, 1) = RIGHT(storedPassword, 1))

 THEN

 OUTPUT "Password entered has correct first and last letters"

 ELSE

 OUTPUT "Password entered is incorrect"

 ENDIF

 ELSE

 OUTPUT "Password entered is incorrect"

 ENDIF

457591_11_CI_AS & A_Level_CS_264-282.indd 270 25/04/19 11:21 AM

271

11.2
Program

m
ing constructs

11
Table 11.6 below shows the string manipulation functions for Example 11.2 in
the three prescribed programming languages.

String manipulation functions Language
len(inputPassword)

inputPassword[0]

inputPassword[-1:]

Python

first character of string

last character of string

Len(inputPassword)

Left(inputPassword, 1)

Right(inputPassword, 1)

VB

first character of string

last character of string

int size =inputPassword.length();

inputPassword.charAt(0)

inputPassword.charAt(size - 1)

Java

first character of string

last character of string

▲ Table 11.6

11.1.2	 Library routines
Many programming language development systems include library routines
that are ready to incorporate into a program. These routines are fully tested
and ready for use. A programming language IDE usually includes a standard
library of functions and procedures as well as an interpreter and/or a compiler.
These standard library routines perform tasks such as input/output that are
required by most programs.

ACTIVITY	11C

Find out about the standard libraries that are included with the
programming language you use. Identify at least six routines included in the
library.

11.2	Programming constructs
11.2.1 CASE and IF
The algorithm in Example 11.2 uses a nested IF statement, as there are two
different choices to be made. Where there are several different choices to be
made, a CASE statement should be used for clarity.

Figure 11.1 shows that choices can be made using a condition based on

» the value of the identifier being considered, for example < 10
» a range of values that the identifier can take, for example 1:10
» the exact value that the identifier can take, for example 10.

And a final catch all for an identifier that met none of the conditions given
OTHERWISE.

ACTIVITY	11B

Write the algorithm in
Example 11.2 in your
chosen programming
language and
test it with this
test data: "Sad",
"Cheese", "Secret"
and "secret". Find
out how you could
extend your program
to match upper or
lower-case letters.

457591_11_CI_AS & A_Level_CS_264-282.indd 271 25/04/19 11:21 AM

272

	
11

	P
r

o
g

r
a

m
m

in
g

11
For each criterion there can be one or many statements to execute.

CASE OF
<Identifier>

OTHERWISE

Statement 5

Statement 1

Statement 2

Statement 3

Statement 4

Value

Range

Condition

▲ Figure	11.1

For example, choices from a menu can be managed by the use of a CASE statement.

Menu
1 Routine 1
2 Routine 2
3 Routine 3
4 Routine not

written
5 Routine not

written
6 Routine not

written
10 Exit

DECLARE choice : INTEGER

OUTPUT "Please enter your choice "

INPUT choice

CASE choice OF

 1 : OUTPUT "Routine 1 "

 2 : OUTPUT "Routine 2 "

 3 : OUTPUT "Routine 3 "

 4 … 6 : OUTPUT "Routine not written"

 10 : Exit

 OTHERWISE OUTPUT "Incorrect choice"

457591_11_CI_AS & A_Level_CS_264-282.indd 272 25/04/19 11:21 AM

273

11.2
Program

m
ing constructs

11
Table 11.7 below shows the case statements in VB and Java. Python does not
use this construct.

Case statements for menu choices Case statements
for menu choices

Select choice

Case 1

 Console.Writeline ("Routine 1")

Case 2

 Console.Writeline ("Routine 2")

Case 1

 Console.Writeline ("Routine 3")

Case 4, 5, 6

 Console.Writeline ("Routine not written")

Case 10

 Console.Writeline ("Exit")

Case Else

 Console.Writeline ("Incorrect choice")

End Select

VB uses Else
instead of
OTHERWISE

switch (choice)

 {

 case 1:

 System.out.println("Routine 1");

 break;

 case 2:

 System.out.println("Routine 2");

 break;

 case 3:

 System.out.println("Routine 3");

 break;

 case 4:

 case 5:

 case 6:

 System.out.println("Routine not written");

 break;

Java uses default
instead of
OTHERWISE and
uses break to pass
control to the end
of the code block
when a section is
finished

 case 10:

 System.out.println("Exit");

 break;

 default:

 System.out.println("Incorrect choice");

 }

▲ Table 11.7

457591_11_CI_AS & A_Level_CS_264-282.indd 273 25/04/19 11:21 AM

274

	
11

	P
r

o
g

r
a

m
m

in
g

11
ACTIVITY	11D

1 Write an algorithm using pseudocode to either add, subtract, multiply
or divide two numbers and output the answer. The two numbers are
to be input with appropriate prompts followed by +, −, * or /. Any other
character is to be rejected.

2 Check that your pseudocode algorithm works by writing a short program
in your chosen programming language from your pseudocode statements
using the same names for your identifiers.

11.2.2	 Loops
Loops enable sections of code to be repeated as required. They can be
constructed in different ways to meet the requirements of an algorithm.

1 a count-controlled loop FOR … NEXT

2 a post-condition loop REPEAT … UNTIL

3 a pre-condition loop WHILE … DO … ENDWHILE

In order to program efficiently, it is important to select the appropriate loop
structure to efficiently solve the problem. For example, it is better to use a
REPEAT … UNTIL loop rather than a WHILE … DO … ENDWHILE loop for
a validation check. The statements inside the loop must always be executed at
least once and there is no need for a second input statement.

For example, to check that a value is between 0 and 10 inclusive.

REPEAT … UNTIL

REPEAT

 OUTPUT "Enter value "

 INPUT value

UNTIL value < 0 OR value > 10

WHILE … DO … ENDWHILE

OUTPUT "Enter value "

INPUT value

WHILE value < 0 OR value > 10 DO

 OUTPUT "Enter value "

 INPUT value

ENDWHILE

Table 11.8 below shows post-condition loops in VB and Java. Python only uses
pre-condition loops.

Post condition loops Language
Do

 <statements>

Loop Until <condition>

VB

Do

{

 <statements>;

}

while (<condition>);

Java

▲ Table 11.8

457591_11_CI_AS & A_Level_CS_264-282.indd 274 25/04/19 11:21 AM

275

11.3
Structured program

m
ing

11
Table 11.9 below shows pre-condition loops in each of the three programming
languages.

Pre-condition loops Language
while <condition>:
 <statements>

Python

While <condition>
 <statements>
End While

VB

while (<condition>)
{
 <statements>;
}

Java

▲ Table 11.9

Where the number of repetitions is known, a FOR … NEXT loop is the best
choice, as the loop counter does not have to be managed by the programmer.

11.3	Structured programming
Key	terms

Parameter – a variable applied to a procedure or
function that allows one to pass in a value for the
procedure to use.
By	value – a method of passing a parameter to a
procedure in which the value of the variable cannot be
changed by the procedure.
By	reference – a method of passing a parameter to
a procedure in which the value of the variable can be
changed by the procedure.

Header	(procedure	or	function) – the first statement in
the definition of a procedure or function, which contains
its name, any parameters passed to it, and, for a
function, the type of the return value.
Argument – the value passed to a procedure or function.

11.3.1	 Procedures
When writing an algorithm, there are often similar tasks to perform that make
use of the same groups of statements. Instead of repeating these statements
every time they are required, many programming languages make use of
subroutines or named procedures. A procedure is defined once and can be
called many times within a program.

Different terminology is used by some programming languages. Procedures are

» void functions in Python
» subroutines in VB
» methods in Java.

To be consistent, we will use the term procedure – you will need to check what
to do in your chosen programming language.

A procedure can be defined in pseudocode, as follows:

 PROCEDURE <identifier>
 <statements>

ENDPROCEDURE

ACTIVITY	11E

Write and test a
short program
in your chosen
programming
language to check
that an input value
is between 0 and 10
inclusive.

457591_11_CI_AS & A_Level_CS_264-282.indd 275 25/04/19 11:21 AM

276

	
11

	P
r

o
g

r
a

m
m

in
g

11
The procedure can then be called many times:

 CALL <identifier>

For example, a procedure to print a line of stars would be defined as follows:

 PROCEDURE stars (Number : INTEGER)
 FOR Counter 1 TO Number
 OUTPUT"*"
 NEXT Counter
 ENDPROCEDURE

And used like this:

 CALL stars

ACTIVITY	11F

Using the procedure
definition and
call given for
your chosen
programming
language, write a
short program to
define and call a
procedure to write a
line of stars.

Table 11.10 below shows how to define this procedure in each of the three
prescribed programming languages.

Procedure – definition Language
def stars():

 print("************")

Python

Sub stars()

 Console.WriteLine("************")

End Sub

VB

static void stars()

{

 System.out.println("***********");

}

Java

▲ Table 11.10

Table 11.11 shows how it can be used.

Procedure – call Language
stars() Python

stars() VB

stars(); Java

▲ Table 11.11

It is often useful to pass a value to a procedure that can be used to modify the
action(s) taken. For example, to decide how many stars would be output. This is
done by passing a parameter when the procedure is called.

A procedure with parameters can be defined in pseudocode, as follows:

 PROCEDURE <identifier>(<parameter1>:<datatype>, <parameter2>:<datatype>...)
 <statements>
 ENDPROCEDURE

The procedure can then be called many times:

 CALL <identifier> (Value1, Value2...)

457591_11_CI_AS & A_Level_CS_264-282.indd 276 25/04/19 11:21 AM

277

11.3
Structured program

m
ing

11

ACTIVITY	11G

Extend your short program in your chosen programming language to define
and use a procedure that accepts a parameter to write a line with a given
number of stars.

There are two methods of passing a parameter to a procedure: by value and by
reference. When a parameter is passed by value, if a variable is used, the value
of that variable cannot be changed within the procedure. When a parameter is
passed by reference the value of the variable passed as the parameter can be
changed by the procedure.

The procedure to print a line with a given number stars would be defined as
follows:

 PROCEDURE stars (Number : INTEGER)

 OUTPUT "************" ENDPROCEDURE

And used like this, to print seven stars:

CALL stars (7) or
myNumber ← 7

CALL stars (myNumber)

The interface between a procedure and a program must match the procedure
definition. When a procedure is defined with parameters, the parameters in the
procedure call must match those in the procedure definition.

Table 11.12 below shows how to define a procedure with a parameter in each of
the three programming languages.

Procedure with parameter – definition Language
def stars(number):

 for counter in range (number):

 print("*", end = '')

Python

Note: end = ' ' ensures that the stars
are printed on one line without spaces
between them

Sub stars(number As Integer)

 Dim counter As Integer

 For counter = 1 To number

 Console.Write("*")

 Next

End Sub

VB

static void stars(int number)

{

 for (int counter = 1; counter <= number; counter ++)

 {

 System.out.print("*");

 }

}

Java

▲ Table 11.12

457591_11_CI_AS & A_Level_CS_264-282.indd 277 25/04/19 11:21 AM

278

	
11

	P
r

o
g

r
a

m
m

in
g

11
A procedure with parameters passed by reference can be defined in pseudocode
as follows:

For example, a procedure to convert a temperature from Fahrenheit to Celsius
could be defined as follows:

 PROCEDURE celsius(BYREF temperature : REAL)

 temperature ← (temperature – 32) / 1.8

 ENDPROCEDURE

And used as follows:

 CALL celsius(myTemp)

Table 11.13 below shows how to pass parameters in the three programming
languages.

Passing parameters Language

Def celsius(temperature):

Python

all data is passed by value

Sub celsius(temperature As Decimal)

Sub celsius(ByVal temperature As Decimal)

Sub celsius(ByRef temperature As Decimal)

VB

parameter passed implicitly
by value

parameter passed by value

parameter passed by
reference

static void celsius(double temperature)

Java

all data is passed by value

▲ Table 11.13

ACTIVITY	11H

Write an algorithm in pseudocode to use a procedure, with a parameter
passed by reference, to convert a temperature from Celsius to Fahrenheit.

11.3.2	 Functions
When writing an algorithm, there are often similar calculations or tasks to
perform that make use of the same groups of statements and always produce
an answer. Instead of repeating these statements every time they are required,
many programming languages make use of subroutines or named functions. A
function always returns a value; it is defined once and can be called many times
within a program. Functions can be used on the right-hand side of an expression.

Different terminology is used by some programming languages. Functions are

» fruitful functions in Python
» functions in VB

» methods with returns in Java.

 PROCEDURE <identifier> (BYREF <parameter1>:<datatype>, <parameter2>:<datatype>...)

 <statements>

 ENDPROCEDURE

457591_11_CI_AS & A_Level_CS_264-282.indd 278 25/04/19 11:21 AM

279

11.3
Structured program

m
ing

11
A function without parameters is defined in pseudocode as follows:

 FUNCTION <identifier> RETURNS <data type>

 <statements>

 ENDFUNCTION

A function with parameters is defined in pseudocode as follows:

The keyword RETURN is used as one of the statements in a function to specify
the value to be returned. This is usually the last statement in the function
definition. There can be more than one RETURN used in a function if there are
different paths through its statements. This technique needs to be used with
great care. For example, a function to find a substring of a given length starting
at a given place in a string that returns a null string rather than an error could be:

Functions are used as part of an expression. The value returned by the function
is used in the expression.

For example, the procedure used previously to convert a temperature from
Fahrenheit to Celsius could be written as a function:

 FUNCTION celsius (temperature : REAL) RETURNS REAL

 RETURN (temperature – 32) / 1.8

 ENDFUNCTION

And used as follows:

 myTemp ← celsius(myTemp)

The interface between a function and a program must match the function
definition. When a function is defined with parameters, the parameters in the
function call must match those in the function definition.

 FUNCTION <identifier>(<parameter1>:<datatype>, <parameter2>:<datatype>...)

 RETURNS <data type>

 <statements>

 ENDFUNCTION

 FUNCTION substring (myString : STRING, start : INTEGER, length : INTEGER)

 RETURNS STRING

 IF LENGTH (myString) >= length + start

 THEN

 RETURN MID (myString, start, length)

 ELSE

 RETURN ""

 ENDIF

 ENDFUNCTION

457591_11_CI_AS & A_Level_CS_264-282.indd 279 25/04/19 11:21 AM

280

	
11

	P
r

o
g

r
a

m
m

in
g

11
Table 11.14 below shows how to write this function in each of the three
programming languages.

Function example Language
def celsius(temperature):

 return (temperature - 32) / 1.8

Python

Function celsius(ByVal temperature As Decimal) As Decimal

 Return (temperature - 32) / 1.8

End Function

VB

static double celsius(double temperature)

{

 return (temperature - 32) / 1.8;

}

Java

▲ Table 11.14

ACTIVITY	11I

Re-write the algorithm you wrote in Activity 11H as a function, with a parameter,
to convert a temperature from Celsius to Fahrenheit. Test your algorithm by
writing a short program in your chosen programming language to define and
use this function. Note the differences in your programs and state, with reasons,
which is the better structure to use for this algorithm: a procedure or a function.

When procedures and functions are defined, the first statement in the
definition is a header, which contains

» the name of the procedure or function
» any parameters passed to the procedure or function
» the type of the return value for a function.

When procedures or functions are called, the parameters or arguments (the
values passed to the procedure or function) must be in the same order as the
parameters in the declaration header and each argument must be of the same
type as the parameter given in the header. Procedure calls are single stand-alone
statements and function calls form part of an expression on the right-hand side.

 1 Use pseudocode to declare these variables and constants.

 You will need to decide which identifiers are variables and which are constants.
 [6]

Identifier name Description
height Stores value input for length of height
maxHeight Maximum height, 25
width Stores value input for length of width
maxWidth Maximum width, 30
hypotenuse Stores calculated value of hypotenuse
area Stores calculated value of area

End of chapter
questions

457591_11_CI_AS & A_Level_CS_264-282.indd 280 25/04/19 11:21 AM

281

11.3
Structured program

m
ing

11
2 Write a pseudocode algorithm to input the height and width of a right-angled

triangle and check that these values are positive and less than the maximum
values given in question 1. [4]

3 a) For this question, you will need to use this function, which returns the real
value of the square root of anyPosVal:

SQUAREROOT(anyPosVal : REAL) RETURNS REAL

 Extend your algorithm for Question 2 to

i) calculate the hypotenuse [2]

ii) calculate the area [2]

iii) calculate the perimeter. [2]

b) Provide a menu to choose which calculation to perform. [3]

c) Check that all the above work by writing and testing a program in your
chosen programming language. [6]

4 Explain what is meant by the term library routine.

 Give two examples of uses of library routines. [4]

5 Procedures and functions are subroutines.

 Explain what is meant by

a) a procedure [2]

b) a function [2]

c) a parameter [2]

d) a procedure or function header. [2]

6 Explain the difference between

a) a procedure and a function [2]

b) passing parameters by value and by reference [2]

c) defining a procedure and calling a procedure. [2]

7 A driver buys a new car.

 The value of the car reduces each year by a percentage of its current value.

 The percentage reduction is:

– in the first year, 40%

– in each following year, 20%

 The driver writes a program to predict the value of the car in future years.

 The program requirements are:

– enter the cost of the new car (to nearest $)

– calculate and output the value of the car at the end of each year

– the program will end when either the car is nine years old, or when the value
is less than $1000.

a) Study the incomplete pseudocode which follows in part b) and copy and
complete this identifier table. [3]

Identifier Data type Description

➔

457591_11_CI_AS & A_Level_CS_264-282.indd 281 25/04/19 11:21 AM

282

	
11

	P
r

o
g

r
a

m
m

in
g

11
b) Copy and complete the pseudocode for this design. [6]

 OUTPUT "Enter purchase price"

 INPUT PurchasePrice

 CurrentValue ← ...
 YearCount ← 1

 WHILE AND

 IF ..

 THEN

 CurrentValue ← CurrentValue * (1 – 40 / 100)

 ELSE

 CurrentValue ←

 ENDIF

 OUTPUT YearCount, CurrentValue

 ...

 ENDWHILE

Cambridge International AS & A Level Computer Science 9608
Paper 21 Q5 November 2015

457591_11_CI_AS & A_Level_CS_264-282.indd 282 25/04/19 11:21 AM

283

12.1
Program

 developm
ent lifecycle

	 12	 Software	development

In this chapter, you will learn about

★ the purpose, types and stages of the program development lifecycle
★ how to document program design using structure charts and state-

transition diagrams
★ avoiding syntax, logic and run-time errors in programs
★ different methods of testing programs to identify and correct such

errors
★ the types of maintenance used as part of the program development

lifecycle.

12.1	Program development lifecycle

WHAT	YOU	SHOULD	ALREADY	KNOW
You may have studied or heard about the
systems (or program) development lifecycle.

Try this activity before you read the first part of
this chapter. A program development lifecycle
goes through the same stages for a program.

Name and describe the stages of the program/
systems development lifecycle. There are

different development lifecycles used depending
upon the system and the type of program being
developed. Identify at least four of these. Work in
small groups to research one of these and share
your findings with the other groups.

Key	terms
Program	development	lifecycle – the process of
developing a program set out in five stages: analysis,
design, coding, testing and maintenance.
Analysis – part of the program development lifecycle; a
process of investigation, leading to the specification of
what a program is required to do.
Design – part of the program development lifecycle; it
uses the program specification from the analysis stage
to show how the program should be developed.
Coding – part of the program development lifecycle; the
writing of the program or suite of programs.
Testing – part of the program development lifecycle;
the testing of the program to make sure that it works
under all conditions.

Maintenance – part of the program development
lifecycle; the process of making sure that the program
continues to work during use.
Waterfall	model – a linear sequential program
development cycle, in which each stage is completed
before the next is begun.
Iterative	model – a type of program development
cycle in which a simple subset of the requirements
is developed, then expanded or enhanced, with the
development cycle being repeated until the full system
has been developed.
Rapid	application	development	(RAD) – a type of
program development cycle in which different parts
of the requirements are developed in parallel, using
prototyping to provide early user involvement in testing.

457591_12_CI_AS & A_Level_CS_283-303.indd 283 25/04/19 11:33 AM

284

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
12.1.1	 The purpose of a program development lifecycle
In order to develop a successful program or suite of programs that is going
to be used by others to perform a specific task or solve a given problem, the
development needs to be well ordered and clearly documented, so that it can
be understood and used by other developers.

This chapter introduces the formal stages of software (program) development
that are set out in the program development lifecycle.

A program that has been developed may require alterations at any time in order to
deal with new circumstances or new errors that have been found, so the stages are
referred to as a lifecycle as this continues until the program is no longer used.

12.1.2	 Stages in the program development lifecycle
The stages of development in the program development lifecycle are shown
in this chapter. The coding, testing and maintenance stages are looked at in
depth and include appropriate tools and techniques to be used at each stage.
Therefore, practical activities will be suggested for these stages to help
reinforce the skills being learnt.

Here is a brief overview of the program development lifecycle, divided into the
five stages, as shown in Figure 12.1.

Program
development

lifecycle

5
Maintenance

2
Design

3
Coding

4
Testing

1
Analysis

▲ Figure	12.1 The program development lifecyle

Analysis
Before any problem can be solved, it needs to be clearly defined and set out
so everyone working on the solution understands what is needed. This is
called the requirements specification. The analysis stage often starts with a
feasibility study, followed by investigation and fact finding to identify exactly
what is required from the program.

Design
The program specification from the analysis stage is used to show how
the program should be developed. When the design stage is complete, the
programmer should know what is to be done, all the tasks that need to be
completed, how each task is to be performed and how the tasks work together.
This can be formally documented using structure charts, state-transition
diagrams and pseudocode.

457591_12_CI_AS & A_Level_CS_283-303.indd 284 25/04/19 11:33 AM

285

12.1
Program

 developm
ent lifecycle

12
Coding
The program or set of programs is written using a suitable programming
language.

Testing
The program is run many times with different sets of test data, to test that
it does everything it is supposed to do in the way set out in the program
design.

Maintenance
The program is maintained throughout its life, to ensure it continues
to work effectively. This involves dealing with any problems that arise
during use, including correcting any errors that come to light, improving
the functionality of the program, or adapting the program to meet new
requirements.

12.1.3	 Different development lifecycles
Each program development methodology has its own strength. Different models
have been developed based on the lifecycle for developers to use in practice.
The models we will consider will be divided into the five stages set out above:
analysis, design, coding, testing and maintenance.

In this section of the chapter, we will look at three models: The waterfall
model, the iterative model, and rapid application development (RAD).

The waterfall model
This linear sequential development cycle is one of the earliest models used,
where each stage is completed and signed off before the next stage is begun.
This model is suitable for smaller projects with a short timescale, for which the
requirements are well known and unlikely to change.

Principles linear, as each stage is completed before the next is begun

well documented as full documentation is completed at every stage

low customer involvement; only involved at the start and end of the
process

Benefits easy to manage, understand and use

stages do not overlap and are completed one at a time

each stage has specific deliverables

works well for smaller programs where requirements are known and
understood

Drawbacks difficult to change the requirements at a later stage

not suitable for programs where the requirements could be subject to
change

working program is produced late in the lifecycle

not suitable for long, complex projects

▲ Table	12.1 Principles, benefits and drawbacks to the waterfall model

Analysis

Design

Coding

Testing

Maintenance

▲ Figure	12.2	The waterfall
model

457591_12_CI_AS & A_Level_CS_283-303.indd 285 25/04/19 11:33 AM

286

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
The iterative model

Extended waterfall

Further
extended waterfall

These stages are
repeated as necessary

Final waterfall

First waterfall

▲ Figure	12.3	The iterative model

This development cycle first develops a simple subset of the requirements,
then expands or enhances the model and runs the development cycle again.
These program development cycles are repeated until the full system has been
developed. This model is suitable for projects for which the major requirements
are known but some details are likely to change or evolve with time.

Principles incremental development as the program development lifecycle is
repeated

working programs are produced for part of the system at every iteration

high customer involvement, as part of the system can be shown to the
customer after every iteration

Benefits some working programs developed quickly at an early stage in the
lifecycle

easier to test and debug smaller programs

more flexible as easier to alter requirements

customers involved at each iteration therefore no surprises when final
system delivered

Drawbacks whole system needs to be defined at start, so it can be broken down into
pieces to be developed at each iteration

needs good planning overall and for every stage

not suitable for short simple projects

▲ Table	12.2 Principles, benefits and drawbacks to the iterative model

Rapid application development (RAD)

Design

Coding

Testing

Maintenance

Analysis

Design

Coding

Testing

Maintenance

Analysis

Design

Coding

Testing

Maintenance

Analysis

Team 1 Team 2 Team 3

▲ Figure	12.4	Rapid application development (RAD)

457591_12_CI_AS & A_Level_CS_283-303.indd 286 25/04/19 11:33 AM

287

12.2 Program
 design

12
This development cycle develops different parts of the requirements in
parallel, using prototyping to provide early user involvement in testing.
Program development cycles are run in parallel for each part of the
requirement, using a number of different teams. Prototyping is often
used to show initial versions to customers to obtain early feedback. This
model is suitable for complicated projects that need developing in a
short timeframe to meet the evolving needs of a business.

Principles minimal planning

reuses previously written code where possible, makes use of
automated code generation where possible

high customer involvement, as customers can use the prototypes
during development

Benefits reduced overall development time

rapid frequent customer feedback informs the development

very flexible as requirements evolve from feedback during development

as parts of the system are developed side by side, modification is
easier because each part must work independently

Drawbacks system under development needs to be modular

needs strong teams of skilled developers

not suitable for short simple projects

▲ Table	12.3 Principles, benefits and drawbacks to rapid application development (RAD)

EXTENSION	ACTIVITY	12A

Find out about four more program development methodologies.

12.2	Program design

WHAT	YOU	SHOULD	ALREADY	KNOW
In this chapter, you will need to be able to write more complicated
pseudocode, as described by a structure chart. It is essential that you
consolidate your knowledge before you attempt to do this.

Make sure that you have read and understood Chapter 11 and you are able
to write pseudocode that passes parameters to procedures and functions.

Key	terms
Structure	chart – a modelling tool used to decompose a
problem into a set of sub-tasks. It shows the hierarchy
or structure of the different modules and how they
connect and interact with each other.
Finite	state	machine	(FSM) – a mathematical model
of a machine that can be in one state of a fixed set of
possible states; one state is changed to another by an
external input; this is known as a transition.

State-transition	diagram – a diagram showing the
behaviour of a finite state machine (FSM).
State-transition	table – a table showing every state of a
finite state machine (FSM), each possible input and the
state after the input.

457591_12_CI_AS & A_Level_CS_283-303.indd 287 25/04/19 11:33 AM

288

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
12.2.1	 Purpose and use of structure charts
A structure chart is a modelling tool used in program design to decompose
a problem into a set of sub-tasks. The structure chart shows the hierarchy or
structure of the different modules and how they connect and interact with each
other. Each module is represented by a box and the parameters passed to and
from the modules are shown by arrows pointing towards the module receiving the
parameter. Each level of the structure chart is a refinement of the level above.

Figure 12.5 shows a structure chart for converting a temperature from
Fahrenheit to Celsius. The top level shows the name for the whole task that is
refined into three sub-tasks or modules shown on the next level.

Convert
temperature

INPUT
temperature

Convert to Celsius
OUTPUT

temperature

temperature
temperature

tem
perature

tem
perature

▲ Figure	12.5	A structure chart for converting a temperature from Fahrenheit to Celsius

Structure charts can also show selection. The temperature conversion task
above could be extended to either convert from Fahrenheit to Celsius or Celsius
to Fahrenheit using the diamond shaped box to show a condition that could be
true or false, as shown in Figure 12.6.

Convert to Celsius
Convert to
Fahrenheit

Convert
temperature

INPUT
temperature

Convert

True False

OUTPUT
temperature

temperature

tem
pera

tu
re

tem
pera

tu
re

temperature

temperature
temperature

tem
perature

tem
perature

Temperature in
Fahrenheit?

▲ Figure	12.6

ACTIVITY	12A

Draw a structure
chart to input the
height and width
of a right-angled
triangle, calculate
output and output
the length of the
hypotenuse.

457591_12_CI_AS & A_Level_CS_283-303.indd 288 25/04/19 11:33 AM

289

12.2 Program
 design

12
ACTIVITY	12B

Draw a structure chart to input the radius of a sphere, calculate output and
output either the volume or the surface area.

Structure charts can also show repetition. The temperature conversion task
above could be extended to repeat the conversion until the number 999 is
input. The repetition is shown by adding a labelled semi-circular arrow above
the modules to be completed (Figure 12.7).

Convert
temperature

UNTIL
temperature = 999

INPUT
temperature

Convert to Celsius
OUTPUT

temperature

temperature
temperature

tem
perature

tem
perature

▲ Figure	12.7

Once a structure chart has been completed, it can be used to derive a
pseudocode algorithm.

Figure 12.8 shows a possible structure chart for Activity 12C.

Calculate volume
Calculate surface

area

Volume and
surface area
calculator

UNTIL radius = 0

INPUT radius Calculate OUTPUT answer

radius

an
sw

er

rad
ius

answer

radiusanswer

radius

answ
er

True False
Volume?

▲ Figure	12.8

ACTIVITY	12C

Amend your
structure chart to
input the radius of
a sphere, calculate
and output either
the volume or the
surface area. The
algorithm should
repeat until a radius
of zero is entered.

457591_12_CI_AS & A_Level_CS_283-303.indd 289 25/04/19 11:33 AM

290

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
To derive the pseudo code first, you will need to create an identifier table.

Identifier name Description
radius Stores radius input

answer Stores result of calculation

pi Constant set to 3.142

▲ Table	12.4

Then declare constants and variables in pseudocode. You can identify two of
the variables required from the parameters shown in the structure diagram.

DECLARE radius : REAL

DECLARE answer : REAL

CONSTANT pi ← 3.142

Provide pseudocode for the modules shown in the structure diagram.
As Calculate volume and Calculate surface area provide the answer to a
calculation, these can be defined as functions.

FUNCTION calculateVolume (radius:real) RETURNS real

 RETURN (4 / 3) * pi * radius * radius * radius

ENDFUNCTION

FUNCTION calculateSurfaceArea (radius:real) RETURNS real

 RETURN 4 * pi * radius * radius

ENDFUNCTION

The input and output modules could be defined as procedures.

PROCEDURE inputRadius

 OUTPUT "Please enter the radius of the sphere "

 INPUT radius

 WHILE radius < 0 DO

 OUTPUT "Please enter a positive number "

 INPUT radius

 ENDWHILE

ENDPROCEDURE

PROCEDURE outputAnswer

 OUTPUT answer

ENDPROCEDURE

457591_12_CI_AS & A_Level_CS_283-303.indd 290 25/04/19 11:33 AM

291

12.2 Program
 design

12
DECLARE radius : REAL

DECLARE answer : REAL

CONSTANT pi ← 3.142

FUNCTION calculateVolume (radius:real) RETURNS real

 RETURN (4 / 3) * pi * radius * radius * radius

ENDFUNCTION

FUNCTION calculateSurfaceArea (radius:real) RETURNS real

 RETURN 4 * pi * radius * radius

ENDFUNCTION

PROCEDURE inputRadius

 OUTPUT "Please enter the radius of the sphere "

 INPUT radius

 WHILE radius < 0 DO

 OUTPUT "Please enter a positive number "

 INPUT radius

 ENDWHILE

ENDPROCEDURE

PROCEDURE outputAnswer

 OUTPUT answer

ENDPROCEDURE

CALL inputRadius

WHILE radius <> 0

 OUTPUT "Do you want to calculate the Volume (V) or Surface Area (S)"

 INPUT reply

 IF reply = "V"

 THEN

 answer ← calculateVolume(radius)

 OUTPUT "Volume "

 ELSE

 answer ← calculateSurfaceArea(radius)

 OUTPUT "Surface Area "

 ENDIF

 CALL outputAnswer

 CALL inputRadius

ENDWHILE

The pseudocode for the whole algorithm, including the selection and
repetition, would be as follows.

457591_12_CI_AS & A_Level_CS_283-303.indd 291 25/04/19 11:33 AM

292

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
ACTIVITY	12D

Draw a structure chart to extend the temperature conversion algorithm
to both convert from Fahrenheit to Celsius and Celsius to Fahrenheit, and
repeat until a temperature of 999 is input.

Use your structure chart to create an identifier table and write the
pseudocode for this algorithm.

12.2.2	Purpose and use of state-transition diagrams to
document algorithms

A finite state machine (FSM) is a mathematical model of a machine that can
be in one of a fixed set of possible states. One state is changed to another by
an external input, this is called a transition. A diagram showing the behaviour
of an FSM is called a state-transition diagram.

State-transition diagrams show the conditions needed for an event or events
that will cause a transition to occur, and the outputs or actions carried out as
the result of that transition.

State-transition diagrams can be constructed as follows:

» States are represented as nodes (circles).
» Transitions are represented as interconnecting arrows.
» Events are represented as labels on the arrows.
» Conditions can be specified in square brackets after the event label.
» The initial state is indicated by an arrow with a black dot.
» A stopped state is indicated by a double circle.

The algorithm for unlocking a door using a three-digit entry code can be
represented by a state-transition diagram. If the door is unlocked with a three-
digit entry code, the lock can be in four states

» locked and waiting for the input of the first digit
» waiting for the input of the second digit
» waiting for the input of the third digit
» unlocked.

If an incorrect digit is input, then the door returns to the locked state. The
algorithm halts when the door is unlocked. A state-transition table shows
every state, each possible input and the state after the input. The state-
transition table for a door with the entry code 259 is shown below.

Current state Event Next state

locked 2 input waiting for input of 2nd digit

locked not 2 input locked

waiting for input of 2nd digit 5 input waiting for input of 3rd digit

waiting for input of 2nd digit not 5 input locked

waiting for input of 3rd digit 9 input unlocked and stopped

waiting for input of 3rd digit not 9 input locked

▲ Table	12.5 The state-transition table for a door with the entry code 259

457591_12_CI_AS & A_Level_CS_283-303.indd 292 25/04/19 11:33 AM

293

12.3 Program
 testing and m

aintenance

12
The state-transition diagram for a door with the entry code 259 is shown in
Figure 12.9.

Locked

Not 2 Not 9

Not 5

2 5 9
Waiting for
second digit

Waiting for
third digit Unlocked

▲ Figure	12.9	State-transition diagram for a door with the entry code 259

ACTIVITY	12E

Draw a state-transition diagram for the operation of a television with a single
on/off button. The television can be in three states: on, off and standby. If
the button is pressed once (single press) in standby or off, the television
switches on; if the button is pressed once (single press) when the television
is on, the television goes to standby; if the button is pressed twice (double
press) when the television is on, the television goes to off. Double presses in
standby or off are ignored.

Copy and complete the state-transition table and draw the state-transition
diagram for the television operation.

Current state Event Next state

Off Single press

Off Double press

Standby Single press

Standby Double press

On Single press

On Double press

12.3	Program testing and maintenance

WHAT	YOU	SHOULD	ALREADY	KNOW
You will need to be able to know how to thoroughly test any programs that
you write. Have a go at the activity below.

Take a program that you have written recently and explain to another
student how you tested the program and which data sets you chose for
your testing.

457591_12_CI_AS & A_Level_CS_283-303.indd 293 25/04/19 11:33 AM

294

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
Key	terms

Trace	table	– a table showing the process of dry-
running a program with columns showing the values of
each variable as it changes.

Run-time	error	– an error found in a program when it is
executed; the program may halt unexpectedly.

Test	strategy	– an overview of the testing required
to meet the requirements specified for a particular
program; it shows how and when the program is to be
tested.

Test	plan	– a detailed list showing all the stages of
testing and every test that will be performed for a
particular program.

Dry	run – a method of testing a program that involves
working through a program or module from a program
manually.

Walkthrough – a method of testing a program. A formal
version of a dry run using pre-defined test cases.

Normal	test	data	– test data that should be accepted by
a program.

Abnormal	test	data – test data that should be rejected
by a program.

Extreme	test	data – test data that is on the limit of that
accepted by a program.

Boundary	test	data – test data that is on the limit of that
accepted by a program or data that is just outside the
limit of that rejected by a program.

White-box	testing – a method of testing a program that
tests the structure and logic of every path through a
program module.

Black-box	testing – a method of testing a program that
tests a module’s inputs and outputs.

Integration	testing	– a method of testing a program
that tests combinations of program modules that work
together.

Stub	testing	– the use of dummy modules for testing
purposes.

Alpha	testing	– the testing of a completed or nearly
completed program in-house by the development team.

Beta	testing	– the testing of a completed program by a
small group of users before it is released.

Acceptance	testing	– the testing of a completed
program to prove to the customer that it works as
required.

Corrective	maintenance – the correction of any errors
that appear during use.

Perfective	maintenance – the process of making
improvements to the performance of a program.

Adaptive	maintenance	– the alteration of a program to
perform new tasks.

12.3.1	 Ways of avoiding and exposing faults in programs
Most programs written to perform a real task will contain errors, as
programmers are human and do make mistakes. The aim is to avoid making as
many mistakes as possible and then find as many mistakes as possible before
the program goes live. Unfortunately, this does not always happen and many
spectacular failures have occurred. More than one large bank has found that its
customers were locked out of their accounts for some time when new software
was installed. Major airlines have had to cancel flights because of programming
errors. One prison service released prisoners many days earlier than required for
about 15 years because of a faulty program.

Faults in an executable program are frequently faults in the design of the
program. Fault avoidance starts with the provision of a comprehensive and
rigorous program specification at the end of the analysis phase of the program
development lifecycle, followed by the use of formal methods such as structure
charts, state-transition diagrams and pseudocode at the design stage. At the
coding stage, the use of programming disciplines such as information hiding,
encapsulation and exception handling, as described in Chapter 20, all help to
prevent faults.

Faults or bugs in a program are then exposed at the testing stage. Testing will
show the presence of faults to be corrected, but cannot guarantee that large,

457591_12_CI_AS & A_Level_CS_283-303.indd 294 25/04/19 11:33 AM

295

12.3 Program
 testing and m

aintenance

12
complex programs are fault free under all circumstances. Faults can appear
during the lifetime of a program and may be exposed during live running.
The faults are then corrected as part of the maintenance stage of the
program lifecycle.

EXTENSION	ACTIVITY	12B

In small groups, research recent spectacular software failures. Choose
one failure per group and find out what went wrong and how it affected the
organisation and their customers. Summarise and present your group’s
findings to the rest of the class.

12.3.2	Location, identification and correction of errors
Syntax errors are errors in the grammar of a source program. In the coding
phase of the program development lifecycle, programs are either compiled or
interpreted so they can be executed. During this operation, the syntax of the
program is checked, and errors need to be corrected before the program can be
executed. Figure 12.10 shows an example of a syntax error being found, and the
IDE offering a possible reason for the error.

value1 = 20
value2 = 30
total = value1 + vvalue2

Typo: in word ‘vvalue’ more… (Ctrl+F1)

▲ Figure	12.10

Many IDEs will offer suggestions about what syntax errors are and how to
correct them.

Logic errors are errors in the logic of a program, meaning the program does not
do what it is supposed to do. These errors are usually found when the program
is being tested. For example, the program in Figure 12.11 will run, but the
results will not be as expected.

if Direction == "N":
 Y=X+1
elif Direction == "S":
 Y=Y-1
elif Direction == "E":
 X=X+1
elif Direction == "W":
 X=X-1
else :
 print("Error")

Y should have been incremented,
but the value in X has been used

incorrectly – a logic error

▲ Figure	12.11

Many IDEs will allow you to single step through a program to find errors (see
Chapter 5, Section 5.2.4). You can also manually work through a program to
check that it works as it should, using tools such as a trace table. Trace tables
show the process of dry-running a program with columns showing the values of
each variable as it changes.

457591_12_CI_AS & A_Level_CS_283-303.indd 295 25/04/19 11:33 AM

296

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
Run-time errors happen when the program is executed. The program may halt
unexpectedly or go into an infinite loop and need to be stopped by brute force.
If a program is being tested in an IDE, then this type of error may be managed,
and a suitable error message given, as shown below.

Program with divide by zero error

1 value1 = 10

2 value2 = 0

3 value3 = value1 + value2

4 value4 = value1 / value2

Traceback (most recent call last):

 File "ErrorTest.py", line 4, in <module>

 value4 = value1 /value2

ZeroDivisionError: division by zero

Process finished with exit code 1

If the program has already been released for use and a run-time error occurs,
the developer should be informed so that the program can be updated and
re-released or a patch can be sent out to all customers to solve the problem. A
patch is a small program, released by the developers, to run with an existing
program to correct an error or provide extra functionality. The Windows
operating system is frequently patched and the process of downloading patches
and updating the program has been automated.

12.3.3	Program testing
Programs need to be rigorously tested before they are released. Tests begin
from the moment they are written; they should be documented to show that
the program is robust and ready for general use.

There needs to be a test strategy set out in the analysis stage of the program
development lifecycle showing an overview of the testing required to meet
the requirements specified. This shows how and when the program is to be
tested.

In order to clarify what tests need to be performed, a test plan is drawn up
showing all the stages of testing and every test that will be performed. As the
testing is carried out, the results of the tests can be added to the plan showing
that the program has met its requirements.

There are several formal methods of testing used to ensure that a program is
robust and works to the standard required. Although there is a testing stage in
the program development lifecycle, testing in some form occurs at every stage,
from design to maintenance.

During the program design stage, pseudocode is written. This can be tested
using a dry run, in which the developer works through a program or module
from a program manually and documents the results using a trace table.

457591_12_CI_AS & A_Level_CS_283-303.indd 296 25/04/19 11:33 AM

297

12.3 Program
 testing and m

aintenance

12
For example, a procedure to perform a calculation could be tested as follows.

PROCEDURE calculation(number1, number2, sign)

CASE sign OF

 '+' : answer ← number1 + number2

 '-' : answer ← number1 + number2

 '*' : answer ← number1 * number2

 '/' : answer ← number1 / number2

 OTHERWISE answer ← 0

ENDCASE

IF answer <> 0

 THEN

 OUTPUT answer

ENDIF

ENDPROCEDURE

The test data used could include 20 10 +, 20 10 −, 20 10 *, 20 10 /, 20 10 ? and
20 0 /.

The trace table below shows the value of each variable and any output.

number1 number2 sign answer OUTPUT

20 10 + 30 30

20 10 − 30 30

20 10 * 200 200

20 10 / 2 2

20 10 ? 0

20 0 / undefined

▲ Table	12.6

The errors found in the routine by performing the dry run have been
highlighted in red. These can now be corrected before this routine is coded.

ACTIVITY	12F

Correct the pseudocode and perform the dry run again to ensure that your
corrections work.

ACTIVITY	12G

Using the pseudocode algorithm for the volume and surface area of a
sphere in Section 12.2.1, devise some test data and a trace table to test the
algorithm.

Swap your test data and trace table with another student then perform the
dry run and complete the trace table.

Discuss any differences or problems you find.

457591_12_CI_AS & A_Level_CS_283-303.indd 297 25/04/19 11:33 AM

298

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
A walkthrough is a formalised version of a dry run using pre-defined test
cases. This is where another member of the development team independently
dry runs the pseudocode, or the developer takes the team members through the
dry run process. This is often done as a demonstration.

During the program development and testing, each module is tested as set out
in the test plan. Test plans are often set out as a table; an example for the
calculation procedure is shown below.

Test Purpose Test data Expected outcome Actual outcome

to test the +
calculation

to ensure that the + calculation
works as expected

normal data
20 10 +

30 30

abnormal data
twenty ten +

error message incorrect
calculation

to test the −
calculation

to ensure that the − calculation
works as expected

normal data
20 10 −

10 30

abnormal data
twenty ten −

error message incorrect
calculation

▲ Table	12.7 An example of a calculation procedure set out as a table

The results from this testing show that the error in the subtraction calculation
has not been fixed and the routine is not trapping any abnormal data in the
variables used by the calculation. These errors will need correcting and then
the routine will need to be retested.

EXTENSION	ACTIVITY	12C

In the programming language you have chosen to use, write the procedure
for calculations and any other code necessary. Use and extend the test plan
above to ensure that the calculation module works as it should.

Several types of test data need to be used during testing:

» Normal test data that is to be accepted by a program and is used to show
that the program is working as expected.

» Abnormal test data that should be rejected by a program as it is unsuitable
or could cause problems.

» Extreme test data that is on the limit of that accepted by a program; for
example, when testing a validation rule such as number >= 12 AND
number <= 32 the extreme test data would be 12 at the lower limit and
32 at the upper limit; both these values should be accepted.

» Boundary test data that is on the limit of that accepted by a program or
data that is just outside the limit of that rejected by a program;
for example, when testing a validation rule such as number >= 12 AND
number <= 32 the boundary test data would be 12 and 11 at the lower
limit and 32 and 33 at the upper limit; 12 and 32 should be accepted,
11 and 33 should be rejected.

457591_12_CI_AS & A_Level_CS_283-303.indd 298 25/04/19 11:33 AM

299

12.3 Program
 testing and m

aintenance

12
ACTIVITY	12H

An algorithm is to be written to test whether a password is eight characters or
more and 15 characters or less in length. The password must contain at least
one digit, at least one capital letter and no characters other than letters or digits.

Devise a set of test data to be used to test the password checking algorithm.

Discuss any problems there may be in devising a complete set of test data.

EXTENSION	ACTIVITY	12D

In the programming language you have chosen to use, write a procedure
to check that the password conforms to the rules in Activity 12H. Use your
test data from the previous activity to write a test plan and test that your
procedure works as it should.

As the program is being developed the following types of testing are used:

» White-box testing is the detailed testing of how each procedure works. This
involves testing the structure and logic of every path through a program
module.

» Black-box testing tests a module’s inputs and outputs.
» Integration testing is the testing of any separately written modules to

ensure that they work together, during the testing phase of the program
development lifecycle. If any of the modules have not been written yet, this
can include stub testing, which makes use of dummy modules for testing
purposes.

When the program has been completed, it is tested as a whole:

» Alpha testing is used first. The completed, or nearly completed, program is
tested in-house by the development team.

» Beta testing is then used. The completed program is tested by a small group
of users before it is generally released.

» Acceptance testing is then used for the completed program to prove to the
customer that it works as required in the environment in which it will be
used.

12.3.4	Program maintenance
Program maintenance is not like maintaining a piece of equipment by replacing
worn out parts. Programs do not wear out, but they might not work correctly in
unforeseen circumstances. Logic or run-time errors that require correction may
occur from time to time, or users may want to use the program in a different way.

Program maintenance can usually be divided into three categories:

» Corrective maintenance is used to correct any errors that appear during
use, for example trapping a run-time error that had been missed during
testing.

» Perfective maintenance is used to improve the performance of a program
during its use, for example improving the speed of response.

» Adaptive maintenance is used to alter a program so it can perform any new
tasks required by the customer, for example working with voice commands as
well as keyboard entry.

457591_12_CI_AS & A_Level_CS_283-303.indd 299 25/04/19 11:33 AM

300

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12
ACTIVITY	12I

Analyse the pseudocode algorithm for the volume and surface area of the
sphere in Section 12.2.1 and identify at least three improvements you could
make to the functionality of this algorithm.

ACTIVITY	12J

1 Explain, using examples, the difference between syntax and logic errors.
2 A programmer wants to test that a range check for values over 10 and

under 100 works.
 Identify three types of test data that should be used. Provide an example of

each type of test data and describe how the program should react to the data.
3 Identify three types of program maintenance and describe the role of

each type of maintenance.

1 When the guarantee on a computer runs out, the owner can take out insurance
to cover breakdown and repairs.

 The price of the insurance is calculated from:

– the model of the computer

− the age of the computer

− the current insurance rates

 Following an enquiry to the insurance company, the customer receives a
quotation letter with the price of the insurance. A program is to be produced.

 The structure chart below shows the modular design for this process.

End of chapter
questions

access premium rates
database

Premium rates

Premium rates

457591_12_CI_AS & A_Level_CS_283-303.indd 300 25/04/19 11:33 AM

301

12.3 Program
 testing and m

aintenance

12
a) Copy the chart above and, using the letters A to D, add the labelling

to the chart boxes. [2]

Modules

A Send quotation letter

B Calculate price

C Produce insurance quotation

D Input computer details

b) Using the letters E to J, complete the labelling on the chart. [4]

 Some of these letters will be used more than once.

Data items

E CustomerName

F CustomerEmail

G Model

H Age

I PolicyCharge

J PolicyNumber

Cambridge International AS & A Level Computer Science 9608
Paper 22 Q3 June 2015

2 A 1D array, Product, of type STRING is used to store information about a
range of products in a shop. There are 100 elements in the array. Each element
stores one data item.

 The format of each data item is as follows:

 <ProductID><ProductName>

– ProductID is a four-character string of numerals

– ProductName is a variable-length string

 The following pseudocode is an initial attempt at defining a procedure,
ArraySort, which will perform a bubble sort on Product. The array is to
be sorted in ascending order of ProductID. Line numbers have been added for
identification purposes only.

01 PROCEDURE SortArray

02 DECLARE Temp : CHAR

03 DECLARE FirstID, SecondID : INTEGER

04 FOR I ← 1 TO 100

05 FOR J ← 2 TO 99

06 FirstID ← MODULUS(LEFT(Product[J], 6))

07 SecondID ← MODULUS(LEFT(Product[J + 1],6))

08 IF FirstID > SecondID

➔

457591_12_CI_AS & A_Level_CS_283-303.indd 301 25/04/19 11:33 AM

302

12
 S

o
ft

w
a

r
e

d
e

v
e

lo
p

m
e

n
t

12

 The pseudocode contains a number of errors.

 Copy and complete the following table to show:

– the line number of the error

– the error itself

– the correction that is required. [8]

Note:

– If the same error occurs on more than one line, you should only refer to it
ONCE.

– Lack of optimisation should not be regarded as an error.

Line number Error Correction

01 Wrong procedure name – "SortArray" PROCEDURE ArraySort

Cambridge International AS & A Level Computer Science 9608
Paper 22 Q3 November 2017

3 A company creates two new websites, Site X and Site Y, for selling bicycles.

 Various programs are to be written to process the sales data.

 These programs will use data about daily sales made from Site X (using variable
SalesX) and Site Y (using variable SalesY).

09 THEN

10 Temp ← Product[I]

11 Product[I] Product[J + 1]

12 Product[J + 1] Temp

13 ENDFOR

14 ENDIF

15 ENDFOR

16 ENDPROCEDURE

457591_12_CI_AS & A_Level_CS_283-303.indd 302 25/04/19 11:33 AM

303

12.3 Program
 testing and m

aintenance

12
 Data for the first 28 days is shown below.

03/06/2015

SalesDate SalesX SalesY

1

2

3

4

5

6

7

8

9

28

…

04/06/2015

05/06/2015

06/06/2015

07/06/2015

08/06/2015

09/06/2015

10/06/2015

11/06/2015

01/07/2015

1

0 1

3

0

4

4

5

11

4

14

2

8

0

6

4

9

9

1

8

a) Name the data structure to be used in a program for SalesX. [2]

b) The programmer writes a program from the following pseudocode design.

x ← 0

FOR DayNumber ← 1 to 7

 IF SalesX[DayNumber] + SalesY[DayNumber] >= 10

 THEN

 x ← x + 1

 OUTPUT SalesDate[DayNumber]

 ENDIF

ENDFOR

OUTPUT x

i) Trace the execution of this pseudocode by copying and completing this
trace table. [4]

x DayNumber OUTPUT
0

ii) Describe, in detail, what this algorithm does. [3]

Cambridge International AS & A Level Computer Science 9608
Paper 22 Q5 parts (a) and (b) June 2015

457591_12_CI_AS & A_Level_CS_283-303.indd 303 25/04/19 11:33 AM

304

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

	 13	 Data	representation

In this chapter, you will learn about

★ user-defined data types
★ the definition and use of non-composite and composite data types
★ the choice and design of an appropriate user-defined data type for a

given problem
★ methods of file organisation, such as serial, sequential and random
★ methods of file access, such as sequential and direct access
★ hashing algorithms
★ binary floating-point real numbers
★ converting binary floating-point real numbers into denary numbers
★ converting denary numbers into binary floating-point real numbers
★ the normalisation of binary floating-point numbers
★ how underflow and overflow can occur
★ how binary representation can lead to rounding errors.

13.1	User-defined data types

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these two questions before you read the first part of this chapter.
1 Select an appropriate data type for each of the following.

a) A name
b) A student’s mark
c) A recorded temperature
d) The start date for a job
e) Whether an item is sold or not

2 Write pseudocode to define a record structure to store the following
data for an animal in a zoo.
n Name
n Species
n Date of birth
n Location
n Whether the animal was born in the zoo or not
n Notes

457591_13_CI_AS & A_Level_CS_304-327.indd 304 26/04/19 8:42 AM

305

13.1
U

ser-defined data types

13
Key	terms
User-defined	data	type
– a data type based on
an existing data type or
other data types that
have been defined by a
programmer.
Non-composite	data	
type – a data type that
does not reference any
other data types.
Enumerated	data	
type – a non-composite
data type defined by a
given list of all possible
values that has an
implied order.
Pointer	data	type – a
non-composite data
type that uses the
memory address of
where the data is
stored.
Set – a given list of
unordered elements
that can use set theory
operations such as
intersection and union.

Programmers use specific data types that exactly match a program’s
requirements. They define their own data types based on primitive data types
provided by a programming language, or data types that they have defined
previously in a program. These are called user-defined data types.
User-defined data types can be divided into non-composite and composite
data types.

13.1.1	 Non-composite data types
A non-composite data type can be defined without referencing another data
type. It can be a primitive type available in a programming language or a
user-defined data type. Non-composite user-defined data types are usually
used for a special purpose.

We will consider enumerated data types for lists of items and pointers to data
in a computer’s memory.

Enumerated data type
An enumerated data type contains no references to other data types when it is
defined. In pseudocode, the type definition for an enumerated data type has
this structure:

TYPE <identifier> = (value1, value2, value3, ...)

For example, a data type for months of the year could be defined as:

Then the variables thisMonth and nextMonth of type Tmonth could be
defined as:

ACTIVITY	13A

Using pseudocode, declare an enumerated data type for the days of the
week. Then declare two variables today and yesterday, assign a value
of Wednesday to today, and write a suitable assignment statement for
tomorrow.

TYPE Tmonth = (January, February, March,
April, May, June, July, August, September,
October, November, December)

Type names usually begin with T to aid the programmer

The values are not strings so are not enclosed in quotation marks

DECLARE thisMonth : Tmonth

DECLARE nextMonth : Tmonth

thisMonth ← January

nextMonth ← thisMonth + 1

nextMonth is now set to February

457591_13_CI_AS & A_Level_CS_304-327.indd 305 26/04/19 8:42 AM

306

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
Pointer data type
A pointer data type is used to reference a memory location. This data type
needs to have information about the type of data that will be stored in
the memory location. In pseudocode the type definition has the following
structure, in which ^ shows that the type being declared is a pointer and
<Typename> is the type of data to be found in the memory location, for
example INTEGER or REAL, or any user-defined data type.

TYPE <pointer> = <̂Typename>

For example, a pointer for months of the year could be defined as follows:

TYPE TmonthPointer = ^Tmonth

DECLARE monthPointer : TmonthPointer

Tmonth is
the data type
in the memory
location that
this pointer
can be used to
point to

It could then be used as follows:

monthPointer ← ^thisMonth

If the contents of the memory location are required rather than the address
of the memory location, then the pointer can be dereferenced. For example,
myMonth can be set to the value stored at the address monthPointer is
pointing to:

DECLARE myMonth : Tmonth

myMonth ← monthPointer^ monthPointer has been dereferenced

ACTIVITY	13B

Using pseudocode for the enumerated data type for days of the week,
declare a suitable pointer to use. Set your pointer to point at today.
Remember, you will need to set up the pointer data type and the pointer
variable.

13.1.2	 Composite data types
A data type that refers to any other data type in its type definition is a
composite data type. In Chapter 10, the data type for record was introduced as
a composite data type because it refers to other data types.

457591_13_CI_AS & A_Level_CS_304-327.indd 306 26/04/19 8:42 AM

307

13.1
U

ser-defined data types

13
TYPE
 TbookRecord
 DECLARE title : STRING
 DECLARE author : STRING
 DECLARE publisher : STRING
 DECLARE noPages : STRING
 DECLARE fiction : STRING

 ENDTYPE

Other data types

Other composite data types include sets and classes.

Sets
A set is a given list of unordered elements that can use set theory operations
such as intersection and union. A set data type includes the type of data in the
set. In pseudocode, the type definition has this structure:

TYPE <set-identifier> = SET OF <Basetype>

The variable definition for a set includes the elements of the set.

DEFINE <identifier> (value1, value2, value3, ...) :
<set-identifier>

A set of vowels could be declared as follows:

TYPE Sletter = SET OF CHAR

DEFINE vowel ('a', 'e', 'i', 'o', 'u') : letters

EXTENSION	ACTIVITY	13A

Many programming languages offer a set data type. Find out about how set
operations are implemented in the programming language you are using.

Classes
A class is a composite data type that includes variables of given data types and
methods (code routines that can be run by an object in that class). An object is
defined from a given class; several objects can be defined from the same class.
Classes and objects will be considered in more depth in Chapter 20.

ACTIVITY	13C

1 Explain, using examples, the difference between composite and
non-composite data types.

2 Explain why programmers need to define user-defined data types.
 Use examples to illustrate your answers.
3 Choose an appropriate data type for the following situations.
 Give the reason for your choice in each case.

a) A fixed number of colours to choose from.
b) Data about each house that an estate agent has for sale.
c) The addresses of integer data held in main memory.

457591_13_CI_AS & A_Level_CS_304-327.indd 307 26/04/19 8:42 AM

308

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
13.2	File organisation and access

WHAT	YOU	SHOULD	ALREADY	KNOW
Try these three questions before you read the
second part of this chapter.
1 Describe three different modes that files can

be opened in.
2 Write pseudocode to carry out the following

operations on a text file.

a) Create a text file.
b) Write several lines of text to the file.
c) Read the text that you have written to the

file.
d) Append a line of text at the end of the file.

3 Write a program to test your pseudocode.

13.2.1	 File organisation and file access
File organisation
Computers are used to access vast amounts of data and to present it as useful
information. Millions of people expect to be able to retrieve the information
they need in a useful form when they ask for it. This information is all stored
as data in files, everything from bank statements to movie collections. In order
to be able to find data efficiently it needs to be organised. Data of all types is
stored as records in files. These files can be organised using different methods.

Serial file organisation
The serial file organisation method physically stores records of data in a file,
one after another, in the order they were added to the file.

First
record

Second
record

Third
record

Fourth
record

Fifth
record

Sixth
record

and so on

Start of file

▲ Figure	13.1

New records are appended to the end of the file. Serial file organisation is often
used for temporary files storing transactions to be made to more permanent files.
For example, storing customer meter readings for gas or electricity before they
are used to send the bills to all customers. As each transaction is added to the
file in the order of arrival, these records will be in chronological order.

Key	terms

Serial	file	organisation	– a method of file organisation in
which records of data are physically stored in a file, one
after another, in the order they were added to the file.
Sequential	file	organisation – a method of file
organisation in which records of data are physically
stored in a file, one after another, in a given order.
Random	file	organisation – a method of file
organisation in which records of data are physically
stored in a file in any available position; the location
of any record in the file is found by using a hashing
algorithm on the key field of a record.
Hashing	algorithm	(file	access)	– a mathematical
formula used to perform a calculation on the key field

of the record; the result of the calculation gives the
address where the record should be found.
File	access – the method used to physically find a
record in the file.
Sequential	access	– a method of file access in which
records are searched one after another from the
physical start of the file until the required record is
found.
Direct	access – a method of file access in which
a record can be physically found in a file without
physically reading other records.

457591_13_CI_AS & A_Level_CS_304-327.indd 308 26/04/19 8:42 AM

309

13.2 File organisation and access

13
Sequential file organisation
The sequential file organisation method physically stores records of data in
a file, one after another, in a given order. The order is usually based on the
key field of the records as this is a unique identifier. For example, a file could
be used by a supplier to store customer records for gas or electricity in order
to send regular bills to each customer. All records are stored in ascending
customer number order, where the customer number is the key field that
uniquely identifies each record.

Customer 1
record

Customer 2
record

Customer 3
record

Customer 4
record

Customer 7
record

Customer 8
record

and so on

Start of file

▲ Figure	13.2

New records must be added to the file in the correct place; for example, if
Customer 5 is added to the file, the structure becomes:

Customer 1
record

Customer 2
record

Customer 3
record

Customer 4
record

Customer 5
record

Customer 7
record

Customer 8
record

and so on

Start of file
▲ Figure	13.3

Random file organisation
The random file organisation method physically stores records of data in a
file in any available position. The location of any record in the file is found by
using a hashing algorithm (see Section 13.2.2) on the key field of a record.

Customer 8
record

Customer 2
record

Customer 4
record

Customer 7
record

Customer 3
record

Customer 1
record

and so on

Start of file
▲ Figure	13.4

Records can be added at any empty position.

File access
There are different methods of file access (the method used to physically
find a record in the file). We will consider two of them: sequential access and
direct access.

Sequential access
The sequential access method searches for records one after another from the
physical start of the file until the required record is found, or a new record can
be added to the file. This method is used for serial and sequential files.

For a serial file, if a particular record is being searched for, every record needs
to be checked until that record is found or the whole file has been searched
and that record has not been found. Any new records are appended to the end
of the file.

For a sequential file, if a particular record is being searched for, every record
needs to be checked until the record is found or the key field of the current
record being checked is greater than the key field of the record being searched

457591_13_CI_AS & A_Level_CS_304-327.indd 309 26/04/19 8:42 AM

310

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
for. The rest of the file does not need to be searched as the records are sorted
on ascending key field values. Any new records to be stored are inserted in the
correct place in the file. For example, if the record for Customer 6 was requested,
each record would be read from the file until Customer 7 was reached. Then it
would be assumed that the record for Customer 6 was not stored in the file.

Customer 1
record

Customer 2
record

Customer 3
record

Customer 4
record

Customer 5
record

Customer 7
record

Customer 8
record

and so on

↑
Customer 6 record not found

▲ Figure	13.5

Sequential access is efficient when every record in the file needs to be
processed, for example, a monthly billing or payroll system. These files have
a high hit rate during the processing as nearly every record is used when the
program is run.

Direct access
The direct access method can physically find a record in a file without other
records being physically read. Both sequential and random files can use direct
access. This allows specific records to be found more quickly than using
sequential access.

Direct access is required when an individual record from a file needs to be
processed. For example, when a single customer record needs to be updated
when the customer’s phone number is changed. Here, the file being processed
has a low hit rate as only one of the records in the file is used.

For a sequential file, an index of all the key fields is kept and used to look up
the address of the file location where a given record is stored. For large files,
searching the index takes less time than searching the whole file.

For a random access file, a hashing algorithm is used on the key field to
calculate the address of the file location where a given record is stored.

13.2.2	Hashing algorithms
In the context of storing and accessing data in a file, a hashing algorithm is
a mathematical formula used to perform a calculation on the key field of the
record. The result of the calculation gives the address where the record should
be found. More complex hashing algorithms are used in the encryption of data.

Here is an example of a simple hashing algorithm:

If a file has space for 2000 records and the key field can take any values
between 1 and 9999, then the hashing algorithm could use the remainder when
the value of key field is divided by 2000, together with the start address of the
file and the size of the space allocated to each record.

In the simplest case, where the start address is 0 and each record is stored in
one location.

To store a record identified by a key field with value 3024, the hashing
algorithm would give address 1024 as the location to store the record.

Key field Remainder Address
3024 1024 1024 = 0 + 1 * 1024

▲ Table	13.1

457591_13_CI_AS & A_Level_CS_304-327.indd 310 26/04/19 8:42 AM

311

13.2 File organisation and access

13
Unfortunately, storing another record with a key field 5024 would result in
trying to use the same file location and a collision would occur.

Key field Same remainder Same address
5024 1024 1024 = 0 + 1 * 1024

▲ Table	13.2

This often happens with hashing algorithms for direct access to records in a file.

There are two ways of dealing with this:

1 An open hash where the record is stored in the next free space.
2 A closed hash where an overflow area is set up and the record is stored in

the next free space in the overflow area.

When reading a record from a file using direct access, the address of the location
to read from is calculated using the hashing algorithm and the key field of the
record stored there is read. But, before using that record, the key field must be
checked against the original key field to ensure that they match. If the key fields
do not match, then the following records need to be read until a match is found
(open hash) or the overflow area needs to be searched for a match (closed hash).

ACTIVITY	13D

A file of records is stored at address 500. Each record takes up five locations
and there is space for 1000 records. The key field for each record can take
the value 1 to 9999.

The hashing algorithm used to calculate the address of each record is the
remainder when the value of key field is divided by 1000 together with the
start address of the file and the size of the space allocated to each record.

Calculate the address to store the record with key field 9354.

If this location has already been used to store a record and an open hash is
used, what is the address of the next location to be checked?

Hashing algorithms can also be used to calculate addresses from names. For
example, adding up the ASCII values for every character in a name and dividing
this by the number of locations in the file could be used as the basis for a
hashing algorithm.

EXTENSION	ACTIVITY	13B

Write a program to
n find the ASCII value for each character in a name of up to 10 characters
n add the values together
n divide by 1000 and find the remainder
n multiply this value by 20 and add it to 2000
n display the result.

If this program simulates a hashing algorithm for a file, what is the start
address of the file and the size of each record?

ACTIVITY	13E

1 Explain, using
examples,
the difference
between serial
and sequential
files.

2 Explain the
process of direct
access to a
record in a file
using a hashing
algorithm.

3 Choose an
appropriate
file type for
the following
situations.

 Give the reason
for your choice in
each case.
a) Borrowing

books from a
library.

b) Providing an
annual tax
statement for
employees at
the end of the
year.

c) Recording
daily rainfall
readings at
a remote
weather
station to
be collected
every month.

457591_13_CI_AS & A_Level_CS_304-327.indd 311 26/04/19 8:42 AM

312

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
13.3	Floating-point numbers,

representation and manipulation
WHAT	YOU	SHOULD	ALREADY	KNOW
Try these six questions before you
read the third part of this chapter.
1 Convert these denary numbers

into binary.
a) +48
b) +122
c) −100
d) −55
e) −2

2 Convert these binary numbers
into denary.
a) 00110011
b) 01111110
c) 10110011
d) 11110010
e) 11111111

3 Use two’s complement to find
the negative values of these
binary numbers.
a) 00110100
b) 00011101
c) 01001100
d) 00111111
e) 01111110

4 Carry out these binary additions,
showing all your working.
a) 00110001 + 00011110
b) 01000001 + 00111111
c) 00111100 + 01000101
d) 01111101 + 01011100
e) 11101100 + 01100000
f) 10001111 + 10011111
g) 01000101 + 10111100
h) 01111110 + 01111110
i) 11111100 + 11100011
j) 11001100 + 00011111

5 Write the following numbers in
standard form
a) 123 000 000
b) 2 505 000 000 000 000

c) –1200
d) 0.000000002341
e) −0.0000124005

6	 a) Standard form is sometimes
used to put denary improper
fractions into proper
fractions. For example, 14

5

can be written as ×1.4
5

 101,

and 112
3

 can be written as

×1.12
3

 102.

 Change the following
improper fractions into
proper fractions using this
format:

i) 21
5

ii) 117
4

iii) 558
20

b) When using binary, we
can convert improper
binary fractions into
proper fractions. For

 example,
7
2 can be written

as × ≡7
8

4 (where 4 2)2× ≡7
8

4 (where 4 2)2 ,

and 23
2

 can be written as

× ≡23
32

16(where16 2)4× ≡23
32

16(where16 2)4 .

 Change the following
improper binary fractions into
proper binary fractions using
this format.

i) 11
2

ii) 41
4

iii) 52
4

457591_13_CI_AS & A_Level_CS_304-327.indd 312 02/05/19 11:05 AM

313

13.3 Floating-point num
bers, representation and m

anipulation

13

13.3.1	 Floating-point number representation
In Chapter 1, we learnt about how binary numbers can be stored in a fixed-
point representation. The magnitude of the numbers stored depends on the
number of bits used. For example, 8 bits allowed a range of −128 to +127 (using
two’s complement representation) whereas 16 bits increased this range to
−16 384 to +16 383.

However, this type of representation limits the range of numbers and does not
allow for fractional values. To increase the range, and to allow for fractions, we
can look to the method used in the denary number system.

For example, 312 110 000 000 000 000 000 000 can be written as 3.1211 × 1023
using scientific notation. If we adopt this system in binary, we get:

M × 2E

M is the mantissa and E is the exponent.

This is known as binary floating-point representation.

In our examples, we will assume a computer is using 8 bits to represent the
mantissa and 8 bits to store the exponent (a binary point is assumed to exist
between the first and second bits of the mantissa). Again, using denary as our
example, a number such as 0.31211 × 1024 means:

1

10

1

100

1

1000

1

10000

1

100000 10 1

• 3 1 2 1 1 × 2 4
mantissa values exponent

▲ Figure	13.6

We thus get the binary floating-point equivalent (using 8 bits for the mantissa

and 8 bits for the exponent with the assumed binary point between –1 and
1

2
 in

the mantissa):

−1 •
1

2

1

4

1

8

1

16

1

32

1

64

1

128
−128 64 32 16 8 4 2 1

▲ Figure	13.7

Key	terms
Mantissa – the fractional part of a floating point
number.
Exponent – the power of 2 that the mantissa (fractional
part) is raised to in a floating-point number.
Binary	floating-point	number – a binary number
written in the form M × 2E (where M is the mantissa and
E is the exponent).
Normalisation (floating-point) – a method to improve
the precision of binary floating-point numbers; positive

numbers should be in the format 0.1 and negative
numbers in the format 1.0.
Overflow – the result of carrying out a calculation
which produces a value too large for the computer’s
allocated word size.
Underflow – the result of carrying out a calculation
which produces a value too small for the computer’s
allocated word size.

457591_13_CI_AS & A_Level_CS_304-327.indd 313 26/04/19 8:42 AM

314

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13 Convert this binary f loating-point number into denary.

−1 •
1

2

1

4

1

8

1

16

1

32

1

64

1

128 −128 64 32 16 8 4 2 1

0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0

Example 13.1

Converting binary floating-point numbers into denary

Solution
Method 1

Add up the mantissa values where a 1 bit appears:

≡M = + + + + + + =
1

2

1

8

1

16

1

64

32

64

8

64

4

64

1

64

45

64

Add up the exponent values where a 1 bit appears:

E = 4

Use M × 2E:

× = ×

= ×
=

45

64
2

45

64
16

0.703125 16

11.25 (the denary value)

4× = ×

= ×
=

45

64
2

45

64
16

0.703125 16

11.25 (the denary value)

4× = ×

= ×
=

45

64
2

45

64
16

0.703125 16

11.25 (the denary value)

4× = ×

= ×
=

45

64
2

45

64
16

0.703125 16

11.25 (the denary value)

4× = ×

= ×
=

45

64
2

45

64
16

0.703125 16

11.25 (the denary value)

4

Method 2

Write the mantissa as 0.1011010.

The exponent is 4, so move the binary point four places to the right (to match the
exponent value). This gives 01011.010.

whole number part fraction part

−16 8 4 2 1 •
1

2

1

4

1

8

0 1 0 1 1 0 1 0

This gives 11.25 (the same result as method 1).

Convert this binary f loating-point number into denary.

−1 •
1

2

1

4

1

8

1

16

1

32

1

64

1

128
−128 64 32 16 8 4 2 1

0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1

Example 13.2

457591_13_CI_AS & A_Level_CS_304-327.indd 314 02/05/19 11:06 AM

315

13.3 Floating-point num
bers, representation and m

anipulation

13
Solution
Method 1

Add up the mantissa values where a 1 bit appears:

= + ≡ + =M
1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16
= + ≡ + =M

1

4

1

16

4

16

1

16

5

16

Add up the exponent values where a 1 bit appears:

E = 2 + 1 = 3

Use M × 2E:

× = ×

= ×
=

5

16
2

5

16
8

0.3125 8

2.5 (the denary value)

3× = ×

= ×
=

5

16
2

5

16
8

0.3125 8

2.5 (the denary value)

3 × = ×

= ×
=

5

16
2

5

16
8

0.3125 8

2.5 (the denary value)

3× = ×

= ×
=

5

16
2

5

16
8

0.3125 8

2.5 (the denary value)

3× = ×

= ×
=

5

16
2

5

16
8

0.3125 8

2.5 (the denary value)

3

Method 2

Write the mantissa as 0.0101000.

The exponent is 3, so move the binary point three places to the right (to match
the exponent value). This gives 0010.1000.

whole number part fraction part

−8 4 2 1 •
1

2

1

4

1

8
1

16

0 0 1 0 1 0 0 0

This gives 2.5 (the same result as method 1).

Now we shall consider negative values.

Convert this binary f loating-point number into denary.

−1 •
1

2

1

4

1

8

1

16

1

32

1

64

1

128 −128 64 32 16 8 4 2 1

1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0

Example 13.3

Solution
Method 1

Add up the mantissa values where a 1 bit appears:

= − + + + ≡ − + + + ≡ − + ≡ − + = −M 1 1 11
2

1
16

1
32

16
32

2
32

1
32

19
32

32
32

19
32

13
32

Add up the exponent values where a 1 bit appears:

E = 8 + 4 = 12

Use M × 2E:

− × = − ×

= − ×
= −

2 4096

0.40625 4096

1664 (the denary value)

13
32

13
32

12

457591_13_CI_AS & A_Level_CS_304-327.indd 315 02/05/19 11:07 AM

316

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
Method 2

Since the mantissa is negative, first convert the value using two’s complement.

So, write the mantissa as 00110011 + 1 = 00110100.

This gives −0.0110100.

The exponent is 12, so move the binary point 12 places to the right (to match the
exponent value). This gives −0011010000000.0.

whole number part
fraction

part

−4096 2048 1024 512 256 128 64 32 6 8 4 2 1 •
1

2

0 0 1 1 0 1 0 0 0 0 0 0 0 0

This gives −(1024 + 512 + 128) = −1664 (the same result as method 1).

Convert this binary f loating-point number into denary.

−1 •
1

2

1

4

1

8

1

16

1

32

1

64

1

128 −128 64 32 16 8 4 2 1

1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0

Example 13.4

Solution
Method 1

Add up the mantissa values where a 1 bit appears:

= − + + + ≡ − + + + ≡ − + ≡ − + = −M 1 1 11
2

1
16

1
32

16
32

2
32

1
32

19
32

32
32

19
32

13
32

Add up the exponent values where a 1 bit appears:

E = −128 + 64 + 32 + 16 + 8 + 4 = −4

Use M × 2E:

− × = − ×

= − ×
= −

−2 0.0625

0.40625 0.0625

0.025390625 (the denary value)

13
32

13
32

4

Method 2

Since the mantissa is negative, first convert the value using two’s complement.

So, write the mantissa as 00110011 + 1 = 00110100.

This gives −0.0110100.

The exponent is −4, so move the binary point four places to the left (to match the
negative exponent value). This gives −0.00000110100.

457591_13_CI_AS & A_Level_CS_304-327.indd 316 02/05/19 11:08 AM

317

13.3 Floating-point num
bers, representation and m

anipulation

13

ACTIVITY 13F

Convert these binary floating-point numbers into denary numbers (the
mantissa is 8 bits and the exponent is 8 bits in all cases).

a) 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1

b) 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1

c) 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1

d) 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0

e) 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1

f) 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

g) 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0

h) 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

i) 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1

j) 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0

whole
number

part
fraction part

−1 •
1

2
1

4
1

8

1

16

1

32
1

64

1

128

1

256

1

512

1

1024

1

2048

0 0 0 0 0 0 1 1 0 1 0 0

()− + + = −

= −

This gives

0.025390625 (the same result as method 1).

1
64

1
128

1
512

13
512

Converting denary numbers into binary floating-point numbers

Convert +4.5 into a binary f loating-point number.Example 13.5

Solution
Method 1

Turn the number into an improper fraction:

=4.5 9
2

The fraction needs to be < 1, which means the numerator < denominator; we can
do this by dividing successively by 2 until the denominator > numerator.

→ → →9
2

9
4

9
8

9
16

 The numerator (9) is now < denominator (16).

457591_13_CI_AS & A_Level_CS_304-327.indd 317 02/05/19 11:08 AM

318

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
So, 9

2
 can be written as × ≡ ×8 29

16
9
16

3 and the original fraction is now written

in the correct format, M × 2E.

= +9
16

1
2

1
16

, which gives the mantissa as 0.1001.

And the exponent is 23, which is represented as 11 in our binary f loating point
format.

Filling in the gaps with 0s gives:

0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1

Method 2

4 = 0100 and .5 = .1 which gives: 0100.1

Now move the binary point as far as possible until 0.1 can be formed:

0100.1 becomes 0.1001 by moving the binary point three places left.

So, the exponent must increase by three:

0.1001 × 11

Filling in the gaps with 0s gives:

0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1

This is the same result as method 1.

Convert +0.171875 into a binary f loating-point number.Example 13.6

Solution
Method 1

Remember, the fraction needs to be < 1, which means the numerator <
denominator.

≡ ≡0.171875
171875

1000000

11

64
, so this fraction is already in the correct form.

= + +11
64

1
8

1
32

1
64

, which gives the mantissa as 0.0010110 and exponent as 0.

Filling in the gaps with 0s gives:

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

Method 2

0 = 0 and .171875 = .001011 ()+ +1
8

1
32

1
64

, which gives: 0.001011.

Now move the binary point as far as possible until 0.1 can be formed:

0.001011 becomes 0.1011 by moving the binary point two places right.

So, the exponent must increase by two (in other words, −2).

The number 2, using eight bits is 00000010.

457591_13_CI_AS & A_Level_CS_304-327.indd 318 02/05/19 11:09 AM

319

13.3 Floating-point num
bers, representation and m

anipulation

13

EXTENSION ACTIVITY 13C

Show why:

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

is the same as:

0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0

Applying two’s complement gives us 11111101 + 1 = 11111110

Thus, we have:

0.1011 × 11111110

Filling in the gaps with 0s gives:

0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0

This is exactly the same result as method 1.

Convert −10.375 into a binary f loating-point number.Example 13.7

Solution
Method 1

Turn the number into an improper fraction:

≡ − = −0.375 , so 10.3753
8

83
8

Now make the fraction < 1.

− ≡ − × ≡ − ×16 283
8

83
128

83
128

4

− = − +183
128

45
128

, which gives the mantissa as 1.0101101

()= + + +45
128

1
4

1
16

1
32

1
128

.

And the exponent is 24, which is represented as 100 in our binary f loating point
format.

Filling in the gaps with 0s gives:

1 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0

Method 2

−10 = −01010 and + ≡1
4

1
8

.375 = .011, which gives: −01010.011.

Using two’s complement (on 01010011) we get: 10101100 + 1 = 10101101
(= 10101.101).

Now move the binary point as far as possible until 1.0 can be formed:

457591_13_CI_AS & A_Level_CS_304-327.indd 319 02/05/19 11:11 AM

320

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
10101.101 becomes 1.0101101 by moving the binary point four places left.

So, the exponent must increase by four.

1.0101101 × 100

Filling in the gaps with 0s gives:

1 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0

This is the same result as method 1.

ACTIVITY	13G

1 Write these into binary floating-point format using an 8-bit mantissa and
8-bit exponent.

a) × 211

32
7

b) ×219

64
3

c) × −221

128
5

d) × −215

16
3

e) ×221

8
3

f) ×− 211

64
4

g) ×− −29

16
1

h) ×− 25

16
5

i) ×− −21

4
6

j) ×− −25

8
2

2 Convert these denary numbers into binary floating-point numbers using
an 8-bit mantissa and 8-bit exponent.
a) +3.5

b) 0.3125
c) 15.375

d)
41

64

e) 9.125

f) − 15

32
g) −3.5
h) −10.25

i) −1.046875 ≡ −

1 3

64

j) −3 11

32

Potential rounding errors and approximations
All the problems up to this point have involved fractions which are linked

somehow to the number 2 (such as 15
64

). We will now consider numbers which

can only be represented as an approximate value (the accuracy of which will
depend on the number of bits that make up the mantissa).

The representation of the following example (denary number 5.88), using an
8-bit mantissa and 8-bit exponent, will lead to an inevitable rounding error
since it is impossible to convert the denary number into an exact binary
equivalent.

This error could be reduced by increasing the size of the mantissa; for example,
a 16-bit mantissa would allow the number 5.88 to be represented as 5.875,
which is a better approximation.

457591_13_CI_AS & A_Level_CS_304-327.indd 320 26/04/19 8:42 AM

321

13.3 Floating-point num
bers, representation and m

anipulation

13

EXTENSION	ACTIVITY	13D

Using 8-bit mantissa and exponent, show how the following numbers would
be approximated

a) 1.63
b) 8.13
c) 12.32
d) 5.90
e) 7.40.

We will consider how to represent the denary number 5.88 using an 8-bit
mantissa and 8-bit exponent.

To convert this into binary, we will use a method similar to that used in Chapter 1.

.88 × 2 = 1.76 so we will use the 1 value to give 0.1

.76 × 2 = 1.52 so we will use the 1 value to give 0.11

.52 × 2 = 1.04 so we will use the 1 value to give 0.111

.04 × 2 = 0.08 so we will use the 0 value to give 0.1110

.08 × 2 = 0.16 so we will use the 0 value to give 0.11100

.16 × 2 = 0.32 so we will use the 0 value to give 0.111000

.32 × 2 = 0.64 so we will use the 0 value to give 0.1110000

.64 × 2 = 1.28 so we will use the 1 value to give 0.11100001

We have to stop here since our system uses a maximum of 8 bits. Now the value
of 5 (in binary) is 0101; this gives:

5.88 ≡ 0101.11100001

Moving the binary point as far to the left as possible gives:

0.1011100 × 23 (23 since the binary point was moved three places).

Thus, we get 0.1011100 00000011
 (mantissa) (exponent)

2 = = 5.75
23

32

23

4

3= ×

So, 5.88 is stored as 5.75 in our floating-point system.

Now consider this set of numbers.

0.1000000 00000010 21
2

2≡ × 2=

0.0100000 00000011 ≡ ×21
4

3 2=

0.0010000 00000100 ≡ ×21
8

4 2=

0.0001000 00000101 ≡ ×21
16

5 2=

▲ Figure	13.8

457591_13_CI_AS & A_Level_CS_304-327.indd 321 26/04/19 8:42 AM

322

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
As shown, there are several ways of representing the number 2. Using this
sequence, if we kept shifting to the right, we would end up with:

0.0000000 00001001 2=

▲ Figure 13.9

This could lead to problems. To overcome this, we use a method called
normalisation.

With this method, for a positive number, the mantissa must start with
0.1 (as in our first representation of 2 above). The bits in the mantissa are
shifted to the left until we arrive at 0.1; for each shift left, the exponent is
reduced by 1. Look at the examples above to see how this works (starting with
0.0001000 we shift the bits 3 places to the left to get to 0.100000 and we
reduce the exponent by 3 to now give 00000010, so we end up with the first
representation!).

For a negative number the mantissa must start with 1.0. The bits in the
mantissa are shifted until we arrive at 1.0; again, the exponent must be
changed to reflect the number of shifts.

Normalise 0.0011100 00000101 2 77
32

5()≡ × = .
Example 13.8

Solution
Shift the bits left to get 0.1110000.

Since the bits were shifted two places left, the exponent must reduce by two to
give 00000011.

This gives 0.1110000 00000011, which is now normalised.

Note: 0.1110000 00000011 2 77
8

3≡ × = , so the normalised form still represents
the correct value.

Normalise 1.1101100 00001010 2 1605
32

10()≡ − × = −
Example 13.9

Solution
Shift the bits left until to get 1.0110000.

Since the bits were shifted two places left, the exponent must reduce by two to
give 00001000.

This gives 1.011000 00001000, which is now normalised.

Note: 1.011000 00001000 2 5 32 1605
8

8≡ − × = − × = − , so the normalised form
still represents the same value.

457591_13_CI_AS & A_Level_CS_304-327.indd 322 02/05/19 11:12 AM

323

13.3 Floating-point num
bers, representation and m

anipulation

13
ACTIVITY	13H

Normalise these binary floating-point numbers.
a) 0. 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0

b) 0. 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1

c) 0. 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

d) 0. 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

e) 0. 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0

f) 1. 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0

g) 1. 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0

h) 1. 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1

i) 0. 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

j) 1. 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0

Precision versus range
The following values relate to an 8-bit mantissa and an 8-bit exponent (using
two’s complement):

The maximum positive number which can be stored is:

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2127
128

127≡ ×

▲ Figure	13.10

The smallest positive number which can be stored is:

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 21
2

128≡ × −

▲ Figure	13.11

The smallest magnitude negative number which can be stored is:

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 265
128

128≡ − × −

▲ Figure	13.12

The largest magnitude negative number which can be stored is:

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2127≡ − ×

▲ Figure	13.13

» The accuracy of a number can be increased by increasing the number of bits
used in the mantissa.

» The range of numbers can be increased by increasing the number of bits
used in the exponent.

» Accuracy and range will always be a trade-off between mantissa and
exponent size.

457591_13_CI_AS & A_Level_CS_304-327.indd 323 26/04/19 8:42 AM

324

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
Consider the following three cases.

1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

▲ Figure	13.14

The mantissa is 12 bits and the exponent is 4 bits.

This gives a largest positive value of 22047
2048

7× ; which gives high accuracy but
small range.

2 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

▲ Figure	13.15

The mantissa is 8 bits and the exponent is 8 bits.

This gives a largest positive value of 2127
128

127× , which gives reduced accuracy
but increased range.

3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

▲ Figure	13.16

The mantissa is 4 bits and the exponent is 12 bits.

This gives a largest possible value of 27
8

2047× , which gives poor accuracy but
extremely high range.

Floating-point problems
The storage of certain numbers is an approximation, due to limitations in the
size of the mantissa. This problem can be minimised when using programming
languages that allow for double precision and quadruple precision.

EXTENSION	ACTIVITY	13E

Look at this coding, written in pseudocode.

number ← 0.0

FOR loop ← 0 TO 50

 number ← number + 0.1

 OUTPUT number

ENDFOR

a) When running this program the expected output would be 0.1, 0.2,
0.3, … , 5.0.

 Explain why the output from this program gave values such as 0.399999
rather than 0.4.

b) Run the program on your own computer using a language such as Pascal.
 Does it confirm the above statement?
c) Discuss ways of overcoming the error(s) described in your answer to

part a).

457591_13_CI_AS & A_Level_CS_304-327.indd 324 26/04/19 8:42 AM

325

13.3 Floating-point num
bers, representation and m

anipulation

13
There are additional problems:

» If a calculation produces a number which exceeds the maximum possible
value that can be stored in the mantissa and exponent, an overflow error
will be produced. This could occur when trying to divide by a very small
number or even 0.

» When dividing by a very large number this can lead to a result which is
less than the smallest number that can be stored. This would lead to an
underflow error.

» One of the issues of using normalised binary floating-point numbers is the
inability to store the number zero. This is because the mantissa must be 0.1
or 1.0 which does not allow for a zero value.

EXTENSION	
ACTIVITY	13F

Find out how
computer systems
deal with the value
0 when using
normalised binary
floating-point
numbers.

ACTIVITY	13I

1 What is the largest positive and smallest magnitude number which can be
stored in a computer using 10-bit mantissa and 6-bit exponent.

2 A computer uses 32 bits to store the mantissa and exponent.
 Discuss the precision and range of numbers which can be stored in this

computer.
3	 a) A calculation carried out on a computer produced the result

1.21 × 10100

 The computer’s largest possible value which can be stored is 1099.
 Discuss the problems this result would cause.

b) A calculation involving
x
y

 is being carried out on a computer.

 One of the potential values of y is 0.
 Discuss the problems this might cause for the computer.

4 A computer uses a 10-bit mantissa and a 6-bit exponent.
 What approximate values would be stored for the following numbers?

a) 2.88 b) −5.38

1 A computer holds binary f loating-point numbers in two’s complement form with
the binary point immediately after the left-most bit.

 A 24-bit word is used as follows:

 mantissa exponent

a) Three words are held in f loating-point representations:

Ⓐ 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Ⓑ 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Ⓒ 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

i) State the values being represented by A, B and C. [3]

ii) Identify the value that is not normalised. [1]

iii) Explain why it is normal for f loating-point numbers to be normalised. [1]

End of chapter
questions

➔

457591_13_CI_AS & A_Level_CS_304-327.indd 325 26/04/19 8:42 AM

326

13
 D

at
a

 r
e

p
r

e
se

n
ta

ti
o

n

13
b) Comment on the accuracy and range of numbers stored in this computer. [3]

c) Discuss the problems of representing the number zero in normalised
f loating-point format. [2]

2 A computer uses 12 bits for the mantissa and 6 bits for the exponent.

a) Convert these binary f loating-point numbers into denary.

i) 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 [3]

ii) 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 [3]

b) Convert these denary numbers into binary f loating-point numbers.

i) +4.75 [3]

ii) −8.375 [3]

3 In a particular computer system, real numbers are stored using f loating-point
representation with:

– 8 bits for the mantissa

– 8 bits for the exponent

– two’s complement form for both mantissa and exponent.

a) Calculate the f loating-point representation of +3.5 in this system.

 Show your working. [3]

 mantissa exponent

b) Calculate the f loating-point representation of −3.5 in this system.

 Show your working. [3]

 mantissa exponent

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q1 parts (a) and (b) November 2016

4 a) Using the pseudocode declarations below, identify

i) an enumerated data type [1]

ii) a composite data type [1]

iii) a non-composite data type [1]

iv) a user-defined data type. [1]

TYPE Tseason = (Spring, Summer, Autumn, Winter)

TYPE

TJournalRecord

 DECLARE title : STRING

 DECLARE author : STRING

 DECLARE publisher : STRING

 DECLARE noPages : INTEGER

 DECLARE season : Tseason

ENDTYPE

457591_13_CI_AS & A_Level_CS_304-327.indd 326 26/04/19 8:42 AM

327

13.3 Floating-point num
bers, representation and m

anipulation

13
b) Write pseudocode to declare a variable Journal of type TJournalRecord

and assign the following values to the variable. [3]

 Title – Spring Flowers

 Author – H Williams

 Publisher – XYZ Press

 Number of pages – 40

 Season – Spring

5 a) Three file organisation methods and two file access methods are shown
below. Copy the diagram below and connect each file organisation method to
its appropriate file access method(s). [4]

File organisation
method

File access
method

random

sequential

serial

direct

sequential

b) An energy company supplies electricity to a large number of customers. Each
customer has a meter that records the amount of electricity used. Customers
submit meter readings using their online account.

 The company’s computer system stores data about its customers.

 This data includes:

– account number

– personal data (name, address, telephone number)

– meter readings

– username and encrypted password.

The computer system uses three files:

File Content Use

A Account number and meter
readings for the current month.

Each time a customer submits their
reading, a new record is added to the file.

B Customer’s personal data. At the end of the month to create a
statement that shows the electricity
supplied and the total cost.

C Usernames and encrypted
passwords.

When customers log in to their accounts
to submit meter readings.

 For each of the files A, B and C, state an appropriate file organisation method
for the use given in the table.

 All three file organisation methods must be different.

 Justify your choice. [9]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q4 June 2017

457591_13_CI_AS & A_Level_CS_304-327.indd 327 26/04/19 8:42 AM

328

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

	 14	
Communication	and	internet	
technologies

In this chapter, you will learn about

★ the need for protocols during communication
★ the implementation of protocols such as a stack
★ TCP/IP protocols, including the four layers (Application, Transport,

Internet and Link), the purpose and function of the four layers, and
application when a message is sent from one host to another on
the internet

★ HTTP, FTP, POP3/4, IMAP, SMTP and BitTorrent protocols (such as
BitTorrent provides peer-to-peer file sharing)

★ circuit switching (including benefits and drawbacks)
★ the benefits and drawbacks of packet switching
★ the function of a router in packet switching
★ the use of packet switching to pass messages across the network

(including the internet).

14.1	Protocols

WHAT	YOU	SHOULD	ALREADY	KNOW	
In Chapter 2, you learned about networks. Try
these five questions before you read the first
part of this chapter.
1	 a) Explain the terms IP and TCP.

b) What are protocols and why are they used?
2	 a) Explain how peer-to-peer networks

operate.
b) What are the pros and cons of peer-to-

peer networks?
3	 a) Explain the term stack.

b) Explain the term queue.
c) Give examples of the use of a stack and the

use of a queue.
4	 a) Explain what is meant by Ethernet.

b) What is meant by IP conflicts when using
Ethernet?

 Explain how they can be overcome.
5	 a) What is a DNS?

b) What is meant by HTTP?
c) Explain the role of status flags.

457591_14_CI_AS & A_Level_CS_328-345.indd 328 02/05/19 7:33 AM

329

14.1
Protocols

14
Key	terms

Protocol – a set of rules governing communication
across a network: the rules are agreed by both sender
and recipient.
HTTP – hypertext transfer protocol.
Packet – a message/data is split up into smaller groups
of bits for transmission over a network.
Segment	(transport	layer) – this is a unit of data
(packet) associated with the transport layer protocols.
FTP – file transfer protocol.
SMTP – simple mail transfer protocol.
Push	protocol	– protocol used when sending emails, in
which the client opens the connection to the server and
keeps the connection active all the time, then uploads
new emails to the server.
Binary	file – a file that does not contain text only. The
file is machine-readable but not human-readable.
MIME – multi-purpose internet mail extension. A
protocol that allows email attachments containing
media files as well as text to be sent.
POP – post office protocol.
IMAP – internet message access protocol.
TCP – transmission control protocol.
Pull	protocol – protocol used when receiving emails,
in which the client periodically connects to a server,

checks for and downloads new emails from a server
and then closes the connection.
Host-to-host	– a protocol used by TCP when
communicating between two devices.
Host – a computer or device that can communicate with
other computers or devices on a network.
BitTorrent – protocol used in peer-to-peer networks
when sharing files between peers.
Peer – a client who is part of a peer-to-peer
network/file sharing community.
Metadata – a set of data that describes and gives
information about other data.
Pieces – splitting up of a file when using peer-to-peer
file sharing.
Tracker – central server that stores details of all other
computers in the swarm.
Swarm – connected peers (clients) that share a
torrent/tracker.
Seed – a peer that has downloaded a file (or pieces of a
file) and has then made it available to other peers in the
swarm.
Leech – a peer with negative feedback from swarm
members.
Lurker – user/client that downloads files but does not
supply any new content to the community.

14.1.1	 The need for protocols
When communicating over networks, it is essential that some form of protocol
is used by the sender and receiver of the data. Both parties need to agree
the protocol being used to ensure successful communication takes place. In
Chapter 6, we discussed parity checking as a way of determining whether
data was transmitted correctly. With this method, it was essential to agree
the protocol: even or odd parity. Without agreeing this protocol, it would be
impossible to use parity checking. Many different protocols exist since there
are several activities taking place over the internet.

The next section considers one of the most common sets of protocols, which
are implemented by using a stack structure with several layers.

14.1.2 TCP/IP protocols
This is the four-layer structure for TCP/IP protocols:

DARPA (Defense Advanced Research
Projects Agency) Layers

4 APPLICATION LAYER
3 TRANSPORT LAYER

2 INTERNET (NETWORK) LAYER
1 LINK NETWORK

▲ Figure	14.1 Four layer structure for TCP/IP

Sending Receiving

457591_14_CI_AS & A_Level_CS_328-345.indd 329 26/04/19 8:47 AM

330

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
Using layers breaks the process down into manageable self-contained modules
(this process is known as decomposition), making it easier to develop and
easier to make software and hardware compatible.

When sending data across the internet (network), the layers are used in the
order layer 4 to layer 1; when receiving data across the internet (network), the
layers are used in the order layer 1 to layer 4. Each of the layers is implemented
using software.

Application layer
The application layer contains all the programs that exchange data, such as
web browsers or server software; it sends files to the transport layer. This layer
allows applications to access the services used in other layers and also defines
the protocols that any app uses to allow the exchange of data.

There are several protocols associated with the application layer:

HTTP hypertext transfer protocol; this is a protocol responsible for correct
transfer of files that make up web pages on the world wide web

SMTP simple mail transfer protocol; this handles the sending of emails

POP3/4 post office protocol; this handles the receiving of emails

IMAP internet message access protocol; this handles the receiving of emails

DNS domain name service; protocol used to find the IP address, for example,
when sending emails

FTP file transfer protocol; this is a protocol used when transferring messages
and attachments

RIP routing information protocol; this is the protocol routers use to exchange
routing information over an IP network

SNMP simple network management protocol; protocol used when exchanging
network management information between network management and
network devices (such as routers, servers and other network devices)

▲ Table	14.1 Protocols associated with the application layer

It is worth re-visiting the terms packet and router.

Messages are split up into small groups of bits called packets (for example, a
web page would be split up into a number of packets before sending over the
network).

A router is used to transmit packets of data; routers contain connections to
many other routers; when packets arrive at a router it decides where next to
send them.

Important terminology: packets are known as frames at the data-link layer, datagrams
at the internet layer and segments at the transport layer. Different names are used as
each layer adds its own header to the packet.

Do not confuse ‘frames’ in this context with ‘frames’ when discussing paging memory
management in Chapter 16.

Hypertext transfer protocol (HTTP)
HTTP is probably the most important application layer protocol. Essentially,
this protocol underpins the world wide web. It is used when, for example,
fetching an HTML document from a web server (Figure 14.2).

457591_14_CI_AS & A_Level_CS_328-345.indd 330 26/04/19 8:47 AM

331

14.1
Protocols

14

video server adverts server

web server

Travel to Brazil with
Watson Travel Group
… visit our website

The region is very Germanic in nature with many
towns and villages resembling the Bavaria region.
Click on the video link below to find out more.

Check out this video:
https://www.youtube.com/watch?MHsl34P90plm

This is one of the most
beautiful mountain
ranges in the southern
part of Brazil.

page text

images

video links

advert links

layout of pages

Internet

▲ Figure 14.2 Fetching an HTML document from a web server

This makes use of hyperlinks (rules for the transferring of data over the
internet). HTTP is a client/server protocol: request messages are sent out to the
web servers which then respond.

HTTP protocols define the format of the messages sent and received. The web
browser (which is part of the application layer) initiates the web page request
and also converts HTML into a format which can be displayed on the user’s
screen or can be played through their media player.

The following summarises what happens when a user requests a web page from
a website.

n	 The user keys the URL into their browser.

n	 HTTP(s) transmits the request from the application layer to the transport layer (TCP).

n	 The TCP creates data packets and sends them (via port 80) to the destination port(s).

n	 The DNS server stores a database of URLs and matching IP addresses.

n	 The DNS server uses the domain name typed into the browser to look up the IP
address of the appropriate website.

n	 The server TCP sends back an acknowledgement (see the section on host-to-host
communication on page 333).

n	 Once communication has been established, the web server sends the web page back
in HTML format to the browser.

n	 The browser interprets the page and displays it or sends the data in the correct
format to the media player.

File transfer protocol (FTP)
The file transfer protocol (FTP) is a network protocol used when transferring
files from one computer/device to another via the internet or other networks.
It is similar to HTTP and SMTP, but FTP’s only task is the application protocol
for the transfer of files over a network. Web browsers can be used to connect
to an FTP address in a way similar to HTTP, for example,
ftp://username@ftp.example.gov/

457591_14_CI_AS & A_Level_CS_328-345.indd 331 02/05/19 2:26 PM

https://www.youtube.com/watch?MHsl34P90plm
mailto:/username@ftp.example.gov/

332

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
Additional features of FTP include

» anonymous ftp – this allows a user to access files without the need to
identify who they are to the ftp server; for example, ‘331 Anonymous access
allowed’ would be a message received to confirm anonymous access

» ftp commands – a user is able to carry out actions that can change files
stored on the ftp server; for example, delete, close, rename, cd (change
directory on a remote machine), lcd (change directory on a local machine)

» ftp server – this is where the files, which can be downloaded as required by
a user, are stored.

A session would be started by typing in the ftp host_name (of remote system),
followed by a user id and password. The user would then be able to use ftp
commands to carry out a number of actions.

Simple mail transfer protocol (SMTP)
Simple mail transfer protocol (SMTP) is a text-based (and connection-based)
protocol used when sending emails. It is sometimes referred to as a push protocol
(in other words, a client opens a connection to a server and keeps the connection
active all the time; the client then uploads a new email to the server).

Since SMTP is text-based only, it doesn’t handle binary files (a binary file is a
file containing media/images as well as text and is regarded as being computer-
readable only). If an email contains attachments made up of, for example,
images, video, music then it is necessary to use the multi-purpose internet
mail extension (MIME) protocol instead. A MIME header is used at the
beginning of the transmission; clients use this header to select which media
player is needed when the attachment is opened.

POP3/4 and IMAP (post office protocol and internet message access protocol)
Post office protocol (POP3/4) and internet message access protocol (IMAP)
are protocols used when receiving emails from the email server. These are
known as pull protocols (the client periodically connects to a server; checks
for and downloads new emails from the server – the connection is then closed;
this process is repeated to ensure the client is updated). IMAP is a more a
recent protocol than POP3/4, but both have really been superseded by the
increasing use of HTTP protocols. However, SMTP is still used when transferring
emails between email servers.

Figures 14.3 and 14.4 give an overall view and a more detailed view of the
email protocol set up.

POP/IMAP
(receive email)

email server
SMTP

(send email)

▲ Figure	14.3 Overview of email protocol set up

457591_14_CI_AS & A_Level_CS_328-345.indd 332 26/04/19 8:47 AM

333

14.1
Protocols

14

client’s ISP
email server

uses SMTP/MIME
protocol

client

internet

recipient’s domain
email server

uses POP/IMAP
protocol

recipient

▲ Figure	14.4 Detailed view of email protocol set up

The main difference between POP3/4 and IMAP is synchronisation:

POP3/4 IMAP

POP3/4 does not keep the server and
client in synchronisation; when emails are
downloaded by the client, they are then
deleted from the server which means it is
not further updated.

IMAP keeps the server and client in
synchronisation; only a copy of the email
is downloaded with the original remaining
on the server until the client manually
deletes it.

▲ Table	14.2

Transport layer
The transport layer regulates the network connections; this is where data is
broken up into packets which are then sent to the internet/network layer (IP
protocol). The transport layer ensures that packets arrive in sequence, without
errors, by swapping acknowledgements and retransmitting packets if they
become lost or corrupted. The main protocols associated with the transport
layer are transmission control protocol (TCP), user datagram protocol (UDP)
and SCTP. We will only consider TCP.

Transmission control protocol (TCP)
TCP is responsible for the safe delivery of a message by creating sufficient
packets for transmission. It uses positive acknowledgement with re-
transmission (PAR) which means it automatically re-sends a data packet if
it has not received a positive acknowledgement. TCP is also connection-
orientated since it establishes an end-to-end connection between two host
computers using handshakes. For this last reason, TCP is often referred to as a
host-to-host transmission protocol.

The term host has been used previously; this refers to a computer or device
that can communicate with another computer/device (host). Hosts can include
clients and servers that send/receive data, provide services or apps.

These are the steps taken when host computer ‘X’ communicates with another
host ‘Y’ (this is an expansion of what happens during TCP involvement shown in
the HTTP algorithm earlier on):

457591_14_CI_AS & A_Level_CS_328-345.indd 333 26/04/19 8:47 AM

334

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
» Host ‘X’ will first of all send host ‘Y’ a segment (packet) which will include

synchronisation sequence bits so that segments will be received in the
correct order.

» Host ‘Y’ will now respond by sending back its own segment (containing an
acknowledgement together with its own synchronisation sequence bits).

» Host ‘X’ now sends out its own acknowledgement that the segment from ‘Y’
was received.

» Transmission of data between ‘X’ and ‘Y’ can now take place.

Internet/network layer and network/data-link layer
The internet layer identifies the intended network and host. The common
protocol is IP (internet protocol). The concept of IPv4 and IPv6 was covered in
depth in Chapter 2.

The network/data-link layer identifies and moves traffic across local segments,
encapsulates IP packets into frames for transmission, maps IP addresses to MAC
(physical) addresses and ensures correct protocols are followed. The physical
network layer specifies requirements of the hardware to be used for the
network. The data-link layer identifies network protocols in the packet header
(TCP/IP in the case here) and delivers packets to the network.

This is a summary of the IP functions:

» Ensure correct routing of packets of data over the internet/network.
» Responsible for protocols when communicating between networks.
» Take a packet from the transport layer and add its own header which will

include the IP addresses of both sender and recipient.
» The IP packet (datagram) is sent to the data-link layer where it is assembles

the datagrams into frames for transmission.

Ethernet protocols
Ethernet is a system that connects a number of computers or devices together
to form a LAN. It uses protocols to control the movement of frames between
computers or devices and to avoid simultaneous transmission by two or more
devices. It is a local protocol and does not provide any means to communicate
with external devices; this requires the use of IP which sits on top of the
Ethernet protocol.

Figure 14.5 shows the make-up of a typical frame used by the Ethernet protocol.

Pre-amble
(8 bytes)

Start frame
(1 byte)

Interpacket gap
(12 bytes)

Destination
(6 bytes)

Source
(6 bytes)

Ethernet type/
length (2 bytes)

Actual message
(46–1500 bytes)

Frame check
sequence (4 bytes)

Ethernet data
(64–1518 bytes)
Ethernet data

(64–1518 bytes)

▲ Figure	14.5	A typical frame used by the Ethernet protocol

If VLAN is used, the Ethernet data size increases from 1539 bytes to around
9000 bytes per frame.

The components that make up Ethernet data are

» destination – this is the MAC address of the destination computer or device
(it is possible to use the value FF:FF:FF:FF:FF:FF as the MAC address if the

457591_14_CI_AS & A_Level_CS_328-345.indd 334 26/04/19 8:47 AM

335

14.1
Protocols

14
sender wishes to target every device (for example, to advertise services) or
if they do not know the MAC address of the destination device)

» source – this is the MAC address of the source computer (using the usual
MAC address format of 6 bytes)

» Ethernet type or length – if the frame length ≤ 1539 then the value here is
the length of the Ethernet frame; if the frame length > 1539 then the value
here is the Ethernet type (IPv4 or IPv6 in our example)

» frame check – this will include a checksum to provide a method of checking
data integrity following transmission of the frame.

Wireless (WiFi) protocols
Wireless LANs (standard IEEE 802.11 protocol) use a MAC protocol called carrier
sense multiple access with collision avoidance (CSMA/CA) (not to be confused
with CSMA/CD considered in Chapter 2, since this is a totally different concept).

CSMA/CA uses distributed control function (DCF) to ensure a WiFi device can
only transmit when there is a free channel available. Since all transmissions are
acknowledged when using DCF, if a device does not receive an acknowledgement
it will assume a collision will occur and waits for a random time interval before
trying again. This is an important protocol to ensure the security and integrity
of data being sent over a wireless network (such as WLAN).

Bluetooth protocols
Bluetooth was considered in Chapter 2; it uses the standard IEEE 802.15
protocol for short-range data transmission/communication. There are numerous
additional Bluetooth protocols due to the many applications that may use this
wireless connectivity; this is outside the scope of this textbook.

WiMax
Worldwide interoperability for microwave access (WiMax) runs under IEEE 802.16
protocol. This connectivity was designed originally for wireless MANs (WMAN).
Fixed WiMax networks are based on the IEEE 802.16-2004 protocol, whereas
mobile WiMax is based on IEEE 802.16-2005 protocol.

Peer-to-peer file sharing/BitTorrent protocol
The BitTorrent is a protocol which is based on the peer-to-peer networking
concept (this was covered in Chapter 2). This allows for very fast sharing of
files between computers (known as peers). While peer-to-peer networks only
work well with very small numbers of computers, the concept of sharing files
using BitTorrent can be used by thousands of users who connect together over
the internet. Because user computers are sharing files directly with each other
(rather than using a web server) they are sharing files in a way similar to that
used in a peer-to-peer network; the main difference is that the BitTorrent
protocol allows many computers (acting as peers) to share files.

Suppose computer ‘A’ wishes to share a file with a number of other interested
peers. How can we use the BitTorrent protocol to allow this file sharing?

Initially, to share a file, the peer (computer ‘A’) creates a small file called a
torrent (for example, MyVideoFile.torrent). The torrent contains metadata
about the file about to be shared.

The actual file is broken up into equal segments known as pieces (typically a
20 MiB file may be broken up into 20 × 1 MiB pieces).

457591_14_CI_AS & A_Level_CS_328-345.indd 335 26/04/19 8:47 AM

336

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
Other peers who wish to download this file must first obtain the torrent and
connect to the appropriate tracker – a central server that contains data about
all of the computers connected to it.

As each peer receives a piece of file they then become a source for that piece
of file. Other peers connected to the tracker will, therefore, know where to find
the piece of file they need.

Once a peer has downloaded a file completely and they make the file (or
required pieces of the file) available to other peers in the swarm (a group of
peers connected together), they become a seed. The more seeds in the swarm,
the faster the file downloading process between peers.

Logging off once the full file download has been completed is frowned upon by
the swarm community; such a peer is termed a leech.

Usually, once a file is fully downloaded, a peer is requested to remain online so
they can become part of the seeding process until all peers have received the
whole file. Note that file pieces may not be downloaded sequentially and have
to be rearranged in the correct order by the BitTorrent protocol to produce the
final file (quite important if the file is a video!).

At the time of writing, BitTorrent was responsible for about 12% of the video file
sharing, for example, being carried out over the internet. This is only a fraction
of the video file activity which uses YouTube (which is about 50% of all of the
video file sharing over the internet), but is still a considerable amount of data.

Here is a summary of some of the terms used when discussing BitTorrent:

» Swarm – a group of peers connected together is known as a swarm; one
of the most important facts when considering whether or not a swarm can
continue to allow peers to complete a torrent is its availability; availability
refers to the number of complete copies of torrent contents that are
distributed amongst a swarm. Note: a torrent is simply the name given to a
file being shared on the peer-to-peer network.

» Seed – a peer that has downloaded a file (or pieces of a file) and has then
made it available to other peers in the swarm.

» Tracker – this is a central server that stores details about other computers
that make up the swarm; it will store details about all the peers
downloading or uploading the file, allowing the peers to locate each other
using the stored IP addresses.

» Leech – a peer that has a negative impact on the swarm by having a poor
share ratio, that is, they are downloading much more data than they are
uploading to the others; the ratio is determined using the formula:

amount of data the peer has uploaded
ratio =

amount of data the peer has downloaded
 If the ratio > 1 then the peer has a positive impact on the swarm; if the

ratio < 1 then the peer has a negative effect on the swarm.
» Lurker – a peer that downloads many files but does not make available any

new content for the community as a whole.

In Figure 14.6, we will assume 12 peers have connected to the tracker. One peer
has begun to upload a video file and six peers are acting as seeds. Two peers
are behaving as leeches and three peers have just joined and have requested a
download of the video file. The arrangement would look something like this:

457591_14_CI_AS & A_Level_CS_328-345.indd 336 4/30/19 8:00 AM

337

14.2 C
ircuit sw

itching and packet sw
itching

14

tracker

Key

new peers
requesting
download

original peer
uploading file

peers acting
as seeds

peers acting
as leeches

upload/down
load pieces

download file
only

upload file
only
request for file
download

▲ Figure	14.6 The arrangement of peers during the download and upload of file (pieces)

14.2	Circuit switching and packet switching

WHAT	YOU	SHOULD	ALREADY	KNOW
In Chapter 2, you learnt about communications. Try these two questions
before you read the second part of this chapter.
1	 a) Explain how PSTN is used when making a phone call.

b) Explain how it is possible to use VoIP to make a video call over the
internet.

2 Draw a diagram to show how a message containing three packets of
data could be routed from computer ‘A’ to computer ‘B’.

Key	terms
Circuit	switching – method of transmission in which a dedicated circuit/channel lasts
throughout the duration of the communication.
Packet	switching	– method of transmission where a message is broken into packets
which can be sent along paths independently from each other.
Hop	number/hopping – number in the packet header used to stop packets which
never reach their destination from ‘clogging up’ routes.
Header	(data	packet) – part of a data packet containing key data such as destination
IP address, sequence number, and so on.
Routing	table – a data table that contains the information necessary to forward a
package along the shortest or best route to allow it to reach its destination.

457591_14_CI_AS & A_Level_CS_328-345.indd 337 26/04/19 8:47 AM

338

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
14.2.1 Circuit switching
The concept of circuit switching was introduced in Chapter 2 during the
description of how a public switched telephone network (PSTN) was used to
make a phone call. Circuit switching uses a dedicated channel/circuit which
lasts throughout the connection: the communication line is effectively ‘tied
up’. When sending data across a network, there are three stages:

1 First, a circuit/channel between sender and receiver must be established.
2 Data transfer then takes place (which can be analogue or digital);

transmission is usually bi-directional.
3 After the data transfer is complete, the connection is terminated.

The pros and cons of circuit switching are summarised in this table. Figure 14.7
shows an example of circuit switching.

Pros Cons
the circuit used is dedicated to the single
transmission only

it is not very flexible (for example, it will
send empty frames and it has to use a
single, dedicated line)

the whole of the bandwidth is available nobody else can use the circuit/channel
even when it is idle

the data transfer rate is faster than with
packet switching

the circuit is always there whether or not
it is used

the packets of data (frames) arrive at the
destination in the same order as they were
sent

if there is a failure/fault on the dedicated
line, there is no alternative routing
available

a packet of data cannot get lost since all
packets follow on in sequence along the
same single route

dedicated channels require a greater
bandwidth

it works better than packet switching in
real-time applications

prior to actual transmission, the time
required to establish a link can be long

▲ Table	14.3 Pros and cons of circuit switching

device
‘A’

device
‘B’

router
‘A’

router
‘B’

R2

R6

R1

R5

R8

R7

R3

R9

R4

R10

▲ Figure	14.7 An example of circuit switching

The dedicated route from ‘A’ to ‘B’ is first of all established (shown in orange on
the diagram). The following connections are then partially implemented: A–R2,
R2–R5, R5–R8, R8–R7, R7–R10 and finally R10–B. All packets (frames) follow
this single route and communication will take place, provided ‘B’ is not busy.

The main uses of circuit switching include public telephone networks, private
telephone networks and private data networks.

457591_14_CI_AS & A_Level_CS_328-345.indd 338 26/04/19 8:47 AM

339

14.2 C
ircuit sw

itching and packet sw
itching

14
14.2.2	Packet switching
Packet switching was introduced in Chapter 2 when describing VoIP, together
with a diagram to show how the individual packets are routed from client to
client.

Packet switching is a method of transmission in which a message is broken up
into a number of packets that can be sent independently to each other from
start point to end point. The data packets will need to be reassembled into
their correct order at the destination. Figure 14.8 shows an example of packet
switching.

Note that

» each packet follows its own path
» routing selection depends on the number of datagram packets waiting to be

processed at each node (router)
» the shortest path available is selected
» packets can reach the destination in a different order to that in which they

are sent.

computer
‘A’

router
‘A’

R2

R6

R1

R5

R8

R7

R3

R9

R4

R10

router
‘B’

computer
‘B’

▲ Figure	14.8 An example of packet switching

As Figure 14.8 shows, the message sent by computer ‘A’ was split into four
packets. The original packet order was: and they arrived in the order:

 which means they need to be reassembled in the correct order at the
destination.

457591_14_CI_AS & A_Level_CS_328-345.indd 339 26/04/19 8:47 AM

340

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
The pros and cons of packet switching are summarised in this table.

Pros Cons

no need to tie up a communication line the protocols for packet switching can
be more complex than those for circuit
switching

it is possible to overcome failed or faulty
lines by simply re-routing packages

if a packet is lost, the sender must re-send
the packet (which wastes time)

it is easy to expand the traffic usage does not work well with real-time data
streams

circuit switching charges the user on the
distance and duration of a connection, but
packet switching charges users only for the
duration of the connectivity

the circuit/channel has to share its
bandwidth with other packets

high data transmission is possible with
packet switching

there is a delay at the destination while
packets are reassembled

packet switching always uses digital
networks which means digital data is
transmitted directly to the destination

needs large amounts of RAM to handle the
large amounts of data

▲ Table	14.4 Pros and cons of packet switching

Comparison of circuit switching and packet switching

Feature Circuit
switching

Packet
switching

actual route used needs to be set up before transmission can begin

a dedicated transmission path is required

each packet uses the same route

packets arrive at destination in the correct order

all the bandwidth of the channel is required

is bandwidth wasted?

▲ Table	14.5	Comparison of circuit switching and packet switching

Sometimes it is possible for packets to get lost and keep ‘bouncing’ around
from router to router and never actually get to their destination. Eventually,
the network could grind to a halt as the number of ‘lost’ packets mounts up and
clogs up the system. To overcome this, a method called hopping is used. A hop
number is added to the header of each packet. Each packet is only allowed to
hop a finite number of times (this number is determined by the network protocol
and routing table being used). Each time a packet passes through a router, the
hop number is decreased by 1. If the packet has not reached its destination and
the hop number = 0, then it will be deleted when it reaches the next router.

Each packet also contains an error checking technique such as a checksum or
parity check. If a checksum is used, this value is calculated for each packet
and is added to the header. The checksum for each package is recalculated at
the destination to ensure no errors have occurred. If the checksum values are
different, then a request is made to re-send the packet. A priority value is
sometimes also added to a header. A high priority value indicates which packet
queue should be used.

457591_14_CI_AS & A_Level_CS_328-345.indd 340 26/04/19 8:47 AM

341

14.2 C
ircuit sw

itching and packet sw
itching

14
This is the make-up of a packet header (together with the data in the message
being sent) if TCP/IP protocol is being used when sending packets:

IP address
of source
computer

IP
address of
destination
computer

current hop
number of

data packet

length of
packet in

bytes

number of
packets
in the

message

sequence
number
to allow

reassembly
of packets

checksum
value

▲ Figure	14.9

More generally, packet headers contain the following information (the
information used with TCP/IP protocol headers is highlighted in green)

» 4 bits to identify protocol version (such as IPv4, IPv6 – in the example
above we assume IP)

» 4 bits to identify header length (in multiples of four; for example, a value of
six implies 6 × 4 = 24 bytes)

» 8 bits to represent packet priority
» 16 bits to identify the length of the packet in bytes
» 3 bits are used for fragmentation; the DF flag indicates whether a packet

can be fragmented or not (DF = do not fragment) and the MF flag indicates
whether there are more fragments of a packet to follow (MF = more fragments)

0 DF MF

» 13 bits to show fragmentation offset to identify the position of the
fragments within the original packet

» 8 bits that show the current hop number of the packet
» 16 bits to show the number of packets in the message
» 16 bits to represent the sequence number of the packet
» 8 bits that contain the transmission protocol being used (TCP, UDP)
» 16 bits that contain the header checksum value
» 32 bits that contain the source IP address
» 32 bits that contain the destination IP address.

Routing tables
Routing tables contain the information necessary to forward a package along
the shortest/best route to allow it to reach its destination. As soon as the
packet reaches a router, the packet header is examined and compared with
the routing table. The table supplies the router with instructions to send the
packet (hop) to the next available router.

Routing tables include

» number of hops
» MAC address of the next router where the packet is to be forwarded to

(hopped)
» metrics (a cost is assigned to each available route so that the most efficient

route/path is found)
» network destination (network ID) or pathway
» gateway (the same information as the next hop; it points to the gateway

through which target network can be reached)
» netmask (used to generate network ID)
» interface (indicates which locally available interface is responsible for

reaching the gateway).

457591_14_CI_AS & A_Level_CS_328-345.indd 341 26/04/19 8:47 AM

342

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
routing table

routerpacket header

the packet header is compared to the routing
table; the next router in the path is
determined; once established, a new MAC
address is added to the packet header so
that the packet knows which router is next; if
no route can be found or hop number = 0,
then the router deletes the data package

alternative
routes

▲ Figure	14.10

Suppose we are carrying out video conferencing using packet switching as the
method of routing data. The performance of the communication is not very good.

a) Describe some of the poor performance you might expect.

 Give a reason for this poor performance.

b) What features of circuit switching could potentially improve the performance?

Example 14.1

Solution
a) Answers might include: picture and sound may not be in synchronisation

(packets arriving at different times); video not continuous – pauses (time delay
in reassembling the packets of data); degraded quality of sound and video
(possibly caused by competing traffic in communication lines); possible drop
out (packets take different routes, so it is possible for packets to be lost).

b) Answers might include: only one route used in circuit switching; therefore,
all packets arrive in correct order; dedicated communication channel with
circuit switching; therefore, full bandwidth available; there is no loss of
synchronisation with circuit switching.

457591_14_CI_AS & A_Level_CS_328-345.indd 342 26/04/19 8:47 AM

343

14.2 C
ircuit sw

itching and packet sw
itching

14
How would packet switching be used to download a page from a website?Example 14.2

Solution
Answers might include

l the web page is divided up into data packets

l each packet has a header, which includes the IP address of the destination

l the router checks the header against values stored in the routing table …

l … to determine which router the packet needs to be sent to next (hopped) …

l … the MAC address of the next router is added to the package header

l the hop value is checked to see if it equals zero

l each packet may go by a different route

l the destination computer reassembles the packets building up the final
web page.

ACTIVITY	14A

1	 a) Name the four layers which show the TCP/IP protocols.
b) Name one protocol associated with each layer.
c)	 i) Describe the use of protocols when sending and receiving emails.

ii) What is the difference between SMTP and MIME when sending
emails?

2	 a) What is an Ethernet?
b) Describe the contents of an Ethernet frame.
c) Ethernet protocols do not provide a means to communicate with

devices outside a LAN.
 How can external devices be communicated with when using an

Ethernet?
3	 a) Explain the following terms used in peer-to-peer BitTorrent.

i) peer
ii) swarm
iii) tracker

iv) leech
v) seed

b) Explain how it could be possible to deal with peers acting as leeches.
4	 a) Describe the difference between a packet header and a routing table.

b) How are the packet header and the routing table used to route a
package?

5 A person is making a video call using VoIP software.
 Explain how packet switching could be used and describe any problems

that might occur.

457591_14_CI_AS & A_Level_CS_328-345.indd 343 26/04/19 8:47 AM

344

14
 C

o
m

m
u

n
iC

at
io

n
 a

n
d

 in
te

r
n

e
t

te
C

h
n

o
lo

g
ie

s

14
1 a) Copy the diagram below and connect each peer-to-peer term to its

correct description. [5]

Peer-to-peer term Description

lurker
central server that contains
details of other computers
in a peer-to-peer swarm

leech
peer in a peer-to-peer system

uploads files for other
peers to download

seed
peer with a negative feedback

from other peers in a
peer-to-peer system

tracker
protocol used in peer-to-peer

when sharing files
between peers

BitTorrent
peer that downloads files but

does not supply new content to
the peer-to-peer community

b) Copy and complete the diagram to show the layers in a TCP/IP protocol. [3]

internet (network) layer

c) Describe the protocols used when sending and receiving emails. [4]

2 a) An Ethernet frame contains a section called Ethernet data.

 Copy and complete this diagram to show the other four items missing from
the Ethernet data section. [4]

Ethernet type

b) State what is meant by the term metadata. [1]

c) Describe how files can be shared using the BitTorrent protocol. [4]

3 a) Explain what is meant by circuit switching. [2]

b) There are many applications in which digital data are transferred across a
network. Video conferencing is one of these.

 For this application, circuit switching is preferable to the use of packet
switching. Explain why this is so. [6]

c) A web page is transferred from a web server to a home computer using the
Internet.

 Explain how the web page is transferred using packet switching. [3]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q3 November 2015

End of chapter
questions

457591_14_CI_AS & A_Level_CS_328-345.indd 344 26/04/19 8:47 AM

345

14.2 C
ircuit sw

itching and packet sw
itching

14
4 a) This table shows some statements about circuit switching and packet

switching.

 Copy the table and indicate which statements are true () and which are
false (). [5]

statements circuit
switching

packet
switching

a dedicated circuit/path is needed at all times

the same route/circuit is used for every packet in
the message

bandwidth is shared with other packets of data

none of the bandwidth available is wasted during
transmission

packets arrive at the destination in the correct
order

b) Explain the following terms and why they are used when sending packets
across a network.

i) hop number/hopping [2]

ii) checksum [2]

c) Describe how headers and routing tables are used to route packets efficiently
from a sender to recipient. [5]

457591_14_CI_AS & A_Level_CS_328-345.indd 345 26/04/19 8:47 AM

346

15
 H

a
r

d
w

a
r

e

	 15	 Hardware	

15.1	Processors	and	parallel	processing

In this chapter, you will learn about

★ the differences between RISC (Reduced Instruction Set Computer) and
CISC (Complex Instruction Set Computer) processors

★ the importance and use of pipelining and registers in RISC processors
★ SISD, SIMD, MISD and MIMD basic computer architectures
★ the characteristics of massively parallel computers
★ interrupt handling on CISC and RISC computers
★ Boolean algebra including De Morgan’s Laws
★ the simplification of logic circuits and expressions using Boolean

algebra
★ producing truth tables from common logic circuits
★ half adder and full adder logic circuits
★ the construction and role of SR and JK flip-flop circuits
★ using Karnaugh maps in the solution of logic problems.

WHAT YOU SHOULD ALREADY KNOW
In	Chapter	4,	you	learnt	about	processor	fundamentals.	Try	the	following	
three	questions	to	refresh	your	memory	before	you	start	to	read	the	first	
part	of	this	chapter.
1	 A	computer	uses	the	following	status	registers	when	carrying	out	the	

addition	of	two	binary	numbers
n	 a	carry	flag	(C)
n	 an	overflow	flag	(V)
n	 a	negative	flag	(N).

	 Describe	what	happens	to	the	above	status	registers	when	the	
following	pairs	of	8-bit	binary	numbers	are	added	together	and	explain	
the	significance	of	the	flag	values	in	both	sets	of	calculation
a)	 0	0	1	1	1	1	0	0	and	0	1	0	0	0	1	1	0
b)	 1	1	0	0	0	1	0	0	and	1	0	1	1	1	0	1	0.

2	 Describe	the	stages	in	the	fetch-execute	cycle.
3 a)	 A	processor	contains	three	buses:	data	bus,	address	bus	and	control	

bus.
i)	 What	factors	determine	the	width	of	a	bus?
ii)	 Which	of	the	three	buses	will	have	the	smallest	width?
iii)	An	address	bus	is	increased	from	16-bit	to	64-bit.	What	would	be	

the	result	of	this	upgrade	to	the	processor?
b)	 Explain	the	role	of	

i)	 the	clock ii)	 interrupts	in	a	typical	processor.

457591_15_CI_AS & A_Level_CS_346-371.indd 346 25/04/19 12:45 PM

347

15.1
Processors and parallel processing

15

15.1.1 RISC and CISC processors
Early computers made use of the Von Neumann architecture (see Chapter 4).
Modern advances in computer technology have led to much more complex
processor design. Two basic philosophies have emerged over the last few years

» developers who want the emphasis to be on the hardware used: the hardware
should be chosen to suit the high-level language development

» developers who want the emphasis to be on the software/instruction sets to
be used: this philosophy is driven by ever faster execution times.

The first philosophy is part of a group of processor architectures known as CISC
(complex instruction set computer). The second philosophy is part of a group
of processor architectures known as RISC (reduced instruction set computer).

CISC processors
CISC processor architecture makes use of more internal instruction formats
than RISC. The design philosophy is to carry out a given task with as few
lines of assembly code as possible. Processor hardware must therefore be
capable of handling more complex assembly code instructions. Essentially,
CISC architecture is based on single complex instructions which need to be
converted by the processor into a number of sub-instructions to carry out the
required operation.

For example, suppose we wish to add the two numbers A and B together, we
could write the following assembly instruction:

This methodology leads to shorter coding (than RISC) but may actually lead to
more work being carried out by the processor.

RISC processors
RISC processors have fewer built-in instruction formats than CISC. This can lead
to higher processor performance. The RISC design philosophy is built on the

Key terms
CISC	–	complex	instruction	set	computer.
RISC	–	reduced	instruction	set	computer.
Pipelining	–	allows	several	instructions	to	be	
processed	simultaneously	without	having	to	wait	for	
previous	instructions	to	finish.
Parallel processing	–	operation	which	allows	a	process	
to	be	split	up	and	for	each	part	to	be	executed	by	a	
different	processor	at	the	same	time.
SISD	–	single	instruction	single	data,	computer	
architecture	which	uses	a	single	processor	and	one	
data	source.
SIMD	–	single	instruction	multiple	data,	computer	
architecture	which	uses	many	processors	and	different	
data	inputs.

MISD	–	multiple	instruction	single	data,	computer	
architecture	which	uses	many	processors	but	the	same	
shared	data	source.
MIMD	–	multiple	instruction	multiple	data,	computer	
architecture	which	uses	many	processors,	each	of	
which	can	use	a	separate	data	source.
Cluster	–	a	number	of	computers	(containing	SIMD	
processors)	networked	together.
Super computer	–	a	powerful	mainframe	computer.
Massively parallel computers	–	the	linking	together	
of	several	computers	effectively	forming	one	machine	
with	thousands	of	processors.

ADD A, B – this is a single instruction that requires several sub-instructions (multi-
cycle) to carry out the ADDition operation

457591_15_CI_AS & A_Level_CS_346-371.indd 347 25/04/19 12:45 PM

348

15
 H

a
r

d
w

a
r

e

15
use of less complex instructions, which is done by breaking up the assembly
code instructions into a number of simpler single-cycle instructions. Ultimately,
this means there is a smaller, but more optimised set of instructions than CISC.
Using the same example as above to carry out the addition of two numbers A
and B (this is the equivalent operation to ADD A, B):

Each instruction requires one clock cycle (see Chapter 4). Separating commands
such as LOAD and STORE reduces the amount of work done by the processor.
This leads to faster processor performance since there are ultimately a smaller
number of instructions than CISC. It is worth noting here that the optimisation
of each of these simpler instructions is done through the use of pipelining (see
below).

Table 15.1 shows the main differences between CISC and RISC processors.

CISC features RISC features

Many instruction formats are possible Uses fewer instruction formats/sets

There are more addressing modes Uses fewer addressing modes

Makes use of multi-cycle instructions Makes use of single-cycle instructions

Instructions can be of a variable length Instructions are of a fixed length

Longer execution time for instructions Faster execution time for instructions

Decoding of instructions is more complex Makes use of general multi-purpose registers

It is more difficult to make pipelining work Easier to make pipelining function correctly

The design emphasis is on the hardware The design emphasis is on the software

Uses the memory unit to allow complex instructions to be
carried out

Processor chips require fewer transistors

▲ Table 15.1 The differences between CISC and RISC processors

Pipelining
One of the major developments resulting from RISC architecture is pipelining.
This is one of the less complex ways of improving computer performance.
Pipelining allows several instructions to be processed simultaneously without
having to wait for previous instructions to be completed. To understand how
this works, we need to split up the execution of a given instruction into its
five stages

1 instruction fetch cycle (IF)
2 instruction decode cycle (ID)
3 operand fetch cycle (OF)

LOAD X, A – this loads the value of A into a register X

LOAD Y, B – this loads the value of B into a register Y

ADD A, B – this takes the values for A and B from X and Y and adds them

STORE Z – the result of the addition is stored in register Z

EXTENSION ACTIVITY 15A

Find	out	how	some	of	the	newer	technologies,	such	as	EPIC	(Explicitly	
Parallel	Instruction	Computing)	and	VLIW	(Very	Long	Instruction	Word)	
processor	architectures,	are	used	in	computer	systems.

457591_15_CI_AS & A_Level_CS_346-371.indd 348 25/04/19 12:45 PM

349

15.1
Processors and parallel processing

15
4 instruction execution cycle (IE)
5 writeback result process (WB).

To demonstrate how pipelining works, we will consider a program which has six
instructions (A, B, C, D, E and F). Figure 15.1 shows the relationship between
processor stages and the number of required clock cycles when using pipelining.
It shows how pipelining would be implemented with each stage requiring one
clock cycle to complete.

▲ Figure 15.1

This functionality clearly requires processors with several registers to store
each of the stages.

Execution of an instruction is split into a number of stages. During clock
cycle 1, the first stage of instruction 1 is implemented. During clock cycle 2,
the second stage of instruction 1 and the first stage in instruction 2 are
implemented. During clock cycle 3, the third stage of instruction 1, second
stage of instruction 2 and first stage of instruction 3 are implemented. This
continues until all instruction are processed.

In this example, by the time instruction ‘A’ has completed, instruction ‘F’ is at
the first stage and instructions ‘B’ to ‘E’ are at various in-between stages in the
process. As Figure 15.1 shows, a number of instructions can be processed
at the same time, and there is no need to wait for an instruction to go through
all five cycles before the next one can be implemented. In the example shown,
the six instructions require 10 clock cycles to go to completion. Without
pipelining, it would require 30 (6 × 5) cycles to complete (since each of the six
instructions requires five stages for completion).

Interrupts
In Chapter 4, we discussed interrupt handling in processors where each
instruction is handled sequentially before the next one can start (five stages
for instruction ‘A’, then five stages for instruction ‘B’, and so on).

Once the processor detects the existence of an interrupt (at the end of the
fetch-execute cycle), the current program would be temporarily stopped
(depending on interrupt priorities), and the status of each register stored. The
processor can then be restored to its original status before the interrupt was
received and serviced.

However, with pipelining, there is an added complexity; as the interrupt is
received, there could be a number of instructions still in the pipeline. The usual
way to deal with this is to discard all instructions in the pipeline except for the
last instruction in the write-back (WB) stage.

WB

Clock cycles

Pr
o

ce
ss

o
r

st
ag

es

IE

OF

ID

IF A

1

B

2

C

3

D

4

E

5

F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

6 7 8 9 10

457591_15_CI_AS & A_Level_CS_346-371.indd 349 25/04/19 12:45 PM

350

15
 H

a
r

d
w

a
r

e

15
The interrupt handler routine can then be applied to this remaining instruction
and, once serviced, the processor can restart with the next instruction in the
sequence. Alternatively, although much less common, the contents of the five
stages can be stored in registers. This allows all current data to be stored,
allowing the processor to be restored to its previous status once the interrupt
has been serviced.

15.1.2 Parallel processing
Parallel processor systems
There are many ways that parallel processing can be carried out. The four
categories of basic computer architecture presently used are described below.

SISD (single instruction single data)
SISD (single instruction single data) uses a single processor that can handle
a single instruction and which also uses one data source at a time. Each
task is processed in a sequential order. Since there is a single processor, this
architecture does not allow for parallel processing. It is most commonly found
in applications such as early personal computers.

▲ Figure 15.2 SISD diagram

SIMD (single instruction multiple data)
SIMD (single instruction multiple data) uses many processors. Each processor
executes the same instruction but uses different data inputs – they are all
doing the same calculations but on different data at the same time.

SIMD are often referred to as array processors; they have a particular
application in graphics cards. For example, suppose the brightness of an image
made up of 4000 pixels needs to be increased. Since SIMD can work on many
data items at the same time, 4000 small processors (one per pixel) can each
alter the brightness of each pixel by the same amount at the same time. This
means the whole of the image will have its brightness increased consistently.

Other applications include sound sampling – or any application where a large
number of items need to be altered by the same amount (since each processor
is doing the same calculation on each data item).

▲ Figure 15.3 SIMD diagram

processor instructions
data

source

processor

processor

processor

processor

instructions
data

source

457591_15_CI_AS & A_Level_CS_346-371.indd 350 25/04/19 12:45 PM

351

15.1
Processors and parallel processing

15
MISD (multiple instruction single data)
MISD (multiple instruction single data) uses several processors. Each
processor uses different instructions but uses the same shared data source.
MISD is not a commonly used architecture (MIMD tends to be used instead).
However, the American Space Shuttle flight control system did make use of
MISD processors.

▲ Figure 15.4 MISD diagram

MIMD (multiple instruction multiple data)
MIMD (multiple instruction multiple data) uses multiple processors. Each one
can take its instructions independently, and each processor can use data from
a separate data source (the data source may be a single memory unit which has
been suitably partitioned). The MIMD architecture is used in multicore systems
(for example, by super computers or in the architecture of multi-core chips).

▲ Figure 15.5 MIMD diagram

There are a number of factors to consider when using parallel processing.

When carrying out parallel processing, processors need to be able to
communicate. The data which has been processed needs to be transferred from
one processor to another.

When software is being designed, or programming languages are being chosen,
they must be capable of processing data from multiple processors at the same
time.

It is a much faster method for handling large volumes of independent data; any
data which relies on the result of a previous operation (dependent data) would
not be suitable in parallel processing. Data used will go through the same
processing, which requires this independence from other data.

Parallel processing overcomes the Von Neumann ‘bottleneck’ (in this type of
architecture, data is constantly moving between memory and processor, leading
to latency; as processor speeds have increased, the amount of time they remain
idle has also increased since the processor’s performance is limited to the
internal data transfer rate along the buses). Finding a way around this issue

processor

processor

processor

processor

instructions
data

source

processor

processor

processor

processor

processor

processor

processor

processor

instructionsdata
source

457591_15_CI_AS & A_Level_CS_346-371.indd 351 25/04/19 12:45 PM

352

15
 H

a
r

d
w

a
r

e

15
is one of the driving forces behind parallel computers in an effort to greatly
improve processor performance.

However, parallel processing requires more expensive hardware. When deciding
whether or not to use this type of processor, it is important to take this factor
into account.

Parallel computer systems
SIMD and MIMD are the most commonly used processors in parallel processing.
A number of computers (containing SIMD processors) can be networked together
to form a cluster. The processor from each computer forms part of a larger
pseudo-parallel system which can act like a super computer. Some textbooks
and websites also refer to this as grid computing.

Massively parallel computers have evolved from the linking together of a
number of computers, effectively forming one machine with several thousand
processors. This was driven by the need to solve increasingly complex problems
in the world of science and mathematics. By linking computers (processors)
together in this way, it massively increases the processing power of the ‘single
machine’. This is subtly different to cluster computers where each computer
(processor) remains largely independent. In massively parallel computers, each
processor will carry out part of the processing and communication between
computers is achieved via interconnected data pathways. Figure 15.6 shows this
simply.

▲ Figure 15.6 Typical massively parallel computer (processor) system showing
interconnected pathways

interconnected
data pathways

457591_15_CI_AS & A_Level_CS_346-371.indd 352 25/04/19 12:45 PM

353

15.1
Processors and parallel processing

15
EXTENSION ACTIVITY 15B

1	 Find	out	more	about	the	applications	of	multi-computer	systems	(cluster	
and	massively	parallel	computers).	In	particular,	research	their	uses	in	
seismology,	astronomy,	climate	modelling,	nuclear	physics	and	weather	
forecasting	models.

2	 Look	at	Figure	15.7.	Determine,	from	research,	the	main	reasons	for	the	
almost	linear	expansion	in	the	processing	speed	of	computers	over	the	
last	25	years.	The	data	in	the	graph	compares	Number of calculations per
second	against	Year.

▲ Figure 15.7

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1994 1996 1998 2000 2002 2004 2006

Year

N
u

m
b

er
 o

f
ca

lc
u

la
ti

o
n

s
p

er
 s

ec
o

n
d

2008 2010 2012 2014 2016 2018

ACTIVITY 15A

1 a)	 Describe	why	RISC	is	an	important	development	in	processor	
technology.

b)	 Describe	the	main	differences	between	RISC	and	CISC	technologies.
2 a)	 What	is	meant	by	the	Von	Neumann	bottleneck?

b)	 How	does	the	Von	Neumann	bottleneck	impact	on	processor	
performance?

3 a)	 What	are	the	main	differences	between	cluster	computers	and	
massively	parallel	computers?

b)	 Describe	one	application	which	uses	massively	parallel	computers.	
Justify	your	choice	of	answer.

4	 A	processor	uses	pipelining.	The	following	instructions	are	to	be	input
	 1	LOAD	A
	 2	LOAD	B
	 3	LOAD	C
	 4	ADD	A,B,C
	 5	STORE	D
	 6	OUT	D
	 Draw	a	diagram	to	show	how	many	clock	cycles	are	needed	for	these	six	

instructions	to	be	carried	out.	Compare	your	answer	to	the	number	of	
clock	cycles	needed	for	a	processor	using	sequential	processing.

457591_15_CI_AS & A_Level_CS_346-371.indd 353 02/05/19 12:43 PM

354

15
 H

a
r

d
w

a
r

e

15
15.2	Boolean	algebra	and	logic	circuits

15.2.1	 Boolean	algebra
Boolean algebra is named after the mathematician George Boole. It is a form of
algebra linked to logic circuits and is based on the two statements:

TRUE (1)

FALSE (0)

Key terms

Half adder circuit	–		
carries	out	binary	
addition	on	two	bits	
giving	sum	and	carry.
Full adder circuit	–	two	
half	adders	combined	
to	allow	the	sum	of	
several	binary	bits.
Combination circuit	–		
circuit	in	which	the	
output	depends	entirely	
on	the	input	values.
Sequential circuit	–	
circuit	in	which	the	
output	depends	on	
input	values	produced	
from	previous	output	
values.
Flip-flop circuits	–	
electronic	circuits	with	
two	stable	conditions	
using	sequential	
circuits.
Cross-coupling	–		
interconnection	
between	two	logic	
gates	which	make	up	a	
flip-flop.
Positive feedback	–	the	
output	from	a	process	
which	influences	the	
next	input	value	to	the	
process.
Sum of products
(SoP)	–	a	Boolean	
expression	containing	
AND	and	OR	terms.
Gray codes	–	ordering	
of	binary	numbers	
such	that	successive	
numbers	differ	by	
one	bit	value	only,	for	
example,	00	01	11	10.
Karnaugh maps
(K-maps)	–	a	method	
used	to	simplify	logic	
statements	and	logic	
circuits	–	uses	Gray	
codes.

WHAT YOU SHOULD ALREADY KNOW
In	Chapter	3,	you	learnt	about	logic	gates	and	logic	circuits.	Try	the	
following	three	questions	to	refresh	your	memory	before	you	start	to	read	
the	second	part	of	this	chapter.
1	 Produce	a	truth	table	for	the	logic	circuit	shown	in	Figure	15.8.

▲	Figure 15.8

2	 Draw	a	simplified	version	of	the	logic	circuit	shown	in	Figure	15.9	
and	write	the	Boolean	expressions	to	represent	Figure	15.9	and	your	
simplified	version.

▲	Figure 15.9

3	 The	warning	light	on	a	car	comes	on	(=	1)	if	either	one	of	three	
conditions	occur
n	 sensor1	AND	sensor2	detect	a	fault	(give	an	input	of	1)	OR
n	 sensor2	AND	sensor3	detect	a	fault	(give	an	input	of	1)	OR
n	 sensor1	AND	sensor3	detect	a	fault	(give	an	input	of	1).
a)	 Write	a	Boolean	expression	to	represent	the	above	problem.
b)	 Give	the	logic	circuit	to	represent	the	above	system.
c)	 Produce	a	truth	table	and	check	your	answers	to	parts	a)	and	b)	

agree.

X
B

C

A

X

P

Q

R

457591_15_CI_AS & A_Level_CS_346-371.indd 354 02/05/19 12:43 PM

355

15.2 B
oolean algebra and logic circuits

15
The notation used in this book to represent these two Boolean operators is:

Table 15.2 summarises the rules that govern Boolean algebra. It also includes
De Morgan’s Laws. Also note that, in Boolean algebra, 1 + 1 = 1, 1 + 0 = 1, and
A = A (remember your logic gate truth tables in Chapter 3).

Commutative Laws A + B = B + A A.B = B.A

Associative Laws A + (B + C) = (A + B) + C A.(B.C) = (A.B).C

Distributive Laws A.(B + C) = (A.B) + (A.C)

(A + B).(A + C) = A + B.C

A + (B.C) = (A + B).(A + C)

Tautology/Idempotent Laws A.A = A A + A = A

Tautology/Identity Laws 1.A = A 0 + A = A

Tautology/Null Laws 0.A = 0 1 + A = 1

Tautology/Inverse Laws A.A = 0 A + A = 1

Absorption Laws A.(A + B) = A

A + A.B = A

A + (A.B) = A

A + A.B = A + B

De Morgan’s Laws (A.B) = A + B (A + B) = A.B

▲ Table 15.2 The rules that govern Boolean algebra

Table 15.3 shows proof of De Morgan’s Laws. Since the last two columns in each
section are identical, then the two De Morgan’s Laws hold true.

A B A B A + B A.B A B A B A.B A + B

0 0 1 1 1 1 0 0 1 1 1 1

0 1 1 0 1 1 0 1 1 0 0 0

1 0 0 1 1 1 1 0 0 1 0 0

1 1 0 0 0 0 1 1 0 0 0 0

Both columns have the same
values

Both columns have the same
values

▲ Table 15.3 Proof of De Morgan’s Laws

Simplification using Boolean algebra

Simplify A + B + A + B

A which is also written as NOT A

A.B which is also written as A AND B

A + B which is also written as A OR B

Example 15.1

Solution
Using the associate laws we have: A + B + A + B ⇒ (A + A) + (B + B)

Using the inverse laws we have: (A + A) = 1 and (B + B) = 1

Therefore, we have 1 + 1, which is simply 1 ⇒ A + B + A + B = 1

457591_15_CI_AS & A_Level_CS_346-371.indd 355 25/04/19 12:45 PM

356

15
 H

a
r

d
w

a
r

e

15
Simplify A.B.C + A.B.C + A.B.C + A.B.C

15.2.2	Further	logic	circuits
Half adder circuit and full adder circuit
In Chapter 3, the use of logic gates to create logic circuits to carry out specific
tasks was discussed in much detail. Two important logic circuits used in
computers are

» the half adder circuit » the full adder circuit.

Half adder
One of the basic operations in any computer is binary addition. The half adder
circuit is the simplest circuit. This carries binary addition on 2 bits generating
two outputs

» the sum bit (S) » the carry bit (C).

Consider 1 + 1. It will give the result 1 0 (denary value 2). The ‘1’ is the carry
and ‘0’ is the sum. Table 15.4 shows this as a truth table.

Figure 15.10 shows how this is often shown in graphic form (left) or as a logic
circuit (right):

▲	Figure 15.10

Example	15.2

Solution
Rewrite the expression as: A.B.C + (A.B.C + A.B.C + A.B.C)

This becomes: (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C)

which transforms to: B.C.(A + A) + A.C.(B + B) + A.B.(C + C)

Since A + A, B + B and C + C are all equal to 1

then we have: B.C.1 + A.C.1 + A.B.1 ⇒ B.C + A.C + A.B

ACTIVITY 15B

Simplify the following logic expressions showing all the stages in your
simplification.
a) A.C + B.C.D + A.B.C + A.C.D
b) B + A.B + A.C.D + A.C
c) A.B.C + A.B.C + A.B.C + A.B.C
d) A.(A + B) + (B + A.A).(A + B)
e) (A + C).(A.D + A.D) + A.C + C

INPUTS OUTPUTS

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

▲	Table 15.4

A S (sum)1–bit
half

adderB C (carry)

A

B
S (sum)

C (carry)

457591_15_CI_AS & A_Level_CS_346-371.indd 356 02/05/19 12:44 PM

357

15.2 B
oolean algebra and logic circuits

15
Other logic gates can be used to produce the half adder (see below).

As you have probably guessed already, the half adder is unable to deal with the
addition of several binary bits (for example, an 8-bit byte). To enable this, we
have to consider the full adder circuit.

Full adder
Consider the following sum using 5-bit numbers.

▲ Figure 15.11

The sum shows how we have to deal with CARRY from the previous column.
There are three inputs to consider in this third column, for example, A = 1,
B = 0 and C = 1 (S = 0).

This is why we need to join two half adders together to form a full adder:

▲ Figure 15.12

This has an equivalent logic circuit; there are a number of ways of doing this.
For example, the following logic circuit uses OR, AND and XOR logic gates.

half adder

half adder

OR gateA
B

Cin

S

Cout

▲ Figure 15.13

[1]

[0]

[0]

[1]

A

B

S

C

0

0

1

1

1

0

0

1

1

1

0

0

1

1 this is the sum produced from the addition

this is the carry from the previous bit position

S (sum)
half

adder

A

B

Cin

Cout (carry)
OR

gate

half
adder

457591_15_CI_AS & A_Level_CS_346-371.indd 357 02/05/19 12:46 PM

358

15
 H

a
r

d
w

a
r

e

15
Table 15.5 is the truth table for the full adder circuit.

As with the half adder circuits,
different logic gates can be used to
produce the full adder circuit.

The full adder is the basic building
block for multiple binary additions.
For example, Figure 15.14 shows how
two 4-bit numbers can be summed
using four full adder circuits.

▲ Figure 15.14

15.2.3 Flip-flop circuits
All of the logic circuits you have encountered up to now are combination
circuits (the output depends entirely on the input values).

We will now consider a second type of logic circuit, known as a sequential
circuit (the output depends on the input value produced from a previous
output value).

Examples of sequential circuits include flip-flop circuits. This chapter will
consider two types of flip-flops: SR flip-flops and JK flip-flops.

SR flip-flops
SR flip-flops consist of two cross-coupled NAND gates (note: they can equally
well be produced from NOR gates). The two inputs are labelled ‘S’ and ‘R’, and
the two outputs are labelled ‘Q’ and ‘Q’ (remember Q is equivalent to NOT Q).

INPUTS OUTPUTS

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

▲ Table 15.5

C4 C3 C2 C1 C0

S3

B3A3

full adder full adder full adder full adder

S2

B2A2

S1

B1A1

S0

B0A0

ACTIVITY 15C

1 a)	 Produce	a	half	adder	circuit	using	NAND	gates	only.
b)	 Generate	a	truth	table	for	your	half	adder	circuit	in	part	a)	and	confirm	

it	matches	the	one	shown	in	Section	15.2.2.
2 a)	 Produce	a	full	adder	circuit	using	NAND	gates	only.

b)	 Generate	a	truth	table	for	your	full	adder	circuit	in	part	a)	and	confirm	
it	matches	the	one	shown	in	Section	15.2.2.

EXTENSION
ACTIVITY 15C

1	 Find	out	why	
NAND	gates	are	
used	to	produce	
logic	circuits	
even	though	they	
often	increase	
the	complexity	
and	size	of	the	
overall	circuit.

2	 Produce	half	
adder	and	full	
adder	circuits	
using	NOR	gates	
only.

457591_15_CI_AS & A_Level_CS_346-371.indd 358 25/04/19 12:45 PM

359

15.2 B
oolean algebra and logic circuits

15
In this chapter, we will use SR flip-flop circuits constructed from NOR gates, as
shown in Figure 15.15.

The output from gate ‘X’ is Q and
the output from gate ‘Y’ is Q.
The inputs to gate ‘X’ are R and
Q (shown in red on Figure 15.15);
the inputs to gate ‘Y’ are S and Q
(shown in green on Figure 15.15).
The output from each NOR gate
gives a form of positive feedback
(known as cross-coupling, as
mentioned earlier).

We will now consider the truth table to match our SR flip-flop using the initial
states of R = 0, S = 1 and Q = 1. The sequence of the stages in the process is
shown in Figure 15.16.

▲ Figure 15.16

Now consider what happens if we change the value of S from 1 to 0.

▲ Figure 15.17

The reader is left to consider the other options which lead to the truth table,
Table 15.6, for the flip-flop circuit.

INPUTS OUTPUTS Comment

S R Q Q

(a) 1 0 1 0

(b) 0 0 1 0 following S = 1 change

(c) 0 1 0 1

(d) 0 0 0 1 following R = 1 change

(e) 1 1 0 0

▲ Table 15.6

▲ Figure 15.15 SR flip-flop circuit

R (reset)

S (set)

Q

Q
–

gate X

gate Y

Q
–

Sequence: [1] —› [2] —› [3] —› [4] —› [5] —› [6]

Which gives: S

1 0 1 0

R Q

0
0

Q = 1

Q = 0
–

1

01
1

[1]

[6]

[3]

[5]

[2]

[4]R = 0

S = 1

Q

Q
–

Q
–

Sequence: [1] —› [2] —› [3] —› [4] —› [5] —› [6]

Which gives: S

0 0 1 0

R Q

0
0

Q = 1

Q = 0
–

1

00
1

[1]

[6]

[3]

[5]

[2]

[4]R = 0

S = 0

Q

Q
–

457591_15_CI_AS & A_Level_CS_346-371.indd 359 25/04/19 12:45 PM

360

15
 H

a
r

d
w

a
r

e

15
Explanation

S = 1, R = 0, Q = 1, Q = 0 is the set state in this example

S = 0, R = 0, Q = 1, Q = 0 is the reset state in this example

S = 0, R = 1, Q = 0, Q = 1 here the value of Q in line (b) remembers the
value of Q from line (a); the value of Q in line
(d) remembers the value of Q in line (c)

S = 0, R = 0, Q = 0, Q = 1 R changes from 1 to 0 and has no effect on
outputs (these values are remembered from line
(c))

S = 1, R = 1, Q = 0, Q = 0 this is an invalid case since Q should be the
complement (opposite) of Q.

The truth table shows how an input value of S = 0 and R = 0 causes no change
to the two output values; S = 0 and R = 1 reverses the two output values; S = 1
and R = 0 always gives Q = 1 and Q = 0 which is the set value.

The truth table shows that SR flip-flops can be used as a storage/memory device
for one bit; because a value can be remembered but can also be changed it
could be used as a component in a memory device such as a RAM chip.

It is important that the fault condition in line (e) is considered when designing
and developing storage/memory devices.

JK flip-flops
The SR flip-flop has the following problems:

» Invalid S, R conditions (leading to conflicting output values) need to be
avoided.

» If inputs do not arrive at the same time, the flip-flop can become unstable.

To overcome such problems, the JK flip-flop has been developed. A clock and
additional gates are added, which help to synchronise the two inputs and also
prevent the illegal states shown in line (e) of Table 15.6. The addition of the
synchronised input gives four possible input conditions to the JK flip-flop

» 1
» 0
» no change
» toggle (which takes care of the invalid S, R states).

The JK flip-flop is represented as shown in Figure 15.18.

▲ Figure 15.18 JK flip-flop symbol (left) and JK flip-flop using NAND gates only (right)

clock
J Q

K Q
–

Q

Q
–

J

K

clock

457591_15_CI_AS & A_Level_CS_346-371.indd 360 25/04/19 12:45 PM

361

15.2 B
oolean algebra and logic circuits

15
Table 15.7 is the simplified truth table for the JK flip-flop.

J K Value of Q
before clock

pulse

Value of Q
after clock

pulse

OUTPUT

0 0 0 0 Q is unchanged after clock pulse

0 0 1 1

1 0 0 1 Q = 1

1 0 1 1

0 1 0 0 Q = 0

0 1 1 0

1 1 0 1 Q value toggles between 0 and 1

1 1 1 0

▲ Table 15.7

» When J = 0 and K = 0, there is no change to the output value of Q.
» If the values of J or K change, then the value of Q will be the same as the

value of J (Q will be the value of K).
» When J = 1 and K = 1, the Q-value toggles after each clock pulse, thus

preventing illegal states from occurring (in this case, toggle means the flip-
flop will change from the ‘Set’ state to the ‘Reset’ state or the other way
round).

Use of JK flip-flops
» Several JK flip-flops can be used to produce shift registers in a computer.
» A simple binary counter can be made by linking up several JK flip-flop

circuits (this requires the toggle function).

15.2.4 Boolean algebra and logic circuits
In Section 15.2.1, the concept of Boolean algebra was introduced. One of the
advantages of this method is to represent logic circuits in the form of Boolean
algebra.

It is possible to use the truth table and apply the sum of products (SoP), or
the Boolean expression can be formed directly from the logic circuit.

Write down the Boolean expression to represent this logic circuit.

EXTENSION
ACTIVITY 15D

1	 Find	out	how	JK	
flip-flops	can	
be	used	as	shift	
registers	and	
binary	counters	
in	a	computer.

2	 Where	else	
in	computer	
architecture	are	
flip-flop	circuits	
used?	Find	out	
why	they	are	
used	in	each	case	
you	describe.

Example 15.3

A

stage 1
stage 3

stage 4

stage 5
stage 2

B

C

457591_15_CI_AS & A_Level_CS_346-371.indd 361 25/04/19 12:45 PM

362

15
 H

a
r

d
w

a
r

e

15

Write the Boolean expression which represents this logic circuit.

Solution
Stage 1: A AND B

Stage 2: B OR C

Stage 3: stage 1 OR stage 2 ⇒ (A AND B) OR (B OR C)

Stage 4: A OR (NOT C)

Stage 5: stage 3 AND stage 4

⇒ ((A AND B) OR (B OR C)) AND (A OR (NOT C))

Written in Boolean algebra form: ((A.B) + (B + C)).(A + C)

Example 15.4

A
B

X

C

Solution
In this example, we will first produce the truth table and then generate the
Boolean expression from the truth table, Table 15.8.

To produce the Boolean expression from the truth
table, we only consider those rows where the output
(X) is 1:

(A.B.C + A.B.C + A.B.C + A.B.C + A.B.C)

If we apply the Boolean algebra laws, we get:

(A.B.C + A.B.C + A.B.C) + (A.B.C + A.B.C)

⇒ ((A.B.C + A.B.C) + (A.B.C + A.B.C)) + (A.B.C
+ A.B.C)

⇒ A.C.(B + B) + B.C.(A + A) + (A.B.C + A.B.C)

⇒ A.C + B.C + A.B.C + A.B.C

Therefore, written as a Boolean expression: A.C + B.C + A.B.C + A.B.C

We therefore end up with a simplified Boolean expression which has the same
effect as the original logic circuit. The reader is left the task of producing the
truth table from the above expression to confirm they are both the same.

INPUTS OUTPUT

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

457591_15_CI_AS & A_Level_CS_346-371.indd 362 25/04/19 12:45 PM

363

15.2 B
oolean algebra and logic circuits

15

15.2.5 Karnaugh maps (K-maps)
In the previous activities, it was frequently necessary to simplify Boolean
expressions. Sometimes, this can be a long and complex process. Karnaugh
maps were developed to help simplify logic expressions/circuits.

Produce a Boolean expression for the truth table for the NAND gate.

INPUTS OUTPUT

A B X

0 0 1

0 1 1

1 0 1

1 1 0

ACTIVITY 15D

1	 Produce	simplified	Boolean	expressions	for	the	logic	circuits	in	Figure	
15.21	(you	can	do	this	directly	from	the	logic	circuit	or	produce	the	truth	
table	first).

2	 Produce	simplified	Boolean	expressions	for	the	logic	circuits	in		
Figure	15.22	(you	can	do	this	directly	from	the	logic	circuit	or	produce		
the	truth	table	first).

A

B

X

A
B X

Y

EXTENSION
ACTIVITY 15E

Karnaugh	maps	
make	use	of	Gray
codes.	Find	out	
the	origin	of	Gray	
codes	and	other	
applications	of	the	
code.

Example 15.5

457591_15_CI_AS & A_Level_CS_346-371.indd 363 25/04/19 12:45 PM

364

15
 H

a
r

d
w

a
r

e

15

As you might expect, there are a number of rules governing Karnaugh maps.

Solution
Using sum of products gives the following expression:

A.B + A.B + A.B

Boolean algebra rules produce the simplified expression:

A + B

Using Karnaugh maps is a much simpler way to do this.

Each group in the Karnaugh map in Figure 15.23 combines output values where
X = 1.

Thus, A.B = 1, A.B = 1 and A.B = 1

The red ring shows A as

and the green ring shows B as

giving A + B.

1A
–

B
–

B

A

1

01

1 1

1

1

Karnaugh map rules

l The values along the top and the bottom follow Gray
code rules.

l Only cells containing a 1 are taken account of.

l Groups can be a row, a column or a rectangle.

l Groups must contain an even number of 1s
(2, 4, 6, and so on).

l Groups should be as large as possible.

l Groups may overlap within the above rules.

l Single values can be regarded as a group even if they
cannot be combined with other values to form a larger
group.

l The final Boolean expression can only consider those
values which remain constant within the group (that
is, remain a 1 or a 0 throughout the group).

457591_15_CI_AS & A_Level_CS_346-371.indd 364 25/04/19 12:45 PM

365

15.2 B
oolean algebra and logic circuits

15
Produce a Boolean expression for the truth table.

INPUTS OUTPUT

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Example 15.6

Solution
Sum of products gives:

A.B.C + A.B.C + A.B.C + A.B.C

We can now produce the following Karnaugh map to represent this truth table
(each 1 value in the K-map represents the above sum of products; so there will be
four 1-values in the K-map, where A and BC intersect, where A and BC intersect,
where A and BC intersect, and where A and BC intersect):

l Green ring: A remains 1, B changes from 0 to 1 and C remains 1 ⇒ A.C

l Purple ring: A changes from 0 to 1, B remains 1 and C remains 1 ⇒ B.C

l Red ring: A remains 1, B remains 1 and C changes from 1 to 0 ⇒ A.B

This gives the simplified Boolean expression: A.C + B.C + A.B

(A) 0
––

(B.C)
00

– –
(B.C)
01

–
(B.C)
11

(B.C)
10

–

(A) 1

A.C B.C A.B

0

A

BC

0

0 1

11 1

0

457591_15_CI_AS & A_Level_CS_346-371.indd 365 25/04/19 12:45 PM

http://A.CB.CA.B

366

15
 H

a
r

d
w

a
r

e

15
Produce a Boolean expression for the truth table.

INPUTS OUTPUT Sum of products

A B C D X

0 0 0 0 1 A.B.C.D

0 0 0 1 1 A.B.C.D

0 0 1 0 1 A.B.C.D

0 0 1 1 1 A.B.C.D

0 1 0 0 0

0 1 0 1 1 A.B.C.D

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1 A.B.C.D

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1 A.B.C.D

1 1 1 0 0

1 1 1 1 0

Example 15.7

Solution
The sum of products is shown in the right-hand column. This produces the
Karnaugh map shown.

This gives A.B + C.D

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD

AB

1

0 0

11 1

0

1 00 0

1 00 0

(C.D) 11

(C.D) 10

–

–

457591_15_CI_AS & A_Level_CS_346-371.indd 366 25/04/19 12:45 PM

367

15.2 B
oolean algebra and logic circuits

15
Notice the following possible K-map options:

This gives the value D since the values
of A and B change and the value of C
changes (0 to 1); only D is constant
at 1.

Columns 1 and 4 can be joined to
form a vertical cylinder. The values of
both C and D change, the value of A
changes, the value of B is constant at
0 giving: B

The two 1-values can be combined to
form a horizontal cylinder; values of A
and B are constant at 0 and 1
respectively; the value of D is
constant at 0; values of C changes
from 0 to 1; giving: A.B.D

The four 1-values can be combined at
the four corners; value B is constant
at 0 and value D is also constant at 0,
giving: B.D

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD
AB

1

0 0

11 1

0

1 11 1

0 00 0

(C.D) 11

(C.D) 10

–

–

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD
AB

1

0 0

00 1

1

1 00 1

1 00 1

(C.D) 11

(C.D) 10

–

–

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

0

CD
AB

0

1 0

00 0

0

0 00 0

0 01 0

(C.D) 11

(C.D) 10

–

–

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD
AB

0

0 0

00 0

1

0 00 0

1 00 1

(C.D) 11

(C.D) 10

–

–

▲ Figure 15.19

▲ Figure 15.20

▲ Figure 15.21

▲ Figure 15.22

457591_15_CI_AS & A_Level_CS_346-371.indd 367 25/04/19 12:45 PM

368

15
 H

a
r

d
w

a
r

e

15

1 a) Write down the Boolean expression to represent the logic circuit below. [3]

b) Produce the Karnaugh map to represent the above logic circuit and hence
write down a simplified Boolean expression. [3]

c) Draw a simplified logic circuit from your Boolean expression in part b) using
AND and OR gates only. [2]

ACTIVITY 15E

1 a)	 Draw	the	truth	table	for	the	Boolean	expression:
	 A.B.C.D	+	A.B.C.D	+	A.B.C.D	+	A.B.C.D	+	A.B.C.D	+	A.B.C.D
b)	 Draw	the	Karnaugh	map	for	the	Boolean	expression	in	part	a).
c)	 Draw	a	logic	circuit	for	the	simplified	Boolean	expression	using	AND	

or	OR	gates	only.
2 a)	 Draw	the	truth	table	for	the	Boolean	expression:

	 A.B.C	+	A.B.C	+	A.B.C	+	A.B.C
b)	 Draw	the	Karnaugh	map	for	the	expression	in	part	a)	and	hence	write	a	

simplified	Boolean	expression.
3	 Four	binary	signals	(A,	B,	C	and	D)	are	used	to	define	an	integer	in	the	

hexadecimal	range	(0	to	F).	The	decimal	digit	satisfies	one	of	the	following	
criteria	(that	is,	gives	an	output	value	of	X	=	1):

	 X	=	1	if
	 A	=	0
	 B	=	C,	but	A	≠	B	and	A	≠	C
	 B	=	0,	C	=	0

a)	 Complete	the	truth	table	(with	headings	A,	B,	C,	D,	X)	for	the	above	
criteria.

b)	 Construct	the	Karnaugh	map	to	represent	the	above	criteria	and	
produce	a	simplified	Boolean	expression.

c)	 Hence,	draw	an	efficient	logic	circuit	using	AND,	OR	and	NOT	gates	
only.	Indicate	which	input	value	is	not	actually	required	by	the	logic	
circuit.

End of chapter
questions

X

A

B

C

457591_15_CI_AS & A_Level_CS_346-371.indd 368 25/04/19 12:45 PM

369

15.2 B
oolean algebra and logic circuits

15
2 a) Consider the following truth table.

INPUTS OUTPUT

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

i) Draw a Karnaugh map from this truth table. [3]

ii) Use your Karnaugh map from part a) i) to produce a Boolean expression.
 [4]

b) Use the laws of Boolean algebra to simplify:

i) (A + C).(A.D + A.D) + A.C + C [2]

ii) A.(A + B) + (B + A.A).(A + B) [2]

3 a) An SR f lip-f lop is constructed from NOR gates:

i) Complete the truth table for the SR f lip-f lop. [4]

ii) One of the S, R combinations in the truth table
should not be allowed to occur. State the values
of S and R that should not be allowed to occur.
Explain your choice of values. [3]

Q

Q
S

–

R

INPUTS OUTPUTS

S R Q Q

1 0 1 0

0 0

0 1

0 0

1 1

➔

457591_15_CI_AS & A_Level_CS_346-371.indd 369 25/04/19 12:45 PM

370

15
 H

a
r

d
w

a
r

e

15
b) JK f lip-f lops are another type of f lip-f lop.

i) State the three inputs to a JK f lip-f lop. [1]

ii) Give an advantage of using JK f lip-f lops. [1]

iii) Describe two uses of JK f lip-f lops in computers. [2]

4 a) Describe four types of processors used in parallel processing. [4]

b) A hardware designer decided to look into the use of parallel processing.
Describe three features of parallel processing she needs to consider when
designing her new system. [3]

c) A computer system uses pipelining. An assembly code program being run
has eight instructions. Compare the number of clock cycles required when
using pipelining compared to a sequential computer. [3]

5 a) Four descriptions and four types of computer architecture are shown below.

 Draw a line to connect each description to the appropriate type of computer
architecture. [4]

Description Computer architecture

A computer that does not have the
ability for parallel processing.

SIMD

The processor has several ALUs. Each
ALU executes the same instructions but

on different data.
MISD

There are several processors.
Each processor executes different

instructions drawn from a common pool.
Each processor operates on different

data drawn from a common pool.

SISD

There is only one processor executing
one set of instructions on a single set

of data.
MIMD

b) In a massively parallel computer explain what is meant by:

i) Massive [1]

ii) Parallel [1]

c) There are both hardware and software issues that have to be considered
for parallel processing to succeed. Describe one hardware and
one software issue. [4]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q4 November 2015

457591_15_CI_AS & A_Level_CS_346-371.indd 370 25/04/19 12:45 PM

371

15.2 B
oolean algebra and logic circuits

15
6 A logic circuit is shown.

a) Write the Boolean expression corresponding to this logic circuit. [4]

b) Copy and complete the truth table for this logic circuit. [2]

P Q R Working space S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

c) i) Copy and complete the Karnaugh map (K-map) for the truth table in
part b). [1]

PQ

00 01 11 10

R
0

1

 The K-map can be used to simplify the function in part a).

ii) Draw loops around appropriate groups to produce an optional
sum-of-products. [1]

iii) Write a simplified sum-of-products expression, using your answer to
part ii). [1]

d) One Boolean identity is:

 (A + B).C = A.C + B.C

 Simplify the expression for S in part a) to the expression for S in part c) iii).
You should use the given identity and De Morgan’s Laws. [3]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q3 June 2017

S

P

Q
R

457591_15_CI_AS & A_Level_CS_346-371.indd 371 25/04/19 12:45 PM

372

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

System software and virtual
machines

In this chapter, you will learn about

★ how an operating system (OS) can maximise the use of computing
resources

★ how an operating system user interface hides the complexities of
hardware from the user

★ processor management (including multitasking; process states of
running, ready and blocked; scheduling routines such as round robin,
shortest job first, first come first served and shortest remaining time
first; how an OS kernel acts as an interrupt handler; how interrupt
handling is used to manage low-level scheduling)

★ memory management (including paging; segmentation; differences
between paging and segmentation; virtual memory; how pages can be
replaced; disk thrashing)

★ the concept of virtual machines (including the role, benefits and
limitations of virtual machines)

★ how an interpreter can execute programs without producing a
translated version

★ various stages in the compilation of a program (including lexical
analysis; syntax analysis; code generation; optimisation)

★ the grammar of a language being expressed using syntax diagrams
such as Backus-Naur (BNF) notation

★ how Reverse Polish notation (RPN) can be used to carry out the
evaluation of expressions.

 16

WHAT YOU SHOULD ALREADY KNOW
Try these six questions before you read the first
part of this chapter.
1 Name the key management tasks carried out

by a typical operating system.
2 Explain why

a) in general, a computer needs an operating
system

b) some devices using an embedded
microprocessor do not always need an
operating system.

3 Describe typical utility software provided with
an operating system.

4 Describe the main differences between a
command line user interface (CLI) and a
graphical user interface (GUI).

5 Explain the need for interface software such
as printer drivers or mouse drivers.

6 a) What is meant by a library of files?
b) Explain how dynamic link library (DLL)

files differ from static library routines.

16.1 Purposes of an operating system (OS)

457591_16_CI_AS & A_Level_CS_372-409.indd 372 25/04/19 12:58 PM

373

16.1
Purposes of an operating system

 (O
S)

16
Key terms
Bootstrap – a small program that is used to load other
programs to ‘start up’ a computer.

Scheduling – process manager which handles the
removal of running programs from the CPU and the
selection of new processes.

Direct memory access (DMA) controller – device that
allows certain hardware to access RAM independently
of the CPU.

Kernel – the core of an OS with control over process
management, memory management, interrupt
handling, device management and I/O operations.

Multitasking – function allowing a computer to process
more than one task/process at a time.

Process – a program that has started to be executed.

Preemptive – type of scheduling in which a process
switches from running state to steady state or from
waiting state to steady state.

Quantum – a fixed time slice allocated to a process.

Non-preemptive – type of scheduling in which a
process terminates or switches from a running state to
a waiting state.

Burst time – the time when a process has control of the
CPU.

Starve – to constantly deprive a process of the
necessary resources to carry out a task/process.

Low level scheduling – method by which a system
assigns a processor to a task or process based on the
priority level.

Process control block (PCB) – data structure which
contains all the data needed for a process to run.

Process states – running, ready and blocked; the states
of a process requiring execution.

Round robin (scheduling) – scheduling algorithm that
uses time slices assigned to each process in a job
queue.

Context switching – procedure by which, when the next
process takes control of the CPU, its previous state is
reinstated or restored.

Interrupt dispatch table (IDT) – data structure used to
implement an interrupt vector table.

Interrupt priority levels (IPL) – values given to
interrupts based on values 0 to 31.

Optimisation (memory management) – function of
memory management deciding which processes should
be in main memory and where they should be stored.

Paging – form of memory management which divides
up physical memory and logical memory into fixed-size
memory blocks.
Physical memory – main/primary RAM memory.
Logical memory – the address space that an OS
perceives to be main storage.

Frames – fixed-size physical memory blocks.
Pages – fixed-size logical memory blocks.
Page table – table that maps logical addresses to
physical addresses; it contains page number, flag
status, frame address and time of entry.
Dirty – term used to describe a page in memory that
has been modified.
Translation lookaside buffer (TLB) – this is a memory
cache which can reduce the time taken to access a user
memory location; it is part of the memory management
unit.
Segments memory– variable-size memory blocks into
which logical memory is split up.
Segment number – index number of a segment.
Segment map table – table containing the segment
number, segment size and corresponding memory
location in physical memory: it maps logical memory
segments to physical memory.
Virtual memory – type of paging that gives the illusion
of unlimited memory being available.
Swap space – space on HDD used in virtual memory,
which saves process data.
In demand paging – a form of data swapping where
pages of data are not copied from HDD/SSD into RAM
until they are actually required.
Disk thrashing – problem resulting from use of virtual
memory. Excessive swapping in and out of virtual
memory leads to a high rate of hard disk read/write
head movements thus reducing processing speed.
Thrash point – point at which the execution of a
process comes to a halt since the system is busier
paging in/out of memory rather than actually
executing them.
Page replacement – occurs when a requested page is
not in memory and a free page cannot be used to satisfy
allocation.
Page fault – occurs when a new page is referred but is
not yet in memory.
First in first out (FIFO) page replacement – page
replacement that keeps track of all pages in memory
using a queue structure. The oldest page is at the front
of the queue and is the first to be removed when a new
page is added.
Belady’s anomaly – phenomenon which means it is
possible to have more page faults when increasing the
number of page frames.
Optimal page replacement – page replacement
algorithm that looks forward in time to see which frame
to replace in the event of a page fault.
Least recently used (LRU) page replacement – page
replacement algorithm in which the page which has not
been used for the longest time is replaced.

457591_16_CI_AS & A_Level_CS_372-409.indd 373 25/04/19 12:58 PM

374

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

16.1.1 How an operating system can maximise the use of
computer resources

When a computer is first switched on, the basic input/output system (BIOS) –
which is often stored on the ROM chip – starts off a bootstrap program. The
bootstrap program loads part of the operating system into main memory (RAM)
from the hard disk/SSD and initiates the start-up procedures. This process is
less obvious on tablets and mobile phones – they also use RAM, but their main
internal memory is supplied by flash memory; this explains why the start-up of
tablets and mobile phones is almost instantaneous.

The flash memory is split into two parts.

1 The part where the OS resides. It is read only. This is why the OS can be
updated by the mobile phone/tablet manufacturers but the user cannot
interfere with the software or ‘steal’ memory from this part of memory.

2 The part where the apps (and associated data) are stored. The user does not
have direct access to this part of memory either.

The RAM is where the apps are executed and where data currently in use is
stored.

One operating system task is to maximise the utilisation of computer resources.
Resource management can be split into three areas

1 the CPU
2 memory
3 the input/output (I/O) system.

Resource management of the CPU involves the concept of scheduling to allow
for better utilisation of CPU time and resources (see Sections 16.1.2 and 16.1.4).
Regarding input/output operations, the operating system will need to deal with

» any I/O operation which has been initiated by the computer user
» any I/O operation which occurs while software is being run and resources,

such as printers or disk drives, are requested.

Figure 16.1 shows how this links together using the internal bus structure (note
that the diagram shows how it is possible to have direct data transfer between
memory and I/O devices using DMA):

data bus

direct memory
access controller

(DMA)

CPU main
memory

USB
device keyboard monitor SSD/HDD printer

device
controller

keyboard
driver

monitor
driver

SSD/HDD
driver

printer
driver

▲ Figure 16.1

457591_16_CI_AS & A_Level_CS_372-409.indd 374 25/04/19 12:58 PM

375

16.1
Purposes of an operating system

 (O
S)

16
The direct memory access (DMA) controller is needed to allow hardware to
access the main memory independently of the CPU. When the CPU is carrying
out a programmed I/O operation, it is fully utilised during the entire read/write
operations; the DMA frees up the CPU to allow it to carry out other tasks while
the slower I/O operations are taking place.

» The DMA initiates the data transfers.
» The CPU carries out other tasks while this data transfer operation is taking

place.
» Once the data transfer is complete, an interrupt signal is sent to the CPU

from the DMA.

Table 16.1 shows how slow some I/O devices are when compared with a typical
computer’s clock speed of 2.7 GHz.

I/O device Data transfer rate

disk up to 100 Mbps

mouse up to 120 bps

laser printer up to 1 Mbps

keyboard up to 50 bps

▲ Table 16.1 Sample data transfer rates for some I/O devices

EXTENSION ACTIVITY 16A

An I/O device is connected to the main memory of a computer using a 16-bit
data bus. The CPU is capable of executing 2 × 109 instructions per second.
An instruction will use five processor cycles; three of these cycles are used
by the data bus. A memory read/write operation will require one processor
cycle.

Suppose the CPU is 80% utilised doing tasks that do not involve an I/O
operation. Estimate the data transfer rate using the DMA.

The Kernel
The kernel is part of the operating system. It is the central component
responsible for communication between hardware, software and memory.
It is responsible for process management, device management, memory
management, interrupt handling and input/output file communications,
as shown in Figure 16.2.

applications

hardware

memory
CPU

OS

user
interface

kernel

▲ Figure 16.2

457591_16_CI_AS & A_Level_CS_372-409.indd 375 25/04/19 12:58 PM

376

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

One of the most important tasks of an operating system is to hide the
complexities of the hardware from the users. This can be done by

» using GUI interfaces rather than CLI (see Chapter 5)
» using device drivers (which simplifies the complexity of hardware interfaces)
» simplifying the saving and retrieving of data from memory and storage

devices
» carrying out background utilities, such as virus scanning which the user can

‘leave to its own devices’.

A simple example is transferring data from a hard disk to a floppy disk using a
computer from the 1990s. This would require a command such as:

copy C:\windows\myfile.txt

Modern computers use a drag and drop method, which removes any of the
complexities of interfacing directly with the computer. Simply dragging a file
to a folder on a modern equivalent, such as a flash drive, would transfer the
file; the operating system carries out all of the necessary processes – the user
just moves the mouse.

16.1.2 Process management
Multitasking
Multitasking allows computers to carry out more than one task (known as a
process) at a time. (A process is a program that has started to be executed.)
Each of these processes will share common hardware resources. To ensure
multitasking operates correctly (for example, making sure processes do not
clash), scheduling is used to decide which processes should be carried out.
Scheduling is considered in more depth in the next section.

Multitasking ensures the best use of computer resources by monitoring the
state of each process. It should give the appearance that many processes are
being carried out at the same time. In fact, the kernel overlaps the execution
of each process based on scheduling algorithms. There are two types of
multitasking operating systems

1 preemptive (processes are pre-empted after each time quantum)
2 non-preemptive (processes are pre-empted after a fixed time interval).

Table 16.2 summarises the differences between preemptive and non-preemptive.

Preemptive Non-preemptive

resources are allocated to a process for a
limited time

once the resources are allocated to a
process, the process retains them until
it has completed its burst time or the
process has switched to a waiting state

the process can be interrupted while it is
running

the process cannot be interrupted while
running; it must first finish or switch to a
waiting state

high priority processes arriving in the
ready queue on a frequent basis can mean
there is a risk that low priority processes
may be starved of resources

if a process with a long burst time is
running in the CPU, there is a risk that
another process with a shorter burst time
may be starved of resources

this is a more flexible form of scheduling this is a more rigid form of scheduling

▲ Table 16.2 The differences between preemptive and non-preemptive systems

457591_16_CI_AS & A_Level_CS_372-409.indd 376 25/04/19 12:58 PM

377

16.1
Purposes of an operating system

 (O
S)

16
Low level scheduling
Low level scheduling decides which process should next get the use of CPU
time (in other words, following an OS call, which of the processes in the
ready state can now be put into a running state based on their priorities).
Its objectives are to maximise the system throughput, ensure response time
is acceptable and ensure that the system remains stable at all times (has
consistent behaviour in its delivery). For example, low level scheduling resolves
situations in which there are conflicts between two processes requiring the
same resource.

Suppose two apps need to use a printer; the scheduler will use interrupts,
buffers and queues to ensure only one process gets printer access – but it also
ensures that the other process gets a share of the required resources.

Process scheduler
Process priority depends on

» its category (is it a batch, online or real time process?)
» whether the process is CPU-bound (for example, a large calculation such as

finding 10 000! (10 000 factorial) would need long CPU cycles and short I/O
cycles) or I/O bound (for example, printing a large number of documents
would require short CPU cycles but very long I/O cycles)

» resource requirements (which resources does the process require, and how
many?)

» the turnaround time, waiting time (see Section 16.1.3) and response time for
the process

» whether the process can be interrupted during running.

Once a task/process has been given a priority, it can still be affected by

» the deadline for the completion of the process
» how much CPU time is needed when running the process
» the wait time and CPU time
» the memory requirements of the process.

16.1.3 Process states
A process control block (PCB) is a data structure which contains all of the
data needed for a process to run; this can be created in memory when data
needs to be received during execution time. The PCB will store

» current process state (ready, running or blocked)
» process privileges (such as which resources it is allowed to access)
» register values (PC, MAR, MDR and ACC)
» process priority and any scheduling information
» the amount of CPU time the process will need to complete
» a process ID which allows it to be uniquely identified.

A process state refers to the following three possible conditions

1 running
2 ready
3 blocked.

457591_16_CI_AS & A_Level_CS_372-409.indd 377 25/04/19 12:58 PM

378

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

Table 16.3 summarises some of the conditions when changing from one process
state to another.

Process states Conditions
running state → ready state a program is executed during its time slice; when the time

slice is completed an interrupt occurs and the program is
moved to the READY queue

ready state → running state a process’s turn to use the processor; the OS scheduler
allocates CPU time to the process so that it can be executed

running state → blocked state the process needs to carry out an I/O operation; the OS
scheduler places the process into the BLOCKED queue

blocked state → ready state the process is waiting for an I/O resource; an I/O
operation is ready to be completed by the process

▲ Table 16.3

To investigate the concept of a READY QUEUE and a BLOCKED QUEUE a little
further, we will consider what happens during a round robin process, in which
each of the processes have the same priority.
Supposing two processes, P1 and P2, have completed. The current status is
shown in Figure 16.4.

READY QUEUE
finish

process sent to blocked queue –
waiting for I/O resource

process can either be
placed at the rear of
ready queue or
be placed in the
blocked queue if it is
waiting for an I/O
resource

BLOCKED QUEUE

RUNNING

process at end of CPU time – returned to back of queue

high level scheduler

low level scheduler

low level
scheduler

P5P6P4

P3

CPU
time

If the process cannot continue
because it is waiting for an I/O
device to become available, for
example, then it is moved by
the low level scheduler to the
BLOCKED QUEUE

▲ Figure 16.4

Figure 16.3 shows the link between these three conditions.

new
program

READY state –
program

waiting for
CPU time

RUNNING state –
program

running on a
CPU

process
completed/
terminated

BLOCKED
state – program
waiting for an
event or I/O

interrupt

program
admitted to the

READY queue
process finished

process waits for event or
I/O and is placed in the
BLOCKED queue

event or I/O
operation occurs scheduler selects process to run

▲ Figure 16.3

457591_16_CI_AS & A_Level_CS_372-409.indd 378 25/04/19 12:58 PM

379

16.1
Purposes of an operating system

 (O
S)

16
The following summarises what happens during the round robin process:

» Each process has an equal time slice (known as a quantum).
» When a time slice ends, the low level scheduler puts the process back into

the READY QUEUE allowing another process to use CPU time.
» Typical time slices are about 10 to 100 ms long (a 2.7 GHz clock speed would

mean that 100 ms of CPU time is equivalent to 27 million clock cycles, giving
considerable amount of potential processing time to a process).

» When a time slice ends, the status of each process must be saved so that it
can continue from where it left off when it is allocated its next time slice.

» The contents of the CPU registers (PC, MAR, MDR, ACC) are saved to the
process control block (PCB); each process has its own control block.

» When the next process takes control of the CPU (burst time), its previous
state is reinstated or restored (this is known as context switching).

Scheduling routine algorithms
We will consider four examples of scheduling routines

1 first come first served scheduling (FCFS)
2 shortest job first scheduling (SJF)
3 shortest remaining time first scheduling (SRTF)
4 round robin.

These are some of the most common strategies used by schedulers to ensure
the whole system is running efficiently and in a stable condition at all times.
It is important to consider how we manage the ready queue to minimise the
waiting time for a process to be processed by the CPU.

First come first served scheduling (FCFS)
This is similar to the concept of a queue structure which uses the first in first
out (FIFO) principle.

The data added to a queue first is the data that leaves the queue first.

Suppose we have four processes, P1, P2, P3 and P4, which have burst times of
23 ms, 4 ms, 9 ms and 3 ms respectively. The ready queue will be:

P1 P2 P3 P4

0 23 27 36 39
▲ Figure 16.5

This will give the average waiting time for a process as:

(0 + 23 + 27 + 36)
4 = 21.5ms

Shortest job first scheduling (SJF) and shortest remaining time first
scheduling (SRTF)
These are the best approaches to minimise the process waiting times.

SJF is non-preemptive and SRTF is preemptive.

The burst time of a process should be known in advance; although this is not
always possible.

We will consider the same four processes and burst times as the above example
(P1 = 23 ms, P2 = 4 ms, P3 = 9 ms, P4 = 3 ms).

457591_16_CI_AS & A_Level_CS_372-409.indd 379 25/04/19 12:58 PM

380

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

With SJF, the process requiring the least CPU time is executed first. P4 will be
first, then P2, P3 and P1. The ready queue will be:

P4 P2 P3 P1

0 3 7 16 39
▲ Figure 16.6

The average waiting time for a process will be:
(0 + 3 + 7 + 16)

4 = 6.5ms

With SRTF, the processes are placed in the ready queue as they arrive; but when
a process with a shorter burst time arrives, the existing process is removed
(pre-empted) from execution. The shorter process is then executed first.

Let us consider the same four processes, including their arrival times.

Process Burst time (ms) Arrival time of process (ms)

P1 23 0

P2 4 1

P3 9 2

P4 3 3

▲ Table 16.4

The ready queue will be:

P1 P2 P4 P2 P3 P1

0 1 3 6 8 17 39
▲ Figure 16.7

The average waiting time for a process will be:

((0 + (6 – 3) + (8 – 2) + (17 – 1))
4 = 6.25ms

The following summarises what happens in more depth:

» Process P1 arrives first; but after only 1 ms of processing time, process P2 arrives
with a burst time of 4 ms; this is a shorter burst time than process P1 (23 ms).

» Process P1 (remaining time for completion = 22 ms) is now removed and
placed in the blocked queue; process P2 is now placed in the ready queue
and processed.

» As P2 is executed, P3 arrives 1 ms later; but the burst time for process P3
(9 ms) is greater than the burst time for P2 (4 ms); therefore, P3 is put in the
blocked queue for now and P2 continues.

» After another 1 ms, P4 arrives; this has a burst time of 3 ms, which is less
than the burst time for P2 (4 ms); thus P2 (remaining time for completion =
2 ms) is removed and put into the blocked queue; process P4 is now put in
the ready queue and is executed.

» Once P4 is completed, P2 is put back into the ready queue for 2 ms until it is
completed (burst time for P2 < burst time for P3).

» P3 is now placed back in the ready queue (burst time P3 < burst time P1)
and completed after 9 ms.

» Finally, process P1 is placed in the ready queue and is completed after a
further 22 ms.

457591_16_CI_AS & A_Level_CS_372-409.indd 380 25/04/19 12:58 PM

381

16.1
Purposes of an operating system

 (O
S)

16
Round robin
A fixed time slice is given to each process; this is known as a quantum.

Once a process is executed during its time slice, it is removed and placed in the
blocked queue; then another process from the ready queue is executed in its
own time slice.

Context switching is used to save the state of the pre-empted processes.

The ready queue is worked out by giving each process its time slice in the
correct order (if a process completes before the end of its time slice, then the
next process is brought into the ready queue for its time slice).

Thus, for the same four processes, P1–P4, we get this ready queue:

P1 P2 P3 P4 P1 P3 P1 P1 P1

0 5 9 14 17 22 26 31 36 39
▲ Figure 16.8

The average waiting time for a process is calculated as follows:

P1: (39 – 23) = 16 ms

P2: (9 – 4) = 5 ms

P3: (26 – 9) = 17 ms

P4: (17 – 3) = 14 ms

Thus, average waiting time (16 + 5 + 17 + 14)
4 = 13ms

So, the average waiting times for the four scheduling routines, for P1–P4, are:

FCFS 21.5 ms

SJF 6.5 ms

SRTF 6.25 ms

Round robin 13.0 ms

▲ Table 16.5

EXTENSION ACTIVITY 16B

Five processes have the following burst times and arrival times.

Process Burst time (ms) Arrival time (ms)

A 45 0

B 18 8

C 5 10

D 23 14

E 11 19

a) Draw the ready queue status for the FCFS, SJF, SRTF and round robin
scheduling methods.

b) Calculate the average waiting time for each process using the four
scheduling routines named in part a).

457591_16_CI_AS & A_Level_CS_372-409.indd 381 25/04/19 12:58 PM

382

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

Interrupt handling and OS kernels
The CPU will check for interrupt signals. The system will enter the kernel mode
if any of the following type of interrupt signals are sent:

» Device interrupt (for example, printer out of paper, device not present, and
so on).

» Exceptions (for example, instruction faults such as division by zero,
unidentified op code, stack fault, and so on).

» Traps/software interrupt (for example, process requesting a resource such as
a disk drive).

When an interrupt is received, the kernel will consult the interrupt dispatch
table (IDT) – this table links a device description with the appropriate
interrupt routine.

IDT will supply the address of the low level routine to handle the interrupt
event received. The kernel will save the state of the interrupt process on the
kernel stack and the process state will be restored once the interrupting task
is serviced. Interrupts will be prioritised using interrupt priority levels (IPL)
(numbered 0 to 31). A process is suspended only if its interrupt priority level is
greater than that of the current task.

The process with the lower IPL is saved in the interrupt register and is handled
(serviced) when the IPL value falls to a certain level. Examples of IPLs include:

31: power fail interrupt

24: clock interrupt

20-23: I/O devices

Figure 16.9 summarises the interrupt process.

interrupt received; other
interrupts are then
disabled so that the

process that deals with
the interrupt cannot
itself be interrupted

the state of the current
task/process is saved on

the kernel stack

the source of the
interrupt is identified;

for example, is it
hardware, an exception

or a trap/software
interrupt; the priority of
the interrupt is checked

after an interrupt has
been handled, the

interrupt needs to be
restored so that any

further interrupts can be
dealt with

once completed, the
state of the interrupted
task/process is restored
using the values saved
on the kernel stack: the
process then continues

the system now jumps
to the interrupt service
routine (using the IDT);
for example, it may be
necessary to display an
error message on the

user’s screen

▲ Figure 16.9

16.1.4 Memory management
As with the storage of data on a hard disk, processes carried out by the CPU
may also become fragmented. To overcome this problem, memory management
will determine which processes should be in main memory and where they
should be stored (this is called optimisation); in other words, it will determine
how memory is allocated when a number of processes are competing with each

457591_16_CI_AS & A_Level_CS_372-409.indd 382 25/04/19 12:58 PM

383

16.1
Purposes of an operating system

 (O
S)

16
other. When a process starts up, it is allocated memory; when it is completed,
the OS deallocates memory space.

We will now consider the methods by which memory management allocates
memory to processes/programs and data.

Single (contiguous) allocation
With this method, all of the memory is made available to a single application.
This leads to inefficient use of main memory.

Paged memory/paging
In paging, the memory is split up into partitions (blocks) of a fixed size. The
partitions are not necessarily contiguous. The physical memory and logical
memory are divided up into the same fixed-size memory blocks. Physical
memory blocks are known as frames and fixed-size logical memory blocks are
known as pages. A program is allocated a number of pages that is usually just
larger than what is actually needed.

When a process is executed, process pages from logical memory are loaded into
frames in physical memory. A page table is used; it uses page number as the
index. Each process has its own separate page table that maps logical addresses
to physical addresses.

The page table will show page number, flag status, page frame address, and
the time of entry (for example, in the form 08:25:55:08). The time of entry is
important when considering page replacement algorithms. Some of the page
table status flags are shown in Table 16.6 below.

Flag Flag status Description of status
S S = 0 page size default value of 4 KiB

S = 1 page size set to 4 MiB

A A = 0 page has not yet been accessed

A = 1 page has been accessed (read or write operation)

D D = 0 page is unmodified (not dirty)

D = 1 page has been written to/modified (dirty)
G G = 0 address in cache memory can be updated (global)

G = 1 when set to 1 this prevents TLB from updating address in cache
memory

U U = 0 only the supervisor can access the page

U = 1 page may be accessed by all users

R R = 0 page is in the read-only state

R = 1 page is in the read/write state

P P = 0 page is not yet present in the memory

P = 1 page is present in memory

▲ Table 16.6

The following diagram only shows page number and frame number (we will
assume status flags have been set and entry time entered). Each entry in
a page table points to a physical address that is then mapped to a virtual
memory address – this is formed from offset in page directory + offset in
page table.

457591_16_CI_AS & A_Level_CS_372-409.indd 383 25/04/19 12:58 PM

384

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

page
number

frame
number

0 0 1 0
1 1 4 1
2 2 3 2
3 3 7 3
4 4 4
5 5 5
6 6 6
7 7 7

pages
(logical memory)

page table frames
(physical memory)

▲ Figure 16.10

Segmentation/segmented memory
In segmented memory, logical address space is broken up into variable-size
memory blocks/partitions called segments. Each segment has a name and
size. For execution to take place, segments from logical memory are loaded
into physical memory. The address is specified by the user which contains the
segment name and offset value. The segments are numbered (called segment
numbers) rather than using a name and this segment number is used as
the index in a segment map table. The offset value decides the size of the
segment:

address of segment in physical memory space = segment number + offset value

1000
1100
1200
1300
1400
1500
1600
1700
1800

process
(logical memory segments)

1900
2000
2100
2200
2300
2400
2500
2600
2700

segment map table physical memory

seg
no.

size of
segment

memory
address

(start address)

1 400

segment 1

segment 2

1000

2 700 1400

3 200 2100

segment 3

▲ Figure 16.11

The segment map table in Figure 16.11 contains the segment number, segment
size and the start address in physical memory. Note that the segments
in logical memory do not need to be contiguous, but once loaded into
physical memory, each segment will become a contiguous block of memory.
Segmentation memory management works in a similar way to paging, but the
segments are variable sized memory blocks rather than all the same fixed size.

457591_16_CI_AS & A_Level_CS_372-409.indd 384 25/04/19 12:58 PM

385

16.1
Purposes of an operating system

 (O
S)

16
Summary of the differences between paging and segmentation

Paging Segmentation
a page is a fixed-size block of memory a segment is a variable-size block of

memory

since the block size is fixed, it is possible
that all blocks may not be fully used – this
can lead to internal fragmentation

because memory blocks are a variable size,
this reduces risk of internal fragmentation
but increases the risk of external
fragmentation

the user provides a single value – this
means that the hardware decides the
actual page size

the user will supply the address in two
values (the segment number and the
segment size)

a page table maps logical addresses to
physical addresses (this contains the base
address of each page stored in frames in
physical memory space)

segmentation uses a segment map table
containing segment number + offset
(segment size); it maps logical addresses to
physical addresses

the process of paging is essentially
invisible to the user/programmer

segmentation is essentially a visible
process to a user/programmer

procedures and any associated data cannot
be separated when using paging

procedures and any associated data can be
separated when using segmentation

paging consists of static linking and
dynamic loading

segmentation consists of dynamic linking
and dynamic loading

pages are usually smaller than segments

▲ Table 16.7

16.1.5 Virtual memory
One of the problems encountered with memory management is a situation in
which processes run out of RAM main memory. If the amount of available RAM
is exceeded due to multiple processes running, it is possible to corrupt the
data used in some of the programs being run. This can be solved by separately
mapping each program’s memory space to RAM and utilising the hard disk drive
(or SSD) if we need more memory. This is the basis behind virtual memory.

Essentially, RAM is the physical memory and virtual memory is RAM + swap space
on the hard disk (or SSD). Virtual memory is usually implemented using in demand
paging (segmentation can be used but is more difficult to manage). To execute
a program, pages are loaded into memory from HDD (or SSD) whenever required.
We can show the differences between paging without virtual memory and paging
using virtual memory in two simple diagrams (Figures 16.12 and 16.13).

Without virtual management:

0

32-bit program address space (4 GiB) 30-bit RAM address space (1 GiB)

when process/program 4
tries to access RAM, there is
no available memory,
causing a system crash

1

2

3

4

0

1

2

3

▲ Figure 16.12

457591_16_CI_AS & A_Level_CS_372-409.indd 385 25/04/19 12:58 PM

386

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

With virtual management:

0

32-bit program address space (4 GiB) 32-bit 4 GiB map

0 maps to 3
1 maps to 0
2 maps to 1
3 maps to 2
4 is not in memory, but the system will know it
needs to go to the HDD to find the data

30-bit RAM address space (1 GiB)

1

2

3

4

0

1

2

3

HDD

▲ Figure 16.13

Virtual memory management now moves the oldest data to disk and the 4 GiB
map is updated so that

» data 0 is now mapped to the HDD
» program/process 4 now maps to 3 in RAM.

This gives the illusion of unlimited memory being available. Even though RAM
is full, data can be moved in and out of HDD to give the illusion that there is
still memory available.

The main benefits of virtual memory are

» programs can be larger than physical memory and can still be executed
» it leads to more efficient multi-programming with less I/O loading and

swapping programs into and out of memory
» there is no need to waste memory with data that is not being used (for

example, during error handling)
» it eliminates external fragmentation/reduces internal fragmentation
» it removes the need to buy and install more expensive RAM memory.

The main drawback when using HDD is that, as main memory fills, more and
more data/pages need to be swapped in and out of virtual memory. This leads
to a high rate of hard disk read/write head movements; this is known as disk
thrashing. If more time is spent on moving pages in and out of memory than
actually doing any processing, then the processing speed of the computer will
be reduced. A point can be reached when the execution of a process comes to a
halt since the system is so busy paging in and out of memory; this is known as
the thrash point. Due to large numbers of head movements, this can also lead
to premature failure of a hard disk drive. Thrashing can be reduced by installing
more RAM, reducing the number of programs running at a time, or reducing the
size of the swap file.

How do programs/processes access data when using virtual memory?
Virtual memory is used in a more general sense to manage memory using
paging:

» The program executes the load process with a virtual address (VA).
» The computer translates the address to a physical address (PA) in memory.
» If PA is not in memory, the OS loads it from HDD.
» The computer then reads RAM using PA and returns the data to the program.

457591_16_CI_AS & A_Level_CS_372-409.indd 386 25/04/19 12:58 PM

387

16.1
Purposes of an operating system

 (O
S)

16
Figure 16.14 show this process.

processor
load T3 (1200)
load T2 (600)

processor
load T3 (1200)
load T2 (600)
add T4, T2, T3
load T5 (800)

processor
load T3 (1200)
load T2 (600)
add T4, T2, T3
load P5 (800)

processor

virtual address
space (VA)

virtual address
space (VA)

translation
(VA → PA)

translation
(VA → PA)

load T3 (1200)
map

VA
600
800
1200

9
disk
2

PA

map
VA
600
800
1200

9
disk
2

PA

map
VA
600
800
1200

9
disk
2

PA

map
VA
600
800
1200

9
4
2

PA

0
1
2 data for T3
3
4
5
6
7
8
9

0
1
2 data for T3

data for T2

3
4
5
6
7
8
9

0
1
2 data for T3

data for T5

data for T2

3
4
5
6
7
8
9

0
1
2 data for T3

data for T5

data for T2

3
4
5
6
7
8
9

HDD

physical address
space (PA) – RAM

physical address
space (PA) – RAM

physical address
space (PA) – RAM

virtual address
space (VA)

location of data
for task 5 (T5)

virtual address
space (VA)

translation
(VA → PA)

translation
(VA → PA)

physical address
space (PA) – RAM

data sent back to VA

data sent back to VA

The translation map is now updated and disk is replaced by PA = 4:

data sent back to VA

VA = 1200 PA = 2

PA = 9

VA = 600

VA = 800

VA = 800 PA = 4

▲ Figure 16.14

457591_16_CI_AS & A_Level_CS_372-409.indd 387 25/04/19 12:58 PM

388

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

16.1.6 Page replacement
Page replacement occurs when a requested page is not in memory (P flag = 0).
When paging in/out from memory, it is necessary to consider how the computer can
decide which page(s) to replace to allow the requested page to be loaded. When
a new page is requested but is not in memory, a page fault occurs and the OS
replaces one of the existing pages with the new page(s). How to decide which page
to replace is done in a number of different ways, but all methods have the same
goal of minimising the number of page faults. A page fault is a type of interrupt
(it is not an error condition) raised by hardware. When a running program accesses
a page that is mapped into virtual memory address space, but not yet loaded into
physical memory, then the hardware needs to raise this page fault interrupt.

Page replacement algorithms
First in first out (FIFO)
When using first in first out (FIFO), the OS keeps track of all pages in memory
using a queue structure. The oldest page is at the front of the queue and is the
first to be removed when a new page needs to be added. FIFO algorithms do
not consider page usage when replacing pages: a page may be replaced simply
because it arrived earlier than another page. It suffers from what is known as
Belady’s anomaly, a situation in which it is possible to have more page faults
when increasing the number of page frames – this is the reverse of the ideal
situation shown by the graph in Figure 16.15.

n
u

m
b

er
 o

f
p

ag
e

fa
u

lt
s

number of frames

ideal situation

Belady’s anomaly

▲ Figure 16.15

Optimal page replacement (OPR)
Optimal page replacement looks forward in time to see which frame it can
replace in the event of a page fault. The algorithm is impossible to implement; at
the time of a page fault, the OS has no way of knowing when each of the pages
will be replaced next. It tends to get used for comparison studies – but it has
the advantage that it is free of Belady’s anomaly and has the fewest page faults.

Least recently used page replacement (LRU)
With least recently used page replacement (LRU), the page which has not
been used for the longest time is replaced. To implement this method, it
is necessary to maintain a linked list of all pages in memory with the most
recently used page at the front and the least recently used page at the rear.

Clock page replacement/second-chance page replacement
Clock page replacement algorithms use a circular queue structure with a single
pointer serving as both head and tail. When a page fault occurs, the page
pointed to (element 3 in the diagram on the following page) is inspected. The
action taken next depends on the R-flag status. If R = 0, the page is removed
and a new page inserted in its place; if R = 1, the next page is looked at and
this is repeated until a page where R = 0 is found.

457591_16_CI_AS & A_Level_CS_372-409.indd 388 25/04/19 12:58 PM

389

16.1
Purposes of an operating system

 (O
S)

16
R = 0 R = 0 R = 1 R = 1 R

 = 1 R = 1 R = 0 R = 1 R
 =

 0

 R
 =

 0

 R
 =

 0

 R
 =

 1

 12 1 2 3 4 5 6 7
 8

 9

10

 1

1

▲ Figure 16.16

In all page replacement methods, when a page fault occurs, the OS has to
decide which page to remove from memory to make room for a new page. Page
replacement is done by swapping pages from back-up store to main memory (and
vice versa). If the page to be removed has been modified while in memory (called
dirty), it must be written back to disk. If it has not been changed, then no re-write
needs to be done. As mentioned earlier page faults are not errors and are used to
increase the amount of memory available to programs that utilise virtual memory.

16.1.7 Summary of the basic differences between processor
management and memory management

Processor management decides which processes will be executed and in which
order (to maximise resources), whereas memory management will decide where
in memory data/programs will be stored and how they will be stored. Although
quite different, both are essential to the efficient and stable running of any
computer system.

The two OS operations can be summarised as in Figure 16.17.

Process
management

Multitasking
(i.e. more than one
task running at a

time)

Scheduling
(assigns priorities to

decide which
process to run on

CPU)

scheduling routines – strategies
to ensure all processes can be

run according to FCFS, SJF,
SRTF and round robin

uses interrupts to service
hardware and software
requests

scheduling requires use of
ready, running and blocked
states

Memory
management

Partitioning of
memory – to know
where to store data,
run processes and

so on

Memory
paging

Memory
segmentation

use of virtual memory to
maximise RAM and CPU
usage

use of paging strategies
regarding which
processes are in
physical memory

use of segmentation
strategies regarding
which processes are in
physical memory

▲ Figure 16.17

457591_16_CI_AS & A_Level_CS_372-409.indd 389 25/04/19 12:58 PM

390

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

ACTIVITY 16A

For each of the following questions, choose the option which corresponds to
the correct response.
1 Which of the following page replacement algorithms suffer from Belady’s

anomaly?
A) first in first out (FIFO) page replacement
B) clock page replacement
C) least recently used (LRU) page replacement
D) optimal page replacement
E) all the above

2 Complete this sentence: A page fault occurs when …
A) … an exception occurs.
B) … a requested page is not yet in the memory.
C) … a requested page is already in memory.
D) … the computer runs out of RAM memory.
E) … a page has become corrupted.

3 Which of the following pages will the optimal page replacement algorithm
select?
A) the page that has been used the most number of times
B) the page that will not be used for the longest time in the future
C) the page that has not been used for the longest time in the past
D) the page that has been used the least number of times
E) the page that has been in memory for the shortest time

4 A virtual memory system is using the FIFO page replacement algorithm.
Increasing the number of page frames in main memory will:
A) sometimes increase the number of page faults
B) always decrease the number of page faults
C) always increase the number of page faults
D) never affect the number of page faults
E) sometimes cause memory instability

5 What is the swap space on a hard disk (HDD) used for?
A) storing device drivers
B) saving temporary html pages
C) storing page faults
D) saving interrupts
E) saving process data

6 Increasing the size of RAM on a computer will usually increase its
performance. Which of the following is the reason for this?
A) it will increase the size of virtual memory
B) there will be fewer segmentation faults
C) larger RAM results in fewer interrupts occurring
D) there will be fewer page faults occurring
E) larger RAMs have a faster data transfer rate

7 Which of the following is a description of virtual memory?
A) a larger secondary memory
B) a larger main memory (RAM)

457591_16_CI_AS & A_Level_CS_372-409.indd 390 25/04/19 12:58 PM

391

16.1
Purposes of an operating system

 (O
S)

16
C) method of reducing the number of page faults
D) system that uses host and guest operating systems
E) it gives the illusion of a larger main memory

8 Which of the following would cause disk thrashing?
A) when a page fault occurs
B) when a number of interrupts occur
C) frequent accessing of pages not in main memory
D) when the processes on a system are in the running state
E) when the processes on a system are in the blocked state

9 Which of the following is the main entry in a page table?
A) the virtual page number (VN)
B) the page frame number
C) the access rights to the page
D) the size of the page
E) the type of linking and loading used

10 Which of the following determines the minimum number of page
frames that must be allocated to a running process in a virtual memory
environment?
A) the instruction set architecture
B) the page size being used
C) the physical memory size
D) the virtual memory size
E) the number of processes occurring

11 Which of the following statements about virtual memories is true?
A) virtual memory allows each process to exceed the size of the main

memory
B) virtual memory translates virtual addresses into physical memory

addresses
C) virtual memory increases the degree of multiprogramming that can

take place
D) virtual memory reduces the amount of disk thrashing that takes place
E) virtual memory reduces context switching overheads

12 Which of the following is a true statement about disk thrashing?
A) it reduces the amount of page input/output occurrences
B) it decreases the degree of multiprogramming possible
C) there will be excessive page input-output taking place
D) it generally improves system performance
E) it reduces the amount of fragmentation on the disk

13 Which of the following is a likely cause of disk thrashing?
A) the page size was too small
B) FIFO is being used as the page replacement method
C) least recently used (LRU) page replacement method is being used
D) optimal page replacement method is being used
E) too many programs/processes are being run at the same time

14 Which of the following is a description of a page fault?
A) it occurs when a program/process accesses a page not yet in memory
B) it occurs when a program/process accesses a page available in memory

457591_16_CI_AS & A_Level_CS_372-409.indd 391 25/04/19 12:58 PM

392

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

C) it is an error condition when reading a page
D) it is a reference to a page belonging to a different running program
E) it is the result of disk thrashing when excessive paging is taking place

15 Which of the following statements about disk thrashing is true?
A) it always occurs on large computers
B) it is a result of using virtual memory systems
C) disk thrashing can be reduced by doing swapping
D) it is a result of internal fragmentation occurring
E) it can be caused if poor paging algorithms are being used

16.2 Virtual machines (VMs)

Key terms
Virtual machine – an emulation of an existing computer
system. A computer OS running within another
computer’s OS.
Emulation – the use of an app/device to imitate the
behaviour of another program/device; for example,
running an OS on a computer which is not normally
compatible.

Host OS – an OS that controls the physical hardware.
Guest OS – an OS running on a virtual machine.
Hypervisor – virtual machine software that creates and
runs virtual machines.

It is important that virtual memory and virtual machines are not confused
with each other – they are different concepts. This section explains what
virtual machines are and outlines some of the benefits and limitations.

Suppose you are using a PC running in a Windows 10 environment and you
have downloaded some software that will only run on an Apple computer. It
is possible to emulate the running of the Apple software on the Windows PC
(hardware) – this is known as a virtual machine. The emulation will allow the
Apple software to use all of the hardware on the host PC.

Effectively, a virtual machine runs the existing OS (called the host operating
system) and oversees the virtual hardware using a guest operating system –
in our example above, the host OS is Windows 10 and the guest OS is Apple.
The emulation engine is referred to as a hypervisor; this handles the virtual
hardware (CPU, memory, HDD and other devices) and maps them to the physical
hardware on the host computer.

First, virtual machine software is installed on the host computer. When
starting up a virtual machine, the chosen guest operating system will run the
emulation in a window on the host operating system. The emulation will run as
an app on the host computer. The guest OS has no awareness that it is on an
‘alien machine’; it believes it is running on a compatible system. It is actually
possible to run more than one guest OS on a computer. This section summarises
the features of host and guest operating systems, as well as the benefits and
limitations of virtual machines.

457591_16_CI_AS & A_Level_CS_372-409.indd 392 25/04/19 12:58 PM

393

16.2 Virtual m
achines (VM

s)

16
16.2.1 Features of a virtual machine
Guest operating system

» This is the OS running in a virtual machine.
» It controls the virtual hardware during the emulation.
» This OS is being emulated within another OS (the host OS).
» The guest OS is running under the control of the host OS software.

Host operating system

» This is the OS that is controlling the actual physical hardware.
» It is the normal OS for the host/physical computer.
» The OS runs/monitors the virtual machine software.

Figure 16.18 shows how the hardware and operating systems are linked together
to form a virtual machine.

physical hardware on the host computer

host operating system

application 1 application 2 application 3

this creates the virtual
machine inside the host
computer; it allows hardware
emulation ensuring that each
of the virtual machines are
protected from each other
while running on the host
computer

virtual machine software

hypervisor

guest operating system 1 (kernel)
guest operating
system 2 (kernel)

▲ Figure 16.18

16.2.2 Benefits and limitations of virtual machines
Benefits
The guest OS hosted on a virtual machine can be used without impacting
anything outside the virtual machine; any other virtual machines and host
computer are protected by the virtual machine software.

It is possible to run apps which are not compatible with the host computer/OS
by using a guest OS which is compatible with the app.

Virtual machines are useful if you have old/legacy software which is not
compatible with a new computer system/hardware. It is possible to emulate the
old software on the new system by running a compatible guest OS as a virtual

457591_16_CI_AS & A_Level_CS_372-409.indd 393 25/04/19 12:58 PM

394

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

machine. For example, the software controlling a nuclear power station could
be transferred to new hardware in a control room – the old software would
run as an emulation on the new hardware (justifying the cost and complexity
issues – see Limitations).

Virtual machines are useful for testing a new OS or new app since they will
not crash the host computer if something goes wrong (the host computer is
protected by the virtual machine software).

Limitations
You do not get the same performance running as a guest OS as you do when
running the original system.

Building an in-house virtual machine can be quite expensive for a large
company. They can also be complex to manage and maintain.

16.3 Translation software

WHAT YOU SHOULD ALREADY KNOW
Try these three questions before you read the
third part of this chapter.
1 Name three types of language translator.

2 Explain the benefits of each of the language
translators named in question 1.

3 Describe the typical features of an IDE.

Key terms

Lexical analysis – the first stage in
the process of compilation: removes
unnecessary characters and tokenises
the program.
Syntax analysis – the second stage
in the process of compilation: output
from the lexical analysis is checked for
grammatical (syntax) errors.
Code generation – the third stage in
the process of compilation: this stage
produces an object program.
Optimisation (compilation) – the fourth
stage in the process of compilation: the
creation of an efficient object program.

Backus-Naur form (BNF) notation –
a formal method of defining the
grammatical rules of a programming
language.
Syntax diagram – a graphical method of
defining and showing the grammatical
rules of a programming language.
Reverse Polish notation (RPN) – a
method of representing an arithmetical
expression without the use of brackets
or special punctuation.

16.3.1 How an interpreter differs from a compiler
An interpreter executes the program it is interpreting. A compiler does not
execute the program it is compiling.

With a compiler the program source code is input and either the object code
program or error messages are output. The object code produced can then be
executed without needing recompilation.

457591_16_CI_AS & A_Level_CS_372-409.indd 394 25/04/19 12:58 PM

395

16.3 Translation softw
are

16error messages

source code COMPILER OR

object code

▲ Figure 16.19

With an interpreter, the program source code is similarly input; there may also
be other inputs that the program requires or to correct errors in the source
program. No object code is output, but error messages from the interpreter
are output, as well as any outputs produced by the program being interpreted.
As there is no object code produced from the interpretation process, the
interpreter will need to be used every time the program is executed.

source code

error messages

error
corrections INTERPRETER

program output

program input

▲ Figure 16.20

Both a compiler and an interpreter will construct a symbol table (see next
section for details). An interpreter will also allocate space in memory to store any
constants, variables and other data items used by the program. The interpreter
checks each statement individually and reports any errors, which can be corrected
before the statement is executed. After each statement is executed, control is
returned to the interpreter so the next statement can be checked before execution.

16.3.2 Stages in the compilation of a program
The process of translating a source program written in a high-level language
into an object program in machine code can be divided into four stages: lexical
analysis, syntax analysis, code generation and optimisation.

Lexical analysis
Lexical analysis is the first stage in the process of compilation. All unnecessary
characters not required by the compiler, such as white space and comments, are
removed.

457591_16_CI_AS & A_Level_CS_372-409.indd 395 25/04/19 12:58 PM

396

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

The example below shows a small program both before and after unnecessary
characters have been removed:

Source program

// My addition program Version 2

DECLARE x, y, z : INTEGER

OUTPUT "Please enter two numbers to add together"

INPUT x, y

z = x + y

OUTPUT "Answer is ", z

Source program after unnecessary characters have been removed

DECLARE x, y, z : INTEGER

OUTPUT "Please enter two numbers to add together"

INPUT x, y

z = x + y

OUTPUT "Answer is ", z

Before translation, the source program needs to be converted to tokens. This
process is called tokenisation. In order to tokenise the program, the compiler
will use a keyword table that contains all the tokens for the reserved words and
symbols used in a programming language. In the example below, all the tokens
are represented as two hexadecimal numbers.

A keyword table is where all the reserved words and symbols that can be used
in the programming language are stored. The term fixed symbol table can also
be used for the symbols stored. Every program being compiled uses the same
keyword table.

For example, part of a keyword table could be as follows.

Keyword/Symbol Token
= 01

+ 02

: 03

, 04

DECLARE 31

INTEGER 32

INPUT 33

OUTPUT 34

▲ Table 16.8

During the lexical analysis, the variables and constants and other identifiers
used in a program are also added to a symbol table, produced during
compilation, specifically for that program.

457591_16_CI_AS & A_Level_CS_372-409.indd 396 25/04/19 12:58 PM

397

16.3 Translation softw
are

16
For example, part of a symbol table for the program above could be as follows.

Token
Symbol Value Type Data Type
X 81 variable integer
Y 82 variable integer
Z 83 variable integer
"Please enter two
numbers to add
together"

84 constant integer

"Answer is " 85 constant integer

▲ Table 16.9

The output from the lexical analysis is a tokenised list stored in main memory.

Here is the output for the first four lines of the program:

31 81 04 82 04 83 03 34 84 33 81 04 82 83 01 81 02 82

Syntax analysis
Syntax analysis is the next stage in the process of compilation. In this stage,
output from the lexical analysis is checked for grammatical (syntax) errors.

For example, this source program statement:

z + x + y

would produce this tokenised list:

83 02 81 02 82

 ↑
error = (01) expected

As shown above, the complete tokenised list is checked for errors using the
grammatical rules for the programming language. This is called parsing. The
whole program goes through this process even if errors are found. The rules for
parsing can be set out in Backus-Naur form (BNF) notation (see next section).
If any errors are found, each statement and the associated error are output but,
in the next stage of compilation, code generation will not be attempted. The
compilation process will finish after this stage. If the tokenised code is error free,
it will be passed to the next stage of compilation, generating the object code.

Code generation
The code generation stage produces an object program to perform the task
defined in the source code. The program must be syntactically correct for an
object program to be produced. The object program is in machine-readable form
(binary). It is no longer in a form that is designed to be read by humans. This
object program is either in machine code that can be executed by the CPU, or
in an intermediate form that is converted to machine code when the program is
loaded. The latter option allows greater flexibility.

For example, intermediate code can support

» the use of relocatable code so the program can be stored anywhere in main
memory

» the addition of library routines to the code at this stage to minimise the
size of the stored object program

» the linking of several programs to run together.

ACTIVITY 16B

Write down the
output from the
lexical analysis for
the last line of the
program.

457591_16_CI_AS & A_Level_CS_372-409.indd 397 25/04/19 12:58 PM

398

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

Optimisation
The optimisation stage supports the creation of an efficient object program.
Optimised programs should perform the task using the minimum amount of
resources. These include time, storage space, memory and CPU use. Some
optimisation can take place after the syntax analysis or as part of code
generation.

A simple example of code optimisation is shown here:

Original code w = x + y Object code LDD x

ADD y

STO w

v = x + y + z LDD x

ADD y

ADD z

STO v

Optimised code w = x + y Object code LDD x

ADD y

STO w

v = w + z ADD z

STO v

▲ Table 16.10

The addition x + y is only performed once, and the second addition can make
use of the value w stored in the accumulator. This optimisation can only work if
the two lines of code are together and in this order in the program.

The task of code optimisation is one of the most challenging stages of
compilation. Not every compiler is able to optimise the object code produced
for every source program.

16.3.3 Syntax diagrams and Backus-Naur form
The grammatical rules or syntax for a programming language need to be set out
clearly so a programmer can write code that obeys the rules, and a compiler
can be built to check that a program obeys these rules. The rules can be shown
graphically in a syntax diagram or using a meta language such as Backus-Naur
form (BNF) notation, which is a formal method showing syntax as a list of
replacement rules to represent the algorithm used in syntax analysis.

Syntax diagrams
Each element in the language has a diagram showing how it is built.

For example, a simple variable consisting of a letter followed by a digit would
be shown as:

variable
letter digit

▲ Figure 16.21

457591_16_CI_AS & A_Level_CS_372-409.indd 398 25/04/19 12:58 PM

399

16.3 Translation softw
are

16

ACTIVITY 16C

1 Using the syntax diagrams shown, identify which of the following variables
are invalid and explain why.
a) A1 b) Z2
c) B5 d) C3
e) CC f) 1A

2 Using the syntax diagrams shown, identify which of the following
assignment statements are invalid and explain why.
a) A1 = B1 + C1
b) A1= B1 + C1 + B2
c) A1 := C1 − C2

The alternatives for letter could be shown as:

letter
Items shown in a circle

have no alternativesA

B

C

Only the le�ers A, B and
C can be used

▲ Figure 16.22

The alternatives for digit could be shown as:

digit
1

2

3

Only digits 1, 2 and 3
can be used

▲ Figure 16.23

An assignment statement could be shown as:

variable variable variableoperator=
assignment

▲ Figure 16.24

The alternatives for operator could be shown as:

operator
+

−

/

*

▲ Figure 16.25

457591_16_CI_AS & A_Level_CS_372-409.indd 399 25/04/19 12:58 PM

400

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

Syntax diagrams can allow for repetitions as well as alternatives. For example,
a variable that can be a letter followed by another letter or any number of
digits can be shown as:

variable
letter digit

letter Alternative

Repetition

▲ Figure 16.26

ACTIVITY 16D

Draw syntax diagrams to represent a variable consisting of one or two letters
(A, B, C, D) followed by zero or one of digits (0, 1, 2, 3, 4).

Backus-Naur form (BNF)
BNF uses a set of symbols to describe the grammar rules in a programming language.

BNF notation includes:

< > used to enclose an item

::= separates an item from its definition

 | between items indicates a choice

 ; the end of a rule

For example, a simple variable consisting of a letter (A, B or C) followed by a
digit (1, 2, 3) would be shown as:

<variable> ::= <letter> | <digit> ;

 <letter> ::= A | B |C ;

 <digit> ::= 1 | 2 |3 ;

BNF notation can be used for recursive definitions where an item definition can
refer to itself. For example, a variable consisting of any number of letters could
be defined as:

<variable> ::= <letter> | <variable> <letter> ;

ACTIVITY 16E

Write the definition
for an integer that
can consist of any
number of digits
(0 to 9) in BNF.

EXTENSION ACTIVITY 16C

Refine the definition for an integer from Activity 16E so that it does not start
with a zero.

16.3.4 Reverse Polish notation (RPN)
Reverse Polish notation (RPN) is a method of representing an arithmetical or
logical expression without the use of brackets or special punctuation. RPN uses
postfix notation, where an operator is placed after the variables it acts on. For
example, A + B would be written as A B +.

457591_16_CI_AS & A_Level_CS_372-409.indd 400 25/04/19 12:58 PM

401

16.3 Translation softw
are

16

ACTIVITY 16F

1 Identify, in order, the four stages of compilation.
 Describe what happens to a program at each stage of compilation.
2 a) Draw syntax diagrams to represent a variable that must start with a

letter (I, J or K) that is followed by up to three digits (0, 1, 2, 3, 4).
b) Represent the same variable in BNF.
c) These variables can be used in an assignment statement for addition or

subtraction.
 Represent the assignment statement by a syntax diagram and in BNF.

Compilers use RPN because any expression can be processed from left to
right without using any back tracking. Any expression can be systematically
converted to RPN using a binary tree (see Chapter 19).

Here, we will look at how RPN can be formed by using operator precedence
(brackets, multiplication and division, addition and subtraction).

In the expression A – B * C * has the highest precedence.
This becomes A – B C * B C * can now be considered as a single

item.
This becomes A B C * – this can now be evaluated from left to right.

▲ Table 16.11

To evaluate the expression using a stack

» the values are added to the stack in turn going from left to right
» when an operator is encountered, it is not added to the stack but used to

operate on the top two values of the stack – which are popped off the stack,
operated on, then the result is pushed back on the stack

» this is repeated until there is a single value on the stack and the end of the
expression has been reached.

If A = 2, B = 3 and C = 4, then A B C * - is evaluated using a stack,
as shown below:

* −
4

3 3 12
2 2 2 2 −10

▲ Figure 16.27 Contents of the stack at each stage of evaluation

An expression using brackets (A + B) * (C – D) becomes A B +
C D - * in RPN, as brackets have the highest precedence.

If A = 2, B = 3, C = 4 and D = 5:

+ − *
5

3 4 4 −1
2 2 5 5 5 5 −5

▲ Figure 16.28 Contents of the stack at each stage of evaluation

457591_16_CI_AS & A_Level_CS_372-409.indd 401 25/04/19 12:58 PM

402

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

3 a) Convert the following expressions to RPN.
i) A + B + C * D

ii) (A + B + C) * D

iii) (A + B) * D + (A – B) * C
b) Show how each of the above expressions, when converted to RPN, can

be evaluated using a stack.
 A = 7, B = 3, C = 5 and D = 2.

1 This table shows the burst time and arrival time for four processes:

Process Burst time (ms) Arrival time (ms)
P1 18 0

P2 4 1

P3 8 2

P4 3 3

 This is a list of average waiting times, in ms:

6.0 6.25 6.5 8.0 8.25 10.0 11.25 14.0 14.25 14.5
 Choosing from the list, select the correct average waiting time for the four

processes, P1–P4, for each of these scheduling routines:

a) FCFS [2]

b) SJF [2]

c) SRTF [2]

d) Round robin [2]

2 A computer operating system (OS) uses paging for memory management.

 In paging:

– main memory is divided into equal-size blocks, called page frames

– each process that is executed is divided into blocks of same size, called pages

– each process has a page table that is used to manage the pages of this process

 The following table is the incomplete page table for a process, Y.

Page Presence flag Page frame address Additional data
1 1 221

2 1 222

3 0 0

4 0 0

5 1 542

6 0 0

249 0 0

a) State two facts about Page 5. [2]

b) Process Y executes the last instruction in Page 5. This instruction is not a
branch instruction.

i) Explain the problem that now arises in the continued execution
of process Y. [2]

End of chapter
questions

457591_16_CI_AS & A_Level_CS_372-409.indd 402 25/04/19 12:58 PM

403

16.3 Translation softw
are

16
ii) Explain how interrupts help to solve the problem that you

explained in part b) i). [3]

c) When the next instruction is not present in main memory, the OS must load
its page into a page frame.

 If all page frames are currently in use, the OS overwrites the contents of a
page frame with the required page.

 The page that is to be replaced is determined by a page replacement algorithm.

 One possible algorithm is to replace the page which has been in memory the
shortest amount of time.

i) Give the additional data that would need to be stored in the page table. [1]

ii) Copy and complete the table entry below to show what happens when
Page 6 is swapped into main memory.

 Include the data you have identified in part c) i) in the final column.

 Assume that Page 1 is the one to be replaced.

 In the final column, give an example of the data you have identified in
part c) i). [3]

Page Presence flag Page frame address Additional data

6

 Process Y contains instructions that result in the execution of a loop, a
very large number of times. All instructions within the loop are in Page 1.

 The loop contains a call to a procedure whose instructions are all in Page 3.

 All page frames are currently in use.

 Page 1 is the page that has been in memory for the shortest time.

iii) Explain what happens to Page 1 and Page 3, each time the loop is
executed. [3]

iv) Name the condition described in part c) iii). [1]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q3 November 2016

3 State the ten computer terms being described below.

a) A fixed time slice allotted to a process. [1]

b) When a process switches from running state to steady state or
from waiting state to steady state. [1]

c) System which gives the illusion that there is unlimited memory available. [1]

d) Algorithm which decides which process (in the ready state) should
get CPU time next (running state). [1]

e) Procedure by which, when the next process takes control of the
CPU, its previous state is restored. [1]

f) Physical memory and logical memory are split up into fixed-size
memory blocks. [1]

g) When a process terminates or switches from running state to
waiting state. [1]

h) Time when a process gets control of the CPU. [1]

➔

457591_16_CI_AS & A_Level_CS_372-409.indd 403 25/04/19 12:58 PM

404

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

i) Logical memory is split up into variable-size memory blocks. [1]

j) To continuously deprive a process of the necessary resources to
process a task. [1]

4 A number of processes are being executed in a computer. A process can be in one
of these states: running, ready or blocked.

a) For each of the following, the process is moved from the first state to the
second state. Describe the conditions that cause each of the following changes
of state of a process:

i) From blocked to ready. [2]

ii) From running to ready. [2]

b) Explain why a process cannot move directly from the ready state
to the blocked state. [3]

c) A process in the running state can change its state to something which is
neither the ready state nor the blocked state.

i) Name this state. [1]

ii) Identify when a process would enter this state. [1]

d) Explain the role of the low-level scheduler in a multiprogramming
operating system. [2]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q6 November 2015

5 a) Explain how programs can access data from memory when using virtual
memory [4]

b) Describe the following page replacement algorithms.

i) First in first out (FIFO) [2]

ii) Optimal page replacement (OPR) [2]

iii) Least recently used (LRU) [2]

6 a) Three processes, A, B and C, are presently in logical memory.

 Process A is 600 MiB, process B is 800 MiB and process C is 200 MiB.

 The starting address in physical memory for process A is 1000.

 Each of the units shown in physical memory are in MiB.

 Copy and complete the following diagram to show how segmentation can be
used as a type of memory management. [6]

1000
1100
1200
1300
1400
1500
1600
1700
1800

process
(logical memory segments)

1900
2000
2100
2200
2300
2400
2500
2600
2700

segment map table physical memory

seg
no.

size of
segment

memory
address

(start address)

b) Give three differences between paging and segmentation. [3]

c) Name three types of interrupt. [3]

457591_16_CI_AS & A_Level_CS_372-409.indd 404 25/04/19 12:58 PM

405

16.3 Translation softw
are

16
7 In this question, you are shown pseudocode in place of a real high-level language.

A compiler uses a keyword table and a symbol table.

 Part of the keyword table is shown below.

– Tokens for keywords are shown in hexadecimal.

Keyword Token
← 01
+ 02
= 03

– All the keyword tokens are in the range 00 to 5F.

IF 4A

THEN 4B

ENDIF 4C

ELSE 4D

FOR 4E

STEP 4F

TO 50

INPUT 51

OUTPUT 52

ENDFOR 53

 Entries in the symbol table are allocated tokens. These values start from 60
(hexadecimal).

 Study the following piece of code:

Start ← 0.1

// Output values in loop

FOR Counter ← Start TO 10

 OUTPUT Counter + Start

ENDFOR

a) Copy and complete this symbol table to show its contents after the lexical
analysis stage. [3]

Token
Symbol Value Type
Start 60 Variable
0.1 61 Constant

b) Each cell below represents one byte of the output from the lexical analysis
stage. Using the keyword table and your answer to part a), copy and
complete the output from the lexical analysis. [2]

60 01

c) The compilation process has a number of stages. The output of the lexical
analysis stage forms the input to the next stage.

i) Name this stage. [1]

ii) State two tasks that occur at this stage. [2]

➔

457591_16_CI_AS & A_Level_CS_372-409.indd 405 25/04/19 12:58 PM

406

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

d) The final stage of compilation is optimisation. There are a number of reasons
for performing optimisation. One reason is to produce code that minimises
the amount of memory used.

i) State another reason for the optimisation of code. [1]

ii) What could a compiler do to optimise the following
expression? [1]

A ← B + 2 * 6

iii) These lines of code are to be compiled:

X ← A + B

Y ← A + B + C

 Following the syntax analysis stage, object code is generated. The
equivalent code, in assembly language, is shown below.

LDD 436 //loads value A

ADD 437 //adds value B

STO 612 //stores result in X

LDD 436 //loads value A

ADD 437 //adds value B

ADD 438 //adds value C

STO 613 //stores result in Y

iv) Rewrite the equivalent code, given above, following
optimisation. [3]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q2 November 2015

8 The following syntax diagrams for a particular programming language show the
syntax of:

– an assignment statement

– a variable

– an unsigned integer

– a letter

– an operator

– a digit.

457591_16_CI_AS & A_Level_CS_372-409.indd 406 25/04/19 12:58 PM

407

16.3 Translation softw
are

16
Assignment statement

Digit

OperatorVariable

Variable

Letter Operator

Unsigned integer

Variable
Unsigned
integer

DigitLetter

Digit

:=

1

2

3

4

5

6

7

8

9

0

A

B

C

+

−

*

^

a) The following assignment statements are invalid.

 Give the reason in each case.

i) C2 = C3 + 123 [1]

ii) A3 := B1 – B2 [1]

iii) A32 := A2 * 7 [1]

b) Copy and complete the Backus-Naur Form (BNF) for the syntax diagrams
shown. <digit> has been done for you. [6]

<assignment _ statement> ::=

<variable> ::=

<unsigned _ integer> ::=

<digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

<letter> ::=

<operator> ::=

➔

457591_16_CI_AS & A_Level_CS_372-409.indd 407 25/04/19 12:58 PM

408

16

16
 S

yS
te

m
 S

o
ft

w
a

r
e

a
n

d
 v

ir
tu

a
l

m
a

c
h

in
e

S

c) The definition of <variable> is changed to allow:

– one or two letters and

– zero, one or two digits.

 Draw an updated version of the syntax diagram for <variable>.

Variable
Letter

d) The definition of <assignment _ statement> is altered so that its syntax
has <unsigned _ integer> replaced by <real>.

 A real is defined to be:

– at least one digit before a decimal point

– a decimal point

– at least one digit after a decimal point.

 Give the BNF for the revised <assignment _ statement> and <real>. [2]

<assignment _ statement> ::=
<real> ::=

Cambridge International AS & A Level Computer Science 9608
Paper 31 Q3 November 2017

9 There are four stages in the compilation of a program written in a high-level language.

a) Four statements and four compilation stages are shown below. Copy the
diagram below and connect each statement to the correct compilation
stage. [4]

Statement Compilation stage

This stage can improve the time
taken to execute x = y + 0

Lexical analysis

This stage produces
 object code

Syntax analysis

This stage makes use of tree
data structures

Code generation

This stage enters symbols in
the symbol table

Optimisation

b) Write the Reverse Polish Notation (RPN) for the following
expression. [2]

P + Q – R / S

457591_16_CI_AS & A_Level_CS_372-409.indd 408 25/04/19 12:58 PM

409

16.3 Translation softw
are

16
b a * c d a + + -

c) An interpreter is executing a program.

 The program uses the variables a, b, c and d.

 The program contains an expression written in infix form. The interpreter
converts the infix expression to RPN. The RPN expression is:

b a * c d a + + -

a = 2 b = 2 c = 1 d = 3

 The interpreter evaluates this RPN expression using a stack.

 The current values of the variables are:

i) Copy the diagram below and show the changing contents of the stack as
the interpreter evaluates the expression. The first entry on the stack has
been done for you. [4]

2

ii) Convert back to its original infix form, the RPN expression: [2]

iii) One advantage of using RPN is that the evaluation of an expression does
not require rules of precedence.

 Explain this statement. [2]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q2 November 2016

457591_16_CI_AS & A_Level_CS_372-409.indd 409 25/04/19 12:58 PM

410

17
 S

ec
u

r
it

y

17.1	 Encryption

In this chapter, you will learn about

★ how encryption works, including the use of public keys and private
keys, plaintext and ciphertext, symmetric key cryptography and
asymmetric key cryptography

★ how keys can be used to send verified messages
★ how data is encrypted using symmetric and asymmetric cryptography
★ quantum cryptography and QKD
★ Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
★ the use of SSL and TLS in a client/server communication
★ examples of where SSL and TLS would be used
★ how digital certificates are acquired
★ how digital certificates are used to produce digital signatures.

WHAT	YOU	SHOULD	ALREADY	KNOW
In Chapter 6, you learnt about security. Try these
four questions before you read this chapter.
1 Explain what is meant by the terms

a) data integrity
b) data privacy
c) data security.

2 Describe how it is possible to recover data
after it has been lost accidentally or otherwise.

3 Describe three ways of protecting against
data loss.

4	 a) Explain the effect of these five security risks.
i) Hacking
ii) Malware
iii) Phishing
iv) Pharming

b) Explain how it is possible to guard against
each of the five security risks named in part a).

	 17	 Security

Key	terms
Eavesdropper – a person who intercepts data being
transmitted.
Plaintext – the original text/document/message before
it is put through an encryption algorithm.
Ciphertext – the product when plaintext is put through
an encryption algorithm.
Block	cipher – the encryption of a number of contiguous
bits in one go rather than one bit at a time.
Stream	cipher – the encryption of bits in sequence as
they arrive at the encryption algorithm.
Block	chaining	– form of encryption, in which the
previous block of ciphertext is XORed with the block of
plaintext and then encrypted thus preventing identical
plaintext blocks producing identical ciphertext.

Symmetric	encryption – encryption in which the same
secret key is used to encrypt and decrypt messages.
Key	distribution	problem – security issue inherent in
symmetric encryption arising from the fact that, when
sending the secret key to a recipient, there is the risk
that the key can be intercepted by an eavesdropper/
hacker.
Asymmetric	encryption – encryption that uses public
keys (known to everyone) and private keys (secret keys).
Public	key – encryption/decryption key known to all
users.
Private	key – encryption/decryption key which is known
only to a single user/computer.

457591_17_CI_AS & A_Level_CS_410-424.indd 410 02/05/19 7:34 AM

411

17.1
Encryption

17
17.1.1	 Encryption keys, plaintext and ciphertext
Why do we need encryption?
When data is transmitted over any public network (wired or wireless), there is a
risk of it being intercepted by, for example, a hacker (sometimes referred to as
an eavesdropper). Using encryption helps to minimise this risk.

Encryption alters data into a form that is unreadable by anybody for whom the
data is not intended. It cannot prevent the data being intercepted, but it stops
it from making any sense to the eavesdropper. This is particularly important if
the data is sensitive (for example, medical or legal documents) or confidential
(for example, credit card or bank details).

There are four main security concerns when data is transmitted: confidentiality,
authenticity, integrity and non-repudiation.

1 Confidentiality is where only the intended recipient should be able to read
or decipher the data.

2 Authenticity is the need to identify who sent the data and verify that the
source is legitimate.

3 Integrity is that data should reach its destination without any changes.
4 Non-repudiation is that neither the sender nor the recipient should be able

to deny that they were part of the data transmission which just took place.

Plaintext and ciphertext
The original data being sent is known as plaintext. Once it has gone through
an encryption algorithm, it produces ciphertext. Figure 17.1 summarises what
happens.

encryption
key

encryption
algorithm

cipher
text

cipher
text

internet decryption
key

decryption
algorithm

plaintext
plaintext

▲ Figure	17.1

Note that, when encrypting text, block cipher is usually used. Here, the
encryption algorithm is applied to a group of contiguous bits (for example,
128 bits) rather than one bit at a time (which is known as stream cipher).
With block cipher, each plaintext block is XORed with the previous ciphertext
block and then encrypted – this is known as block chaining. This prevents
identical blocks of plaintext producing the same ciphertext each time they are
encrypted.

Notice the use of encryption and decryption keys in Figure 17.1. These keys will
be considered in the next section.

17.1.2	 Symmetric encryption
Symmetric encryption uses a secret key; the same key is used to encrypt and
decrypt the encoded message.

Consider a simple system which uses 10-denary-digit encryption (which gives
about 10 billion possibilities). Suppose our secret key is 4 2 9 1 3 6 2 8 5 6,
which means each letter in a word is shifted across the alphabet +4, +2, +9,
and so on, places.

457591_17_CI_AS & A_Level_CS_410-424.indd 411 25/04/19 1:03 PM

412

17
 S

ec
u

r
it

y

17
For example, here is the message, ‘computer science is exciting’ before and
after the 10-denary-digit secret key is applied:

C O M P U T E R S C I E N C E I S E X C I T I N G

Key 4 2 9 1 3 6 2 8 5 6 4 2 9 1 3 6 2 8 5 6 4 2 9 1 3

G Q V Q X Z G Z X I M G W D H O U M C I M V R O J

▲ Figure	17.2

However, modern computers could ‘crack’ this key (and, therefore, decrypt the
message) in a few seconds. To combat this, we use 256-bit encryption (in other
words, a 256-bit key) which gives 2256 possible combinations. Even this may not
be enough, as computers become more powerful.

One issue with symmetric encryption is that both sender and recipient need
to use the same secret key. This is a security risk here, since the sender has to
supply the key to the recipient. This key could be intercepted. This is referred
to as the key distribution problem.

So, how can both sender and receiver have the required secret key without
sending it electronically? The following routine shows one possibility.

stage sender recipient

1 uses an encryption algorithm and chooses a
secret value, such as X = 2

uses the same algorithm and also chooses a
secret value, such as Y = 4

2

this value of X is put into a simple
algorithm:

the value of Y is put into the same algorithm:

Note: MOD gives the remainder when dividing a number by 11

7X (MOD 11) = 72 (MOD 11) 7Y (MOD 11) = 74 (MOD 11)
= 49 (MOD 11) = 2401 (MOD 11)
= 4 remainder 5 = 218 remainder 3
So, the value is 5 So, the value is 3

3 the sender sends the value just calculated
(5) to the recipient

the recipient sends the value just calculated (3)
to the sender

4

the new value from the recipient replaces 7
in the original algorithm:

the new value from the sender replaces 7 in the
original algorithm:

3X (MOD 11) = 32 (MOD 11) 5Y (MOD 11) = 54 (MOD 11)
= 9 (MOD 11) = 625 (MOD 11)
= 0 remainder 9 = 56 remainder 9
So, the new value is 9 So, the new value is 9

▲ Table	17.1

Both sender and recipient end up with the same encryption and decryption key
of 9. This is oversimplified; in practice, computers would generate much larger
keys (possibly 256 bits – equivalent to 64 denary digits if using BCD).

There are many other ways to keep the encryption key secret. But the issue of
security is always the main drawback of symmetrical encryption, since a single
key is required for both sender and recipient.

457591_17_CI_AS & A_Level_CS_410-424.indd 412 25/04/19 1:03 PM

413

17.1
Encryption

17
EXTENSION	ACTIVITY	17A

Using the following sender and receiver values to check that the method
described above works.
a) Sender uses the value X = 3 and the receiver uses the value Y = 5
b) Sender uses the value X = 7 and the receiver uses the value Y = 6

17.1.3	 Asymmetric encryption
Asymmetric encryption uses two keys – a public key, available to all users,
and a private key, known to a specific person or computer.

Suppose Tom and Meera work for the same company. Tom wishes to send a
confidential document to Meera. Here’s how he could do it.

Step 1: Tom and Meera both use an algorithm to generate their own matching
pairs of keys (private and public) which they keep stored on their computers.
The matching pairs of keys are mathematically linked but cannot be derived
from each other.

Step 2:

Tom Meera sends Tom her public key Meera
▤ public key ▦ public key
▥ private key ▧ private key

▲ Figure	17.3

Step 3: Tom now uses Meera’s public key (▦) to encrypt the document he wishes
to send to her. He then sends his encrypted document (ciphertext) to Meera.

Step 4: Meera uses her matching private key (▧) to unlock Tom’s document and
decrypt it. This works because the public key used to encrypt the document
and the private key used to decrypt it are a matching pair generated on Meera’s
computer.

Meera can exchange her public key with any number of people working in
the company, so she is able to receive encrypted messages (which have been
encrypted using her public key) and she can then decrypt them using her
matching private key:

Tom

▦ public key

Bethan

▦ public key

Neel

▦ public key

Imani

▦ public key

Meera

▦ public key

▧ private key

▲ Figure	17.4

If a two-way communication is required between all five workers, then they
all need to generate their own matching public and private keys. Once this is
done, all users then need to swap public keys so that they can send encrypted

457591_17_CI_AS & A_Level_CS_410-424.indd 413 25/04/19 1:03 PM

414

17
 S

ec
u

r
it

y

17

Quantum cryptography utilises the physics of photons (light energy according
to the formula E = hf) and their physical quantum properties to produce a
virtually unbreakable encryption system. This helps protect the security of data
being transmitted over fibre optic cables.

Photons oscillate in various directions and produce a sequence of random bits
(0s and 1s) across the optical network.

Sending encryption keys across a network uses quantum cryptography – a
quantum key distribution (QKD) protocol (one of the most common is BB84).

QKD uses quantum mechanics to facilitate the secure transmission of
encryption keys. Quantum mechanics use a qubit (quantum bit) as the basic
unit of quantum data. Unlike normal binary (which uses discrete 0s and 1s), the
state of a qubit can be 0 or 1, but it can also be both 0 and 1 simultaneously.
Figure 17.5 shows a representation of a photon and how a photon can be
affected by one of four types of polarising filter.

photon oscillating in its various directions

the effect of four
polarisers on a
photon showing the
resultant polarised
photon

▲ Figure	17.5

documents, files or messages between each other. Each worker will then use
their own private key to decrypt information being sent to them.

However, there are still issues. For example, how can Meera be certain that
the document came from Tom, and that it has not been tampered with
during transmission? Additional security is required; this will be discussed in
Section 17.4.

17.2	Quantum cryptography
Key	terms

Quantum	cryptography – cryptography
based on the laws of quantum
mechanics (the properties of photons).
Quantum	key	distribution	(QKD) –
protocol which uses quantum mechanics

to securely send encryption keys over
fibre optic networks.
Qubit – the basic unit of a quantum of
information (quantum bit).

457591_17_CI_AS & A_Level_CS_410-424.indd 414 25/04/19 1:03 PM

415

17.2
Q

uantum
 cryptography

17
So, how do we use quantum cryptography to send an encryption key from ‘A’ to
‘B’ using the QKD protocol?

Stage 1: The sender uses a light source to generate photons.

Stage 2: The photons are sent through four random polarisers (see Figure 17.2)
which randomly give one of four possible polarisations and bit values:

vertical polarisation ≡ 1 bit

horizontal polarisation ≡ 0 bit

45° right polarisation ≡ 1 bit diagonal polarisation shows
0 bit and 1 bit simultaneously45° left polarisation ≡ 0 bit

Stage 3: The polarised photon travels along a fibre optic cable to its
destination.

Stage 4: At the destination, there are two beam splitters:

diagonal splitter ⊠ ‘X’

vertical/horizontal splitter ⊞ ‘Y’

and two photon detectors.

Stage 5: One of the two beam splitters is chosen at random and the photon
detectors are read.

Stage 6: The whole process is repeated until the whole of the encryption key
has been transmitted from ‘A’ to ‘B’.

Stage 7: The recipient sends back the sequence of beam splitters that were
used (for example, XXXYYXXYYXXYYYYY) to the sender.

Stage 8: The sender now compares this sequence to the polarisation sequence
used at the sending station.

Stage 9: The sender now informs the recipient where in the sequence the
correct beam splitters were used.

Stage 10: This now ensures that the sender and recipient are fully synchronised.

Stage 11: The encryption key can again be sent and received safely; even if
intercepted, the eavesdropper would find it almost impossible to read the
encryption key making the whole process extremely secure. Encrypted messages
can now be sent along the fibre optic cable with the decryption key being used
to decode all messages.

Despite the advantages of quantum cryptography, there are some potential
drawbacks:

» It requires a dedicated line and specialist hardware, which can be expensive
to implement initially.

» It still has a limited range (at the time of writing the limit is about 250 km).
» It is possible for the polarisation of the light to be altered (due to various

conditions) while travelling down fibre optic cables.
» Due to the inherent security system generated by quantuin cryptography,

terrorists and other criminals can use the technology to hide their activities
from government law enforcers.

457591_17_CI_AS & A_Level_CS_410-424.indd 415 25/04/19 1:03 PM

416

17
 S

ec
u

r
it

y

17

The two main protocols used to ensure security when using the internet are
Secure Sockets Layer (SSL) and Transport Layer Security (TLS); these are
both part of the transport layer discussed in Chapter 14.

TLS is the more modern; it is based on SSL. The primary use of SSL and TLS is
in the client/server application (see Chapter 2). They both use the standard
cryptographic protocols to ensure there is a secure and authenticated
communication between client and server. However, normally only the server
is authenticated with the client remaining unauthenticated. Once a secure link
between server and client is established, SSL or TLS protocols ensure no third
party can eavesdrop.

17.3.1	 Secure Sockets Layer (SSL)
When a user logs onto a website, SSL encrypts the data – only the client’s
computer and the web server are able to make sense of what is being
transmitted. Two other functions of SSL are data compression (reducing the
amount of data being transmitted), and data integrity checks. A user will know
if SSL is being applied when they see the https protocol and/or the small green
closed padlock.

The browser address display is different when the http or https protocol
is used:

https://www.xxxx.org/documents

http://www.yyy.co.uk/documents

secure

▲ Figure	17.6

Similar banners will be seen when using TLS.

As mentioned in Chapter 14, TCP is used to establish a connection
between the client and the server. A handshake takes place, thus enabling
communication to begin between the client and server. One part of the
SSL protocol is to agree which encryption algorithms are to be used; this is
essential to ensure a secure, encrypted communication takes place. To be able
to create an SSL connection, a web server requires an SSL digital certificate;
the website owner needs to obtain this certificate to allow SSL protocols to
be used (see Section 17.4).

17.3	Protocols
Key	terms

Secure	Sockets	Layer	(SSL) – security protocol used
when sending data over the internet.
Transport	Layer	Security	(TLS)	– a more up-to-date
version of SSL.
Handshake – the process of initiating communication
between two devices. This is initiated by one device
sending a message to another device requesting the
exchange of data.
Session	caching – function in TLS that allows a
previous computer session to be ‘remembered’,

therefore preventing the need to establish a new link
each time a new session is attempted.
Certificate	authority	(CA) – commercial organisation
used to generate a digital certificate requested by
website owners or individuals.
Public	key	infrastructure	(PKI)	– a set of protocols,
standards and services that allow users to
authenticate each other using digital certificates
issued by a CA.

457591_17_CI_AS & A_Level_CS_410-424.indd 416 25/04/19 1:03 PM

https://www.xxxx.org/documents
http://www.yyy.co.uk/documents

417

17.3
Protocols

17
Examples of where and when SSL (and TLS) would be used include

» online banking and all online financial transactions
» online shopping/commerce
» sending software to a restricted list of users
» sending and receiving emails
» using cloud storage facilities
» intranets and extranets (as well as the internet)
» using virtual private networks (VPNs)
» using Voice over Internet Protocols (VoIP) for video and/or audio chatting

over the internet
» using instant messaging
» making use of a social networking site.

17.3.2	 Transport Layer Security (TLS)
Transport Layer Security (TLS) is a modern, more secure version of SSL – it
provides encryption, authentication and data integrity in a more effective
way. It ensures the security and privacy of data between devices and
users when communicating over a network (such as the internet). When a
website and client communicate over the internet, TLS prevents third party
eavesdropping.

TLS is formed of two main layers:

1 Record protocol can be used with or without encryption (it contains the
data being transmitted over the network/internet).

2 Handshake protocol permits the web server and client to authenticate each
other and to make use of encryption algorithms (a secure session between
client and server is then established).

Only the most recent web browsers support both SSL and TLS, which is why the
older, less secure, SSL is still used in many cases (although soon SSL will not be
supported and users will have to adopt the newer TLS protocol if they wish to
access the internet using a browser).

» It is possible to extend TLS by adding new authentication methods
(unlike SSL).

» TLS can make use of session caching which improves the overall
performance of the communication when compared to SSL (see below).

» TLS separates the handshaking process from the record protocol (layer)
where all the data is held.

Session caching
When opening a TLS session, it requires considerable computer time (due mainly
to complex cryptographic processes taking place). The use of session caching
can avoid the need to utilise as much computer time for each connection. TLS
can either establish a new session or attempt to resume an existing session;
using the latter can considerably boost the system performance.

Summary
As already indicated, two of the main functions of SSL/TLS are

» the encryption of data
» the identification of client and server to ensure each knows who they are

communicating with.

457591_17_CI_AS & A_Level_CS_410-424.indd 417 25/04/19 1:03 PM

418

17
 S

ec
u

r
it

y

17
Stage 1: Once the client types in the URL into the browser and hits the <enter>
key, several steps will occur before any actual encrypted data is sent; this is
known as the handshaking stage.

Stage 2: The client’s browser now requests secure pages (https) from the web
server.

Stage 3: The web server sends back the SSL digital certificate (which also
contains the public key) – the certificate is digitally signed by a third party
called the certificate authority (CA) (see Section 17.4.2).

Stage 4: Once the client’s browser receives the digital certificate, it checks
– the digital signature of the CA (is it one of those in the browser’s trusted

store – a list of trusted CAs is part of the browser which the client
downloads to their computer)

– if the start and end dates shown on the certificate are still valid
– if the domain listed in the certificate is an exact match with the domain

requested by the client in the first place.

Stage 5: Once the browser trusts the digital certificate, the public key (which
forms part of the digital certificate) is used by the browser to generate a
temporary session key with the web server; this session key is then sent back
to the web server.

Stage 6: The web server uses its private key to decrypt the session key
and then sends back an acknowledgement that is encrypted using the same
session key.

Stage 7: The browser and web server can now encrypt all the data/traffic sent
over the connection using this session key; a secure communication can now
take place.

The public key infrastructure (PKI) is a set of protocols, standards and
services that allow clients and servers to authenticate each other using digital
certificates issued by the CA (for example, X509, PKI X.509); digital signatures
also follow the same protocol. PKI requires the provider to use an encryption
algorithm to generate public and private keys.

17.4	Digital signatures and digital
certificates

Key	terms

Digital	signature – electronic way of
validating the authenticity of digital
documents (that is, making sure they
have not been tampered with during
transmission) and also proof that a
document was sent by a known user.
Digest –a fixed-size numeric
representation of the contents of a
message produced from a hashing
algorithm. This can be encrypted to
form a digital signature.

Hashing	algorithm	(cryptography)	– a
function which converts a data string
into a numeric string which is used in
cryptography.
Digital	certificate – an electronic
document used to prove the identity
of a website or individual. It contains a
public key and information identifying
the website owner or individual, issued
by a CA.

457591_17_CI_AS & A_Level_CS_410-424.indd 418 25/04/19 1:03 PM

419

17.4
D

igital signatures and digital certificates

17
17.4.1	 Digital signatures
Digital signatures are a way of validating the authenticity of digital
documents and identifying the sender (signing with a digital signature
indicates that the original message, document or file is safe and has not
been tampered with). As mentioned earlier on, there are four main purposes
of digital signatures: authentication, non-repudiation, data integrity
and confidentiality. A digital signature is a digital code which is often
derived from the digital certificate (described below), although other
methods of generating digital signatures will be described throughout this
section.

The example used in Section 17.1 required Meera to send her public key to
each of the workers, and she used her private key to decrypt their messages.
However, the two keys can be reversed – the other workers can encrypt
messages using their own private keys and then send these encrypted
messages to other workers in the company, who use their matching public key
to decrypt the messages. While this would be a bad idea if the messages were
confidential, it could be used as a way of identifying or verifying who the
sender of the message was (in other words, the private key would act like a
digital signature, identifying the sender, since the private keys will be unique
to the sender).

This also needs a lot of processing time to encrypt everything in the message.
The following method, which is used to identify the sender and ensure the
message was not tampered with, does not encrypt the messages but uses a
generated numerical value known as a digest.

With this method, to actually identify the sender, it is not necessary to encrypt
the whole message. The plaintext message is put through a hashing algorithm
which produces the digest.

For example, if the first page of this chapter was going to be sent, we could put
it through a hashing algorithm (such as MD4) and it would produce a digest, for
example, it might produce the following digest:

873add9ed804fc5ce0338d2e9f7e0962

The sender’s private key and digest are then put through an encryption
algorithm to produce a digital signature.

Therefore, the plaintext and digital signature are sent to the recipient as two
separate files. The recipient puts the digital signature through a decryption
algorithm (using the sender’s public key) to produce a digest. The recipient
then puts the plaintext through the same hashing algorithm and also produces
a digest.

If these two digests are the same, then the document has been sent correctly
(and has not been tampered with). Since this process does not encrypt the
document, if it needed to be kept confidential then it would be necessary to
put the document through the asymmetric encryption process, as described
earlier, before sending.

Note: a digest is a fixed-size numerical value which represents the content of a
message. It is generated by putting the message through a hashing algorithm.
The digest can be encrypted to produce a digital signature.

457591_17_CI_AS & A_Level_CS_410-424.indd 419 25/04/19 1:03 PM

420

17
 S

ec
u

r
it

y

17
Figure 17.7 outlines the process.

sender
plaintext

document
hashing

algorithm

hashing
algorithm

asymmetric
cryptographic

algorithm

asymmetric
cryptographic

algorithm

digest

873add9ed80
4fc5ce0338d2

e9f7e0962

digest

873add9ed80
4fc5ce0338d2

e9f7e0962

digest

873add9ed80
4fc5ce0338d2

e9f7e0962

plaintext document
with digital signature

sender’s
private

key

sender’s
public
key

recipient

if the two digests match
then the document has
not been tampered with

▲ Figure	17.7

However, this method still is not safe enough, since the public key could be
forged by a third party, which means the recipient still cannot be certain that
the message came from a legitimate source. Therefore, an even more robust
system is needed to give confidence that the sender is really who they claim
to be.

17.4.2	 Digital certificates
A digital certificate is an electronic ‘document’ used to prove the online
identity of a website or an individual. The certificate contains a public key and
other information identifying the owner of the certificate. A digital certificate
is issued by the certificate authority (CA) – they independently validate the
identity of the certificate owner.

This is a list of the items commonly found on a digital certificate

» version number
» serial number of certificate
» algorithm identification
» name of certificate issuer
» validity (start date and expiry date of certificate)
» company details
» public key
» issuer’s identifier
» company’s identifier
» signature algorithm used
» digital signature.

The digital signature is created by condensing
all of the certificate details and then putting it
through a hashing algorithm (such as MD4/5). The
number generated is then put through an encryption
algorithm, together with the CA’s private key, thus
producing a digital signature.

457591_17_CI_AS & A_Level_CS_410-424.indd 420 25/04/19 1:03 PM

421

17.4
D

igital signatures and digital certificates

17
Figure 17.8 shows how a user can apply for a digital certificate. Figure 17.9
shows what a typical SSL digital certificate looks like.

company/user’s
identification (id) is
verified by the CA

a digital certificate is
generated for the

company/user

public key

CA identification

user/company id

digital signature

other information

the digital
certificate is then
sent back to the

applicant

examples of CA
include:

Symantec,
Entrust, etc.

this is the
address of the
company, what

they do, etc.

user id

request made to a
CA using online
application form

public key

private key

digital certificateCAuser/client

▲ Figure	17.8

PayWebsite, Inc.

PayWebsite, Inc.

Secure Connection

You are securely connected to this site,
owned by:

San Jose
California, US

Verified by: Symantec Corporation

Improve Customer Confidence with EV SSL Certificate

Send Money, Pay...

EXTENDED VALIDATION

PayWebsite, Inc. [US] https://www.paywebsite.com

More Information

▲ Figure	17.9

It is possible for a user to produce a self-signed digital certificate rather than
use a commercial CA (for example, if an individual builds their own website,

457591_17_CI_AS & A_Level_CS_410-424.indd 421 25/04/19 1:03 PM

https://www.paywebsite.com

422

17
 S

ec
u

r
it

y

17
called my-site.com, and wants to make this generally available on the internet,
they could produce their own digital certificate).

However, if a user attempts to log onto my-site.com they might see an error
screen, like this:

The owner of www.my-site.com has configured their website improperly.
To protect your information from being stolen, Firefox has not connected
to this website.

Learn more...

Go Back Advanced

Your connection is not secure

▲ Figure	17.10

ACTIVITY	17A

For each of the following questions, choose the
option which corresponds to the correct response.
1 What is meant by the term cipher when used in

cryptography?
A an encryption or decryption algorithm
B an encrypted message
C a type of session key
D a digital signature
E text following an encryption algorithm

2 When carrying out asymmetric encryption,
which of the following users would keep the
private key?
A the sender
B the receiver
C both sender and receiver
D all recipients of the message
E none of the above

3 In cryptography, which of the following is the
term used to describe the message before it is
encrypted?
A simpletext
B plaintext
C notext
D ciphertext
E firsttext

4 Which of the following is the biggest
disadvantage of using symmetric encryption?
A it is very complex and time consuming

B it is rarely used any more
C the value of the key reads the same in both

directions
D it only works on computers with older

operating systems
E there is a security problem when

transmitting the secret key
5 Which of the following is the correct name for

a form of encryption in which both the sender
and the recipient use the same key to encrypt/
decrypt?
A symmetric key encryption
B asymmetric key encryption
C public key encryption
D same key encryption
E block cipher encryption

6 Which of the following is involved in temporary
key generation?
A session keys
B private key and certificate
C public key and certificate
D master keys
E public keys

7 Which of the following is a correct statement
about PKIs?
A they use private and public keys but not

digital certificates
B they use digital signatures and public keys

457591_17_CI_AS & A_Level_CS_410-424.indd 422 25/04/19 1:03 PM

http://my-site.com
http://my-site.com
http://www.my-site.com

423

17.4
D

igital signatures and digital certificates

17
C they are a combination of digital certificates,

public key cryptography and CAs
D they use asymmetric keys, hashing

algorithms and certificate authorities
E they are a combination of digests, hashing

algorithms and asymmetric cryptographic
algorithms

8 SSL provides which of the following?
A message integrity only
B confidentiality only
C compression and authentication
D message integrity, confidentiality and

compression
E authentication, encryption and digital

signatures

9 Which of the following indicates a secure
website?
A http and closed padlock
B http and open padlock
C https and closed padlock
D https and open padlock
E green closed padlock only

10 Which of the following is not part of security?
A non-repudiation
B bit streaming
C data integrity
D data privacy
E user authentication

End of chapter
questions

1 a) Explain what is meant by QKD. [2]

b) The following eleven statements refer to the transmission of an encryption key
using quantum key distribution protocols.

 Put each statement into its correct sequence, 1-11. The first one has been
numbered for you. [10]

sequence statement
the sender and receiver are now fully synchronised

the photons are sent through four random polarisers which give one of four
possible polarisations and bit values
the process is repeated until the whole of the encryption key has been transmitted

1 the sender uses a light source to create the photons
one of the two beam splitters is chosen at random and the photon detectors
are read
the sender now informs the recipient where, in the sequence, the correct
beam splitters had been used
the polarised photons travel along the fibre optic cable to the destination

the encryption key can now be sent and received safely since eavesdroppers
would find it impossible to crack the key code
the sender now compares this sequence to the polarisation sequence used by
the sending station
at the destination, there are two beam splitters (diagonal and vertical/
horizontal) and two photon detectors
the recipient sends back the sequence of beam splitters to the sender

2 a) Explain the terms SSL and TLS. [3]

b) Explain the following terms used in TLS.

i) Record protocol

ii) Handshake protocol

iii) Session caching [5]

c) Give two differences between SSL and TLS. [2]

➔

457591_17_CI_AS & A_Level_CS_410-424.indd 423 25/04/19 1:03 PM

424

17
 S

ec
u

r
it

y

17
3 A user keys a URL into their browser and hits the <enter> key.

 Re-order the following stages, 1-6, to show how an SSL digital certificate is used
to set up a secure connection between client (user) and website. [6]

order stage
browser and web server now encrypt all data/traffic sent over the connection
using the session key and a secure communication can now take place
client’s browser requests secure pages (https) from the web server

once trusted, the browser uses public key to agree temporary session key with
web server; session key is sent back to web server
the web server uses its private key to decrypt the session key and then sends
back an acknowledgement that is encrypted using the session key
once the client’s browser gets the SSL digital certificate it checks the digital
signature, validity of start and end dates and whether the domain listed in the
certificate matches the domain requested by the user
the web server sends back the SSL digital certificate containing the public key;
this is digitally signed by a third party called the Certificate Authority (CA)

b) List four items found on a digital certificate. [4]

c) Explain how a digital signature can be formed from a digital certificate. [2]

457591_17_CI_AS & A_Level_CS_410-424.indd 424 25/04/19 1:03 PM

425

18.1 Shortest path algorithm
s

Artificial intelligence (AI) 18

Key terms
Dijkstra’s algorithm – an algorithm that finds the shortest
path between two nodes or vertices in a graph/network.
Node or vertex – fundamental unit from which graphs
are formed (nodes and vertices are the points where
edges converge).
A* algorithm – an algorithm that finds the shortest
route between nodes or vertices but uses an additional

heuristic approach to achieve better performance than
Dijkstra’s algorithm.
Heuristic – method that employs a practical solution
(rather than a theoretical one) to a problem; when
applied to algorithms this includes running tests and
obtaining results by trial and error.

In this chapter, you will learn about

★ how to use A* and Dijkstra’s algorithms to find the shortest path in
a graph

★ how artificial neural networks have helped with machine learning
★ deep learning, machine learning and reinforcement learning and the

reasons for using these methods in AI
★ supervised learning, active learning and unsupervised learning when

applied to AI
★ back propagation of errors and regression methods in machine learning.

WHAT YOU SHOULD ALREADY KNOW
Try these three questions before you start this
chapter.
1 What is meant by the term artificial

intelligence (AI)?

2 Describe some of the pros and cons of using
AI in everyday life.

3 Give four examples of the use of AI and
briefly describe each.

18.1.1 Dijkstra’s algorithm
Dijkstra’s algorithm (pronounced dyke – strah) is a method of finding the
shortest path between two points on a graph. Each point on the graph is
called a node or a vertex (for more information on the features and uses of
graphs, see Chapter 19). It is the basis of technology such as GPS tracking and,
therefore, is an important part of AI.

This set of instructions briefly describes how it works.

1 Give the start vertex a final value of 0.
2 Give each vertex connected to the vertex we have just given a final value to

(in the first instance, this is the start vertex) a working (temporary) value.

18.1 Shortest path algorithms

457591_18_CI_AS & A_Level_CS_425-449.indd 425 25/04/19 1:19 PM

426

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
If a vertex already has a working value, only replace it with another working
value if it is a lower value.

3 Check the working value of any vertex that has not yet been assigned
a final value. Assign the smallest value to this vertex; this is now its
final value.

4 Repeat steps 2 and 3 until the end vertex is reached, and all vertices have
been assigned a final value.

5 Trace the route back from the end vertex to the start vertex to find the
shortest path between these two vertices.

Here is a step-by-step example.

Suppose we have the following graph (route map) with seven vertices labelled
A to G. We want to find the shortest path between A and G. The numbers show
the distance between each pair of vertices.

5

3

87

66

6

4

12

6

5

B

A

C

E

F

G

D

▲ Figure 18.1

First, redraw the diagram, replacing the circled letters as per the key:

C
6

A 1 0

B
5

E

D

Key

G

F

5

3

8

7

6

6

6

4

12

6 5

vertex
letter

order of
labelling

working values

final
value

▲ Figure 18.2

Set the final value of the start vertex (vertex A) to 0 (as per step 1 above).

The two vertices connected to A (B and C) are given the working values 5 and 6
respectively.

Make the smallest working value (vertex B) a final value. Then give the
vertices connected to B (D and E) working values based on the original
distances. The working value for E is the final value of B plus the value of

457591_18_CI_AS & A_Level_CS_425-449.indd 426 25/04/19 1:19 PM

427

18.1 Shortest path algorithm
s

18
B to E (5 + 6 = 11). The working value for D is the final value of B plus the
value of B to D (5 + 4 = 9).

The diagram now looks like this:

C
6

A 1 0

B 2 5
5

E

D

G

F

9

11

5

3

8

7

6

6

6

4

12

6 5

▲ Figure 18.3

Make the smallest working value a final value: vertex C becomes 6.

Now give working values to all vertices connected to C. Note that the working
value for E remains 11 since the final value of C plus the value of C to E is 13,
which is greater than 11.

Vertex D retains its working value since it is not connected to C and is not
affected.

Vertex F takes the working value of C plus the value of C to F (6 + 6 = 12).

The diagram now looks like this:

C
6

A 1 0

3 6

B 2 5
5

E

D

G

F

9

11

12

5

3

8

7

6

6

6

4

12

6 5

▲ Figure 18.4

Vertex D now has the smallest working value (9), so this becomes a final
value.

Vertices E and G are connected to D, so these are now assigned working values.
Note that G has the working value 21 since it is the final value of D plus the
value of D to G (9 + 12 = 21); E keeps the value of 11 since the final value of D
plus the value of D to E is greater than 11 (9 + 11 = 20).

457591_18_CI_AS & A_Level_CS_425-449.indd 427 25/04/19 1:19 PM

428

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18

C
6

A 1 0

3 6

B 2 5
5

E

D

G

F

9

11

21

12

4 9

5

3

8

7

6

6

6

4

12

6 5

▲ Figure 18.5

Vertex E now has the smallest working value (11), so this becomes a final value.

Vertices D, F and G are all connected to E.

D already has a final value so it can be ignored.

F retains its value of 12 since E + E to F = 16 (> 12).

G changes since E + E to G = 17 (< 21).

The diagram now looks like this:

C
6

A 1 0

3 6

B 2 5
5

E

D

G

F

9

11

21 17

12

4 9

5 11

5

3

8

7

6

6

6

4

12

6 5

▲ Figure 18.6

Vertex F now has the smallest working value (12), so this becomes a final value.

G retains its value of 17 since F + F to G = 20 (> 17).

The final diagram now looks like this:

C
6

A 1 0

3 6

B 2 5
5

E

D
9

11

21 17

12

4 9

5 11

F 6 12

G 7 17

5

3

8

7

6

6

6

4

12

6 5

▲ Figure 18.7

457591_18_CI_AS & A_Level_CS_425-449.indd 428 25/04/19 1:19 PM

429

18.1 Shortest path algorithm
s

18
The final step is to work back from G to A.

C
6

A 1 0

3 6

B 2 5
5

E

D
9

11

21 17

12

4 9

5 11

F 6 12

G 7 17

5

3

8

7

6

6

6

4

12

6 5

▲ Figure 18.8

Thus, the shortest path is: A → B → E → G

The reasoning is as follows:

» The difference between the final values E and G is 6, which is the same as
the path length E to G.

» The difference between the final values of B and E is 6, which is the same as
the path length B to E.

» The difference between the final value of B and A is 5, which is the same as
the path length A to B.

You will know if the shortest route is correct by applying this rule:

Path length is the same as the difference between final values at either end of the path.

If the path length between two points is not the same as the difference of the final
values between the same two points, then this is not a route that can be taken.

ACTIVITY 18A

The following graph shows the routes through a large park.

Use Dijkstra’s algorithm to find the shortest path from point A to point I.

6 (six)

5

11

11

10

7

7

7

7

8

6
(s

ix
)

9 (nine)

9
(n

in
e) 6 (six)

B

A

E F

G
H

I

D

C

18.1.2 A* algorithm
Dijkstra’s algorithm simply checks each vertex looking for the shortest path, even
if that takes you away from your destination – it pays no attention to direction.
With larger, more complex problems, that can be a time-consuming drawback.

457591_18_CI_AS & A_Level_CS_425-449.indd 429 25/04/19 1:19 PM

430

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
A* algorithm is based on Dijkstra, but adds an extra heuristic (h) value – an
‘intelligent guess’ on how far we have to go to reach the destination most
efficiently.

The A* algorithm can also find shortest path lengths for graphs similar to the
type used in Section 18.1.1.

Suppose we have the following graph made up of an 8 × 6 matrix. White
squares show permitted moves, and grey squares show blocked moves.

1

1

2

3

4

5

6

2 3 4 5 6 7 8

starting point
finishing point
permitted move
blocked move

▲ Figure 18.9

Each of the parts of the graph are called nodes (or vertices). Each node has
four values

» h (the heuristic value)
» g (movement cost)
» f (sum of g and h values)
» n (previous node in the path).

Note that the weight of a node usually represents movement cost, which is the
distance between the two nodes.

First, find the heuristic values (distances) using the Manhattan method (named
after the criss-cross street arrangement in New York). The distance from the
starting square (1, 1) to the end square (8, 6) is 12 squares (follow the purple
line in the diagram below). Similarly, the distance from square (2, 4) to (8, 6) is
eight squares (follow the orange line in the diagram below).

Note: you can ignore the blocked moves when calculating heuristic distance
from each node to the final node.

1

1

2

3

4

5

6

2 3 4 5 6 7 8

▲ Figure 18.10

Use this method to find the heuristic distances for all permitted nodes:

1

12 11 10 8

11 10 9

8 6

78

7

6 5 4 3 2

6 5 4 3 2

7 5

4

1 –

2

48

1

2

3

4

5

6

2 3 4 5 6 7 8

h-values:

▲ Figure 18.11

457591_18_CI_AS & A_Level_CS_425-449.indd 430 25/04/19 1:19 PM

431

18.1 Shortest path algorithm
s

18
Now, find the g-values (the movement costs). Since we can either move up/down,
left/right or diagonally, we can choose our g-values based on a right-angled
triangle. To make the maths easy we will use a triangle with sides 10, 10 and 14:

10

10 10

14

14

14

1414

14

14

14

10

10

10

14

g-values:

▲ Figure 18.12

Find the f values using f(n) = g(n) + h(n).

Starting with square (1, 1), look at the surrounding squares:

g-values

10 -

10 -

-

14

h-values

11 10

11 9

8

10

▲ Figure 18.13

» square (1, 2): f = 10 + 11 = 21
» square (2, 1): f = 10 + 11 = 21
» square (2, 2): f = 14 + 10 = 24

Since 21 < 24, (1, 2) or (2, 1) are the possible directions.

We will choose (2, 1) as the next step:

g-values

- 10

14 14

-

10

h-values

- 10

11 9

8

10

▲ Figure 18.14

» square (3, 1): f = 10 + 10 = 20
» square (3, 2): f = 14 + 9 = 23
» square (1, 2): f = 14 + 11 = 25
» square (2, 2): f = 10 + 10 = 20

Since 20 is the smallest value, the next stage can be (3, 1) or (2, 2).

We will choose (3, 1) as the next step:

g-values

- -

- 10 14

-

14

- -

- 9 8

8

10

h-values

▲ Figure 18.15

» square (2, 2): f = 14 + 10 = 24
» square (3, 2): f = 10 + 9 = 19
» square (4, 2): f = 14 + 8 = 22

Since square (3, 2) is the smallest value, this must be the next step.

457591_18_CI_AS & A_Level_CS_425-449.indd 431 25/04/19 1:19 PM

432

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
Now look at the possible routes already found to decide where to move next:

Route 1 has the values:
 21 + 20 + 19 = 60

remember
each of the

values is
found by

adding the
g-value to
the h-value

Route 2 has the values:
 24 + 19 = 43

Route 3 has the values:
 21 + 20 + 19 = 60

▲ Figure 18.16

It seems route 2 is the shortest route: (1, 1) → (2, 2) → (3, 2).

When considering the next squares (3, 3) or (4, 2), and applying the above rules,
it becomes clear that the next stage in the route is:

(1, 1) → (2, 2) → (3, 3)

Continue throughout the matrix and produce the following shortest route from
(1, 1) to (8, 6):

1

1

2

3

4

5

6

2 3 4 5 6 7 8

if we had moved to (4,2)
next, then the route to
square (5,4) would be 5
squares; by choosing (3,3)
the route is only 4 squares

▲ Figure 18.17

The shortest path is:

(1, 1) → (2, 2) → (3, 3) → (4, 4) → (5, 4) → (6, 4) → (7, 5) → (8, 6)

Examples of applications of shortest path algorithms include

» global positioning satellites (GPS)
» Google Maps
» modelling the spread of infectious diseases
» IP routing.

ACTIVITY 18B

1 Find the shortest route from node A to node J using the A* algorithm.
Note that you are given the heuristic values (h) in green, and the
movement cost values (g), in red.

B

C

D

E

I

G

F

H

3

6
(si

x)

2

5

13

5

5

3

2

3

7
1

3

10

6

58

5

3

1

6

J

A

457591_18_CI_AS & A_Level_CS_425-449.indd 432 25/04/19 1:19 PM

433

18.1 Shortest path algorithm
s

18
2 Use the A* algorithm to find the shortest route from the starting point

(1, 3) to the end point (6, 7). Note that you will need to calculate your
own h-values and g-values in this question using the method shown
earlier.

1

1

2

3

4

5

6

7

8

9

2 3 4 5 6

3 The following network shows 11 places of interest in a city. The times (in
minutes) to walk between pairs of places of interest are shown on the
vertices.

C

A

D

G

I

J

H

E

B

F

14

15

14

7

1115
15

4

29

11

10

18

29

12

14

14

11
9 (nine)

9 (nine)

9 (nine)

9 (nine)

9
(n

in
e)

a) Using Dijkstra’s algorithm, find the shortest time to walk from
E to G.

b) Write down the corresponding shortest route.
 Total walking time is 288 minutes.

457591_18_CI_AS & A_Level_CS_425-449.indd 433 25/04/19 1:19 PM

434

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
4 The road network below connects a number of towns. The

distances shown are in kilometres (km) between roads connecting
the towns.

A

G

C

E

H

J

I

F

D

B

56

24

10

18

21

16

11
19

5
8

16

26

10

16

8 8

5

6 (s
ix)

10
 a) i) Use Dijkstra’s algorithm on the road network to find the minimum

distance between towns A and J.
ii) Write down the corresponding shortest route.

b) The road AJ is a dual carriageway where the speed limit is 95 kph.
 The speed limit on all other roads is 80 kph.
 Assuming Karl drives at the maximum speed limit on each road,

calculate the minimum time to drive from town A to town J.

18.2 Artificial intelligence, machine
learning and deep learning

Key terms

Machine learning – systems that learn without being
programmed to learn.
Deep learning – machines that think in a way similar
to the human brain. They handle huge amounts of data
using artificial neural networks.
Labelled data – data where we know the target answer
and the data object is fully recognised.
Unlabelled data – data where objects are undefined
and need to be manually recognised.
Supervised learning – system which is able to predict
future outcomes based on past data. It requires both
input and output values to be used in the training
process.

Unsupervised learning – system which is able to
identify hidden patterns from input data – the system is
not trained on the ‘right’ answer.
Reinforcement learning – system which is given no
training – learns on basis of ‘reward and punishment’.
Semi-supervised (active) learning – system that
interactively queries source data to reach the desired
result. It uses both labelled and unlabelled data, but
mainly unlabelled data on cost grounds.
Reward and punishment – improvements to a model
based on whether feedback is positive or negative; actions
are optimised to receive an increase in positive feedback.

457591_18_CI_AS & A_Level_CS_425-449.indd 434 25/04/19 1:19 PM

435

18.2 Artificial intelligence, m
achine learning and deep learning

18

18.2.1 Artificial Intelligence (AI)
Figure 18.18 shows the link between artificial intelligence (AI), machine
learning and deep learning. Deep learning is a subset of machine learning,
which is itself a subset of AI.

AI Intelligent machines think and behave
like humans

Systems learn without being programmed
to learn

Machines think in a way similar to the
human brain; they handle huge amounts
of data using artificial neural networks

M/L

D/L

▲ Figure 18.18

AI can be thought of as a machine with cognitive abilities such as problem
solving and learning from examples. All of these can be measured against
human benchmarks such as reasoning, speech and sight. AI is often split into
three categories.

1 Narrow AI is when a machine has superior performance to a human when
doing one specific task.

2 General AI is when a machine is similar in its performance to a human in
any intellectual task.

3 Strong AI is when a machine has superior performance to a human in many
tasks.

Examples of AI include
» news generation based on live news feeds (this will involve some form of

human interaction)

EXTENSION ACTIVITY 18A

Carry out some research into the following AI concepts.
n Knowledge representation
n Automated reasoning
n Computer vision
n Robotics

Web crawler – internet bot that systematically browses
the world wide web to update its web page content.
Artificial neural networks – networks of
interconnected nodes based on the interconnections
between neurons in the human brain. The system is
able to think like a human using these neural networks,
and its performance improves with more data.
Back propagation – method used in artificial neural
networks to calculate error gradients so that actual

node/neuron weightings can be adjusted to improve the
performance of the model.
Chatbot – computer program set up to simulate
conversational interaction between humans and a
website.
Regression – statistical measure used to make
predictions from data by finding learning relationships
between the inputs and outputs.

457591_18_CI_AS & A_Level_CS_425-449.indd 435 25/04/19 1:19 PM

436

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
» smart home devices (such as Amazon Alexa, Google Now, Apple Siri and

Microsoft Cortana); again these all involve some form of human interaction
(see Figure 18.19).

Hey, Alexa, when
is the next flight
to Paphos?

smart device is
asked a question
by a human

human voice
is converted
into a binary
system

smart device processed
the human command and
outputs a verbal response

11:45 from terminal 1;
would you like me to
make a booking?

100011
011001
001110
011111
000001

▲ Figure 18.19

In this example, the AI device interacts with a human by recognising their
verbal commands. The device will learn from its environment and the data it
receives, becoming increasingly sophisticated in its responses, showing the
ability to use automated repetitive learning via artificial neural networks.

18.2.2 Machine learning
Machine learning is a subset of AI, in which the algorithms are ‘trained’ and
learn from their past experiences and examples. It is possible for the system to
make predictions or even take decisions based on previous scenarios. They can
offer fast and accurate outcomes due to very powerful processing capability.
One of the key factors is the ability to manage and analyse considerable
volumes of complex data – some of the tasks would take humans years, if they
were to analyse the data using traditional computing processing methods. A
good example is a search engine:

User keys search
criteria into

search engine,
which uses ‘search

bots’ to locate
websites matching
the user’s criteria

User chooses one of the
websites found on page 1
of search engine results

Search engine classes
this as a success,

since relevant pages
were on page 1

User has to go to pages
2, 3 or 4 to find the
information they are

looking for

Search engine classes
this as a failure,

since relevant pages
were not on page 1

▲ Figure 18.20

457591_18_CI_AS & A_Level_CS_425-449.indd 436 25/04/19 1:19 PM

437

18.2 Artificial intelligence, m
achine learning and deep learning

18
The search engine will learn from its past performance, meaning its ability to
carry out searches becomes more sophisticated and accurate.

Machine learning is a key part of AI and the various types of machine learning
will be covered later in this chapter.

Labelled and unlabelled data
Let us consider what is meant by labelled and unlabelled data:

Now, suppose you want to automatically count the types of birds seen in
a bird sanctuary. The proposed system will consider bird features such as
shape of beak, colour of feathers, body size, and so on. This requires the
use of labelled data to allow the birds to be recognised by the system
(see Figure 18.21).

Suppose a garage selling vehicles obtains them from three sources.

Vehicles from source 1 are always cars and always come fully serviced.

Vehicles from source 2 are vans and are usually unserviced.

Vehicles from source 3 are motorbikes and are usually serviced.

Vehicles less than three years old also come with a warranty. Thus, the garage has in
stock

n vehicle 1 – car, serviced, warranty

n vehicle 2 – van, no service, no warranty

n vehicle 3 – car, no service, warranty

n vehicle 4 – motorbike, serviced, warranty.

Coming into stock in the next few days are

n vehicle 5 – from source 1, two years old

n vehicle 6 – from source 3, four years old

n vehicle 7 – from source 2, one year old.

Vehicles 1, 2, 3 and 4 are all labelled data since we know

n what type of vehicle they are

n whether they have been serviced

n whether they have a warranty.

They are fully defined and recognisable.

However, vehicles 5, 6 and 7 are unlabelled data since we do not know what type of
vehicle they are and we only know their source and age.

Unlabelled data is data which is unidentified and needs to be recognised. Some
processing would need to be done before they could be recognised as a car, van or
motorbike.

457591_18_CI_AS & A_Level_CS_425-449.indd 437 25/04/19 1:19 PM

438

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18

pictures of birds are
known as the labelled data

output of number of
each type of bird is produced

model learns and
compares bird
features

the model is
trained based on
the bird features

new data (bird
has been detected)

30

15

8

17

▲ Figure 18.21

Machine learning recognises the birds as labelled data, allowing it to be
trained. Once trained, it is able to recognise each type of bird from the original
data set. Algorithms are used to analyse the incoming data (by comparing it
to bird features already recognised by the model) and to learn from this data.
Informed decisions are then made based on what it has learned. Thus, in this
example, it is able to recognise new data and produce an output automatically
showing how many of each type of bird was detected.

Examples of machine learning include

» spam detection (the system learns to recognise spam emails without the
need of any human interactions)

» search engines refining searches based on earlier searches carried out (the
system learns from its mistakes).

Types of machine learning
There are a number of different types of machine learning, including
supervised, unsupervised learning, reinforcement and semi-supervised
(active).

Supervised learning
Supervised learning makes use of regression analysis and classification analysis.
It is used to predict future outcomes based on past data:

» The system requires both an input and an output to be given to the model
so it can be trained.

» The model uses labelled data, so the desired output for a given input is
known.

» Algorithms receive a set of inputs and the correct outputs to permit the
learning process.

» Once trained, the model is run using labelled data.
» The results are compared with the expected output; if there are any errors,

the model needs further refinement.
» The model is run with unlabelled data to predict the outcome.

An example of supervised learning is categorising emails as relevant or spam/
junk without human intervention.

Unsupervised learning
Systems are able to identify hidden patterns from the input data provided; they
are not trained using the ‘right’ answer.

457591_18_CI_AS & A_Level_CS_425-449.indd 438 25/04/19 1:19 PM

439

18.2 Artificial intelligence, m
achine learning and deep learning

18
By making data more readable and more organised, patterns, similarities and
anomalies will become evident (unsupervised learning makes use of density
estimation and k-mean clustering; in other words, it classifies unlabelled
real data).

Algorithms evaluate the data to find any hidden patterns or structures within
the data set.

An example is used in product marketing: a group of individuals with similar
purchasing behaviour are regarded as a single unit for promotions.

Reinforcement learning
The system is not trained. It learns on the basis of ‘reward and
punishment ’ when carrying out an action (in other words, it uses trial and
error in algorithms to determine which action gives the highest/optimal
outcome).

This type of learning helps to increase the efficiency of the system by making
use of optimisation techniques.

Examples include search engines, online games and robotics.

Semi-supervised (active) learning
Semi-supervised learning makes use of labelled and unlabelled data to train
algorithms that can interactively query the source data and produce a desired
output.

It makes as much use of unlabelled data as possible (this is for cost reasons,
since unlabelled data is less expensive than labelled data when carrying out
data categorisation).

A small amount of labelled data is used combined with large amounts of
unlabelled data.

Examples of uses include the classification of web pages into sport, science,
leisure, finance, and so on. A web crawler is used to look at large amounts of
unlabelled web pages, which is much cheaper than going through millions of
web pages and manually annotating (labelling) them.

18.2.3 Deep learning
Deep learning structures algorithms in layers (input layer, output layer and
hidden layer(s)) to create an artificial neural network that can learn and make
intelligent decisions on its own.

Its artificial neural networks are based on the interconnections between
neurons in the human brain. The system is able to think like a human using
these neural networks, and its performance improves with more data.

The hidden layers are where data from the input layer is processed into
something which can be sent to the output layer. Artificial neural networks
are excellent at identifying patterns which would be too complex or time
consuming for humans to carry out.

For example, they can be used in face recognition. The face in Figure 18.22
shows several of the positions used by the face recognition software. Each

457591_18_CI_AS & A_Level_CS_425-449.indd 439 25/04/19 1:19 PM

440

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
position is checked when the software tries to compare two facial images. A
face is identified using data such as

» distance between the eyes
» width of the nose
» shape of the cheek bones
» length of the jaw line
» shape of the eyebrows.

Figure 18.23 shows an artificial neural network (with two hidden layers).

input layer hidden layer 1 hidden layer 2 output layer

1

2

3

A1

A2

A3

A4

A5

B1

B2

B3 1

B4

B5

▲ Figure 18.23 An artificial neural network

These systems are able to recognise objects, such as birds, by their shape and
colour. With machine learning, the objects form labelled data which can be
used in the training process.

But how is it possible to recognise a bird if the data is unlabelled? By analysing
pixel densities of objects, for example, it is possible for a deep learning system
to take unlabelled objects and then recognise them through a sophisticated set
of algorithms.

Deep learning using artificial neural networks can be used to recognise objects
by looking at the binary codes of each pixel, thus building up a picture of the
object. For example, Figure 18.24 shows a close up of a face where each pixel
can be assigned its binary value and, therefore, the image could be recognised
by deep learning algorithms as a person’s face.

▲ Figure 18.24 Deep learning algorithms can recognise this as a person’s face

▲ Figure 18.22 Face
recognition

457591_18_CI_AS & A_Level_CS_425-449.indd 440 25/04/19 1:19 PM

441

18.2 Artificial intelligence, m
achine learning and deep learning

18
This summarises how deep learning works:

new data

large amounts
of unlabelled
data (objects)

the model
is ‘trained’

using artificial
neural

networks

the model
needs to be
tested using

known labelled
data

the required
output is
provided

▲ Figure 18.25

Large amounts of unlabelled data (data which is undefined and needs to be
recognised) is input into the model. One of the methods of object recognition,
using pixel densities, was described above. Using artificial neural networks, each
of the objects is identified by the system. Labelled data (data which has already
been defined and is, therefore, recognised) is then entered into the model
to make sure it gives the correct responses. If the output is not sufficiently
accurate, the model is refined until it gives satisfactory results (known as
back propagation – see Section 18.2.6). The refinement process may take
several adjustments until it provides reliable and consistent outputs.

Text mining
Suppose a warehouse contains hundreds of books. A system is being developed
to translate the text from each book and determine which genre the book
belongs to, such as a car engine repair manual. Each book could then be
identified by the system and placed in its correct category. How could this be
done using deep learning and machine learning techniques?

collection of books
translation of text into digital
format indicating which genre

the book belongs to

digitised data is
analysed

deep learning

book placed in
correct category genre identified

Tags in data help
to determine book

genre
text mining using
machine learning

▲ Figure 18.26

Computer-assisted translation (CAT)
Existing online language translators have a limited use: they often have
difficulty translating words or phrases with double meanings, or idioms specific
to a language. Computer-assisted translation (CAT) goes some way to overcome
these issues. CAT uses deep learning algorithms to help in the translation
process.

In particular, CAT uses two tools:

» Terminology databases (linguistic databases that grow and ‘learn’ from
translations being carried out).

» Translation memories (these automatically insert known translations for
certain words, phrases or sentences).

457591_18_CI_AS & A_Level_CS_425-449.indd 441 25/04/19 1:19 PM

442

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
Photograph enhancement
Some of the latest smartphones cameras use deep learning to give DSLR
quality to the photographs. The technology was developed by taking the same
photos using a smartphone and then using a DSLR camera. The deep learning
system was then trained by comparing the two photographs. A large number of
photographs already taken by a DSLR camera (but not by the smartphone) were
then used to test the model. The results can be seen in Figure 18.27.

▲ Figure 18.27 Original photo taken by smartphone (left); enhanced photo using deep
learning model (right)

Turning monochrome photos into colour
Deep learning can be used to turn monochrome (black and white) photographs
into coloured photographs. This is a sophisticated system which produces a
better photograph than simply turning grey-scale values into an approximated
colour. In Figure 18.28, the original monochrome image has been processed to
give a very accurate coloured image.

deep learning artificial
neural network

1

2

3

A1

A2

A3

A4

A5

B1

B2

B3 1

B4

B5

▲ Figure 18.28 Deep learning can change black and white photographs to colour

The deep learning system is trained by searching websites for data which allows
it to recognise features and then map a particular colour to a photograph/
object thus producing an accurate coloured image.

Chatbots
Chatbots interact through instant messaging, artificially replicating patterns of
human interactions using machine learning. Typed messages or voice recordings
make use of predefined scripts and machine learning: when a question is asked,
a chatbot responds using the information known at the time.

457591_18_CI_AS & A_Level_CS_425-449.indd 442 25/04/19 1:19 PM

443

18.2 Artificial intelligence, m
achine learning and deep learning

18Hello! I am the booksite.com
chatbot. How can I help you?

I ordered the new A Level
Computer Science textbook –
when will it be delivered?

Can you give me your order
number please and I will check
for you

CSH123456. Thank you!

▲ Figure 18.29

18.2.4 Comparison between machine learning and deep
learning

machine learning deep learning

enables machines to make decisions on their own based
on past data

enables machines to make decisions using an artificial
neural network

needs only a small amount of data to carry out the
training

the system needs large amounts of data during the
training stages

most of the features in the data used need to be
identified in advance and then manually coded into the
system

deep learning machine learns the features of the data
from the data itself and it does not need to be identified
in advance

a modular approach is taken to solve a given problem/task;
each module is then combined to produce the final model

the problem is solved from beginning to end as a single
entity

testing of the system takes a long time to carry out testing of the system takes much less time to carry out

there are clear rules which explain why each stage in the
model was made

since the system makes decisions based on its own logic,
the reasoning behind those decisions may be very difficult
to understand (they are often referred to as a black box)

▲ Table 18.1 Comparison between machine learning and deep learning

18.2.5 What will happen in the future?
Table 18.2 lists some artificial intelligence, machine learning and deep learning
developments expected in the not too distant future.

AI detection of crimes before they happen by looking at existing patterns

development of humanoid AI machines which carry out human tasks (androids)

Machine learning increased efficiency in health care and diagnostics (for example, early detection of cancers,
eye defects, and so on)

better marketing techniques based on buying behaviours of target groups

Deep learning increased personalisation in various areas (such as individual cancer care which personalises
treatment based on many factors)

hyper intelligent personal assistants

▲ Table 18.2 Developments in AI, machine learning and deep learning

457591_18_CI_AS & A_Level_CS_425-449.indd 443 25/04/19 1:19 PM

http://booksite.com

444

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18

18.2.6 Back propagation and regression methods
Back propagation
When designing neural networks, it is necessary to give random weightings to
each of the neural connections. However, the system designer will not initially
know which weight factors to use to produce the best results. It is necessary
to train the neural networks during the development stage:

INPUTS to
model

The system learns from the inputs used
and the corresponding outputs

OUTPUTS
from model

INPUTS to
model

The system now predicts the outcomes
from the new input data

OUTPUTS
from model

▲ Figure 18.30

The training program is iterative; the outputs produced from the system are
compared to the expected results and any differences in the two values/results
are calculated. These errors are propagated back into the neural network in
order to update the initial network weightings.

This process (training) is repeated until the desired outputs are eventually
obtained, or the errors in the outputs are within acceptable limits.

Here is a summary of the back propagation process:

» The initial outputs from the system are compared to the expected outputs
and the system weightings are adjusted to minimise the difference between
actual and expected results.

» Calculus is used to find the error gradient in the obtained outputs: the
results are fed back into the neural networks and the weightings on
each neuron are adjusted (note: this can be used in both supervised and
unsupervised networks).

» Once the errors in the output have been eliminated (or reduced to
acceptable limits) the neural network is functioning correctly and the model
has been successfully set up.

» If the errors are still too large, the weightings are altered – the process
continues until satisfactory outputs are produced.

Figure 18.31 shows the ultimate goal of the back propagation process.

weight

[e
rr

o
r]

2

increase
weight

minimum
error goal

minimum acceptable error
between actual and
expected results

decrease
weight

EXTENSION ACTIVITY 18B

Carry out some research into present day and future developments in AI,
machine learning and deep learning (these will change every year and it is
necessary to update yourself with all the latest developments).

▲ Figure 18.31

457591_18_CI_AS & A_Level_CS_425-449.indd 444 25/04/19 1:19 PM

445

18.2 Artificial intelligence, m
achine learning and deep learning

18
There are two types of back propagation: static and recurrent:

» Static maps static inputs to a static output.
» Mapping is instantaneous in static, but this is not the case with recurrent.
» Training a network/model is more difficult with recurrent than with static.
» With recurrent, activation is fed forward until a fixed value is achieved.

Regression
Machine learning builds heavily on statistics; for example, regression is one
way of analysing data before it is input into a system or model. Regression
is used to make predictions from given data by learning some relationship
between the input and the output. It helps in the understanding of how
the value of a dependent variable changes when the values of independent
variables are also changed. This makes it a valuable tool in prediction
applications, such as weather forecasting.

In machine learning, this is used to predict the outcome of an event based on
any relationship between variables obtained from input data and the hidden
parameters.

ACTIVITY 18C

1 a) Explain the difference(s) between narrow AI,
general AI and strong AI.

b) In machine learning, what is meant by
reward and punishment? Give an example of
its use.

c) Explain the term artificial neural networks.
Use diagrams to help in your explanation.

2 a) Explain the difference between
supervised learning, unsupervised learning,
reinforcement learning and active learning.

b) i) Describe how back propagation (of
errors) is used to train an AI model.

ii) Name two types of back propagation.
3 a) Give one use of each of the following.

i) supervised learning
ii) unsupervised learning
iii) reinforcement learning
iv) semi-supervised (active) learning

b) Name the ten terms, i)–x), being described.
i) Intelligent machines that think and

behave like human beings.
ii) System that learns without being

programmed to learn.
iii) Machines that process information in a

similar way to the human brain; they

 handle large amounts of data using
artificial neural networks.

iv) Data where objects are undefined and
need to be manually recognised.

v) An internet bot that systematically
browses the world wide web to update
its web content.

vi) A computer program which is set up to
automatically simulate a conversational
interaction between a human and a
website.

vii) A statistical measure used in artificial
neural networks to calculate error
gradients so that actual neuron
weightings can be adjusted to improve
the performance of the model.

viii) A statistical measure used to make
predictions from data by finding
learning relationships between input
and output values.

ix) Data where we know the target answer
and data objects are fully recognised
and identified.

x) Improvements made to a model based
on negative and positive feedback:
actions are optimised to increase the
amount of positive feedback.

457591_18_CI_AS & A_Level_CS_425-449.indd 445 25/04/19 1:19 PM

446

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
End of chapter

questions
1 a) Answer these multiple choice questions.

i) Identify the statement that best describes artificial intelligence. [1]
A putting human intelligence into a computer system
B programming a computer using a user’s intelligence
C making a machine intelligent
D playing a game on a computer
E adding more memory units to a computer

ii) Identify the programming language that is not used when programming
AI systems. [1]
A Java
B JavaScript
C Lisp
D Perl
E Prolog

iii) Identify the correct description of a heuristic approach. [1]
A trying to improve algorithms using back propagation
B searching and measuring how far away a node is from its destination
C comparison of two nodes in a graph to see which is nearer to the

destination node
D an informed ‘guess’ about which node will lead to the required goal
E all the above

b) Copy the diagram below and connect each description to either machine
learning or deep learning. [8]

Learning type Description

needs only a small amount of training data

problems are solved in an end to end manner

enables machines to make decisions with the help
of artificial neural networks

Deep learning

has clear rules to explain how decisions were
made

makes use of modular approach at
design and training stages

Machine learning

needs vast amounts of data during training and
development

enables machines to make decisions on their own
based on past data

makes decisions based on its own logic so the
reasoning may be difficult to interpret

457591_18_CI_AS & A_Level_CS_425-449.indd 446 25/04/19 1:19 PM

447

18.2 Artificial intelligence, m
achine learning and deep learning

18
2 a) Describe three features you would associate with:

i) reinforcement learning [3]

ii) supervised learning. [3]

b) Explain why these applications are regarded as artificial intelligence.

i) Chat bots [2]

ii) Search engines [2]

iii) Photographic enhancement applications [2]

3 Copy and complete the text, using words from the box. Words may be used
once, more than once, or not at all. [10]

actual output machine learning reinforcement learning

back propagation minimised removed

deep learning random weighting static

error gradients recurrent supervised learning

expected results regression testing

When designing artificial neural networks, each neuron is given a
……………………

The ………………….. is compared to the …………………….. as part of
the training.

………………………. are used to update the neural weightings.

Weightings are updated until the errors are …………………….. or are
………………………

This process is known as ………………………

There are two types: ……………… and …………………….

Machine learning uses ……………………… to make predictions from data by
looking at learning relationships.

➔

457591_18_CI_AS & A_Level_CS_425-449.indd 447 25/04/19 1:19 PM

448

18
 A

r
ti

fi
c

iA
l

in
te

ll
ig

e
n

c
e

(A
i)

18
4 a) Explain the difference between the A* algorithm and Dijkstra’s

algorithm. [2]

b) The following graph (network) shows how long it takes (in seconds) to walk
between ten hotels in a city.

A 160

85

City Hotel

Adelphi Hotel

Sandy’s Hotel

Bellini Hotel

Newark Hotel

Luxury Hotel

Valencia Hotel

Hilton Hotel

Metropolitan Hotel

Quality Hotel

70

110

110

90

130

160

V

H

S

N

L

M

B

C
140

310

230

90

11
0

105

260

160

130

Q

i) Using Dijkstra’s algorithm, show the shortest time to walk from the City
Hotel (C) to the Quality Hotel (Q). [8]

ii) Give the route corresponding to your answer in part b)i). [1]

5 The following graph is made up of a (9 × 8) matrix.

 Use the A* algorithm to show the shortest route from A to B. [8]

1

1

3

4

5

6

7

8

2 3 4 5 6 7 8 9

starting
point ‘A’

finishing
point ‘B’

2

457591_18_CI_AS & A_Level_CS_425-449.indd 448 25/04/19 1:19 PM

449

18.2 Artificial intelligence, m
achine learning and deep learning

18
6 Tom is using a GPS device to navigate from point B to point E.

 Tom’s GPS uses the A* algorithm to find the shortest route:

 B → C → M → J → K → E

 This route is shown in orange on the diagram.

 However, due to some major f looding, routes M to J and M to F have been
closed, making the original path no longer possible.

 Describe how the GPS system will use the A* algorithm to find an alternative
route from B to E. [4]

A

F
G

H

I

J K

M

L

D

C

B

E

7 The following graph shows the routes connecting buildings on a university
campus. The numbers represent the time taken (in minutes) to cycle from one
building to another.

B

A

12

12

12

12

20

20

20

20

20

20

20

14

15

15

15

10

9

E

F

G

H

I

J

K

L

D

C

a) i) Use Dijkstra’s algorithm to find the minimum time to cycle from
building A to building L. [8]

ii) Write down the corresponding shortest route. [1]

b) It has been decided to construct a new cycle path, either from A directly
to D (cycle time 30 minutes) or from A directly to I (cycle time 20 minutes).

 Identify the option that would reduce the cycle time from building A to
building L by the greatest amount. [4]

457591_18_CI_AS & A_Level_CS_425-449.indd 449 25/04/19 1:19 PM

450

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

In this chapter, you will learn about

★ how to write algorithms to implement linear and binary searches
★ the conditions necessary for the use of a binary search
★ how the performance of a binary search varies according to the

number of data items
★ how to write algorithms to implement insertion and bubble sorts
★ the use of abstract data types (ADTs) including finding, inserting and

deleting items from linked lists, binary trees, stacks and queues
★ the key features of a graph and why graphs are used
★ how to implement ADTs from other ADTs
★ the comparison of algorithms including the use of Big O notation
★ how recursion is expressed in a programming language
★ when to use recursion
★ writing recursive algorithms
★ how a compiler implements recursion in a programming language.

19.1	 Algorithms

WHAT	YOU	SHOULD	ALREADY	KNOW	
In Chapter 10 you learnt about Abstract Data
Types (ADTs) and searching and sorting arrays.
You should also have been writing programs in
your chosen programming language (Python, VB
or Java). Try the following five questions to refresh
your memory before you start to read this chapter.
1 Explain what is meant by the terms

a) stack
b) queue
c) linked list.

2	 a)	 Describe how it is possible to implement a
stack using an array.

b) Describe how it is possible to implement a
queue using an array.

c) Describe how it is possible to implement a
linked list using an array.

3 Write pseudocode to search an array of
twenty numbers using a linear search.

4 Write pseudocode to sort an array that
contains twenty numbers using a bubble sort.

5 Make sure that you can write, compile and run
a short program in your chosen programming
language. The programs below show the code
you need to write the same program in each of
three languages.

// Java program for Hello World
public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}

'VB program for Hello World
Module Module1
 Sub Main()
 Console.WriteLine("Hello World")
 Console.ReadKey()
 End Sub
End Module

	 19	
Computational	thinking	and	
problem	solving

Python program for Hello World
print ("Hello World")

457591_19_CI_AS & A_Level_CS_450-497.indd 450 26/04/19 9:14 AM

451

19.1
Algorithm

s

19
Key	terms

Binary	search	– a method of searching an ordered list
by testing the value of the middle item in the list and
rejecting the half of the list that does not contain the
required value.
Insertion	sort – a method of sorting data in an array
into alphabetical or numerical order by placing each
item in turn in the correct position in the sorted list.
Binary	tree	– a hierarchical data structure in which each
parent node can have a maximum of two child nodes.

Graph – a non-linear data structure consisting of nodes
and edges.
Dictionary – an abstract data type that consists of
pairs, a key and a value, in which the key is used to find
the value.
Big	O	notation – a mathematical notation used
to describe the performance or complexity of an
algorithm.

19.1.1	 Understanding linear and binary searching methods
Linear search
In Chapter 10, we looked at the linear search method of searching a list. In this
method, each element of an array is checked in order, from the lower bound to
the upper bound, until the item is found, or the upper bound is reached.

The pseudocode linear search algorithm and identifier table to find if an item is
in the populated 1D array myList from Chapter 10 is repeated here.

DECLARE myList : ARRAY[0:9] OF INTEGER

DECLARE upperBound : INTEGER

DECLARE lowerBound : INTEGER

DECLARE index : INTEGER

DECLARE item : INTEGER

DECLARE found : BOOLEAN

upperBound ← 9

lowerBound ← 0

OUTPUT "Please enter item to be found"

INPUT item

found ← FALSE

index ← lowerBound

REPEAT

 IF item = myList[index]

 THEN

 found ← TRUE

 ENDIF

 index ← index + 1

UNTIL (found = TRUE) OR (index > upperBound)

457591_19_CI_AS & A_Level_CS_450-497.indd 451 26/04/19 9:14 AM

452

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19

Identifier Description
myList Array to be searched
upperBound Upper bound of the array
lowerBound Lower bound of the array
index Pointer to current array element
item Item to be found
found Flag to show when item has been found

▲ Table	19.1

This method works for a list in which the items can be stored in any order, but
as the size of the list increases, the average time taken to retrieve an item
increases correspondingly.

The Cambridge International AS & A Level Computer Science syllabus requires
you to be able to write code in one of the following programming languages:
Python, VB and Java. It is very important to practice writing different routines
in the programming language of your choice; the more routines you write, the
easier it is to write programming code that works.

Here is a simple linear search program written in Python, VB and Java using a
FOR loop.

Python

#Python program for Linear Search

#create array to store all the numbers

myList = [4, 2, 8, 17, 9, 3, 7, 12, 34, 21]

#enter item to search for

item = int(input("Please enter item to be found "))

found = False

for index in range(len(myList)):

 if(myList[index] == item):

 found = True

if(found):

 print("Item found")

else:

 print("Item not found")

IF found

 THEN

 OUTPUT "Item found"

 ELSE

 OUTPUT "Item not found"

ENDIF

457591_19_CI_AS & A_Level_CS_450-497.indd 452 26/04/19 9:14 AM

453

19.1
Algorithm

s

19
VB

'VB program for Linear Search

 Module Module1

 Public Sub Main()

 Dim index As Integer

 Dim item As Integer

 Dim found As Boolean

 'Create array to store all the numbers

 Dim myList() As Integer = New Integer() {4, 2, 8, 17, 9, 3, 7, 12, 34, 21}

 'enter item to search for

 Console.Write("Please enter item to be found ")

 item = Integer.Parse(Console.ReadLine())

 For index = 0 To myList.Length - 1

 If (item = myList(index)) Then

 found = True

 End If

 Next

 If (found) Then

 Console.WriteLine("Item found")

 Else : Console.WriteLine("Item not found")

 End If

 Console.ReadKey()

 End Sub

End Module

Java

//Java program Linear Search

import java.util.Scanner;

public class LinearSearch

{

 public static void main(String args[])

 {

 Scanner myObj = new Scanner(System.in);

 //Create array to store the all the numbers

 int myList[] = new int[] {4, 2, 8, 17, 9, 3, 7, 12, 34, 21};

 int item, index;

 boolean found = false;

 // enter item to search for

 System.out.println("Please enter item to be found ");

 item = myObj.nextInt();

 for (index = 0; index < myList.length - 1; index++)

457591_19_CI_AS & A_Level_CS_450-497.indd 453 26/04/19 9:14 AM

http://Scanner(System.in

454

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
 {

 if (myList[index] == item)

 {

 found = true;

 }

 }

 if (found)

 {

 System.out.println("Item found");

 }

 else

 {

 System.out.println("Item not found");

 }

 }

}

ACTIVITY	19A

Write the linear search in the programming language you are using, then
change the code to use a similar type of loop that you used in the pseudocode
at the beginning of Section 19.1.1, Linear search.

Binary search
A binary search is more efficient if a list is already sorted. The value of the
middle item in the list is first tested to see if it matches the required item,
and the half of the list that does not contain the required item is discarded.
Then, the next item of the list to be tested is the middle item of the half of the
list that was kept. This is repeated until the required item is found or there is
nothing left to test.

For example, consider a list of the letters of the alphabet.

To find the letter W using a linear search there would be 23 comparisons.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
= =
W W
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

▲	Figure	19.1	Linear search showing all the comparisons

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

457591_19_CI_AS & A_Level_CS_450-497.indd 454 26/04/19 9:14 AM

455

19.1
Algorithm

s

19
To find the letter W using a binary search there could be just three
comparisons.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
= = =
W W W
1 2 3

▲	Figure	19.2	Binary search showing all the comparisons

ACTIVITY	19B

Check how many comparisons for each type of search it takes to find
the letter D. Find any letters where the linear search would take less
comparisons than the binary search.

A binary search usually takes far fewer comparisons than a linear search to
find an item in a list. For example, if a list had 1024 elements, the maximum
number of comparisons for a binary search would be 16, whereas a linear search
could take up to 1024 comparisons.

Here is the pseudocode for the binary search algorithm to find if an item is in
the populated 1D array myList. The identifier table is the same as the one
used for the linear search.

DECLARE myList : ARRAY[0:9] OF INTEGER

DECLARE upperBound : INTEGER

DECLARE lowerBound : INTEGER

DECLARE index : INTEGER

DECLARE item : INTEGER

DECLARE found : BOOLEAN

upperBound ← 9

lowerBound ← 0

OUTPUT "Please enter item to be found"

INPUT item

found ← FALSE

REPEAT

 index ← INT ((upperBound + lowerBound) / 2)

 IF item = myList[index]

 THEN

 found ← TRUE

 ENDIF

 IF item > myList[index]

 THEN

457591_19_CI_AS & A_Level_CS_450-497.indd 455 26/04/19 9:14 AM

456

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
 lowerBound ← index + 1

 ENDIF

 IF item < myList[index]

 THEN

 upperBound ← index - 1

 ENDIF

UNTIL (found = TRUE) OR (lowerBound = upperBound)

IF found

 THEN

 OUTPUT "Item found"

 ELSE

 OUTPUT "Item not found"

ENDIF

Identifier Description
myList Array to be searched
upperBound Upper bound of the array
lowerBound Lower bound of the array
index Pointer to current array element
item Item to be found
found Flag to show when item has been found

▲ Table	19.2

The code structure for a binary search is very similar to the linear search
program shown for each of the programming languages. You will need to
populate myList before searching for an item, as well as the variables found,
lowerBound and upperBound.

You will need to use a conditional loop like those shown in the table below.

Loop Language
while (not found) and (lowerBound != lowerBound): Python uses a condition to

repeat the loop at the start of
the loop

Do

:

:

Loop Until (found) Or (lowerBound = upperBound)

VB uses a condition to stop the
loop at the end of the loop

Do {

:

:

}

while ((!found) && (upperBound != lowerBound));

Java uses a condition to repeat
the loop at the end of the loop

▲ Table	19.3

457591_19_CI_AS & A_Level_CS_450-497.indd 456 26/04/19 9:14 AM

457

19.1
Algorithm

s

19
You will need to use If statements like those shown in the table below to test
if the item is found, or to decide which part of myList to use next, and to
update the upperBound or lowerBound accordingly.

If Language
index = (upperBound + lowerBound)//2)

 if(myList[index] == item):

 found = True

 if item > myList[index]:

 lowerBound = index + 1

 if item < myList[index]:

 upperBound = index - 1

Python using integer division

index = (upperBound + lowerBound)\2

 If (item = myList(index)) Then

 found = True

 End If

 If item > myList(index) Then

 lowerBound = index + 1

 End if

 If item < myList(index) Then

 upperBound = index -1

 End if

VB using integer division

index = (upperBound + lowerBound) / 2;

 if (myList[index] == item)

 {

 found = true;

 }

 if (item > myList[index])

 {

 lowerBound = index + 1;

 }

 if (item < myList[index])

 {

 upperBound = index - 1;

 }

Java automatic integer division

ACTIVITY	19C

In your chosen programming language, write a short program to complete
the binary search.

Use this sample data:

16, 19, 21, 27, 36, 42, 55, 67, 76, 89

Search for the values 19 and 77 to test your program.

▲ Table	19.4

457591_19_CI_AS & A_Level_CS_450-497.indd 457 26/04/19 9:14 AM

458

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
19.1.2	 Understanding insertion and bubble sorting methods
Bubble sort
In Chapter 10, we looked at the bubble sort method of sorting a list. This is
a method of sorting data in an array into alphabetical or numerical order by
comparing adjacent items and swapping them if they are in the wrong order.

The bubble sort algorithm and identifier table to sort the populated 1D array
myList from Chapter 10 is repeated here.

DECLARE myList : ARRAY[0:8] OF INTEGER

DECLARE upperBound : INTEGER

DECLARE lowerBound : INTEGER

DECLARE index : INTEGER

DECLARE swap : BOOLEAN

DECLARE temp : INTEGER

DECLARE top : INTEGER

upperBound ← 8

lowerBound ← 0

top ← upperBound

REPEAT

 FOR index = lowerBound TO top - 1

 Swap ← FALSE

 IF myList[index] > myList[index + 1]

 THEN

 temp ← myList[index]

 myList[index] ← myList[index + 1]

 myList[index + 1] ← temp

 swap ← TRUE

 ENDIF

 NEXT

 top ← top -1

UNTIL (NOT swap) OR (top = 0)

Identifier Description
myList Array to be searched
upperBound Upper bound of the array
lowerBound Lower bound of the array
index Pointer to current array element
swap Flag to show when swaps have been made
top Index of last element to compare
temp Temporary storage location during swap

▲ Table	19.5

457591_19_CI_AS & A_Level_CS_450-497.indd 458 26/04/19 9:14 AM

459

19.1
Algorithm

s

19

VB

'VB program for bubble sort

 Module Module1

 Sub Main()

 Dim myList() As Integer = New Integer() {70, 46, 43, 27, 57, 41, 45, 21, 14}

 Dim index, top, temp As Integer

 Dim swap As Boolean

 top = myList.Length - 1

 Do

 swap = False

 For index = 0 To top - 1 Step 1

 If myList(index) > myList(index + 1) Then

 temp = myList(index)

 myList(index) = myList(index + 1)

 myList(index + 1) = temp

 swap = True

 End If

Here is a simple bubble sort program written in Python, VB and Java, using
a pre-condition loop and a FOR loop in Python and post-condition loops and
FOR loops in VB and Java.

Python

#Python program for Bubble Sort

myList = [70,46,43,27,57,41,45,21,14]

top = len(myList)

swap = True

while (swap) or (top > 0):

 swap = False

 for index in range(top - 1):

 if myList[index] > myList[index + 1]:

 temp = myList[index]

 myList[index] = myList[index + 1]

 myList[index + 1] = temp

 swap = True

 top = top - 1

#output the sorted array

print(myList)

Pre-condition loop

457591_19_CI_AS & A_Level_CS_450-497.indd 459 26/04/19 9:14 AM

460

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
 Next

 top = top - 1

 Loop Until (Not swap) Or (top = 0)

 'output the sorted array

 For index = 0 To myList.Length - 1

 Console.Write(myList(index) & " ")

 Next

 Console.ReadKey() 'wait for keypress

 End Sub

End Module

Post-condition loop

Java

// Java program for Bubble Sort

class BubbleSort

{

 public static void main(String args[])

 {

 int myList[] = {70, 46, 43, 27, 57, 41, 45, 21, 14};

 int index, top, temp;

 boolean swap;

 top = myList.length;

 do {

 swap = false;

 for (index = 0; index < top - 1; index++)

 {

 if (myList[index] > myList[index + 1])

 {

 temp = myList[index];

 myList[index] = myList[index + 1];

 myList[index + 1] = temp;

 swap = true;

 }

 }

 top = top - 1;

 }

 while ((swap) || (top > 0));

 // output the sorted array

 for (index = 0; index < myList.length; index++)

 System.out.print(myList[index] + " ");

 System.out.println();

 }

}

Post-condition loop

457591_19_CI_AS & A_Level_CS_450-497.indd 460 26/04/19 9:14 AM

461

19.1
Algorithm

s

19
Insertion sort
The bubble sort works well for short lists and partially sorted lists. An insertion
sort will also work well for these types of list. An insertion sort sorts data in
a list into alphabetical or numerical order by placing each item in turn in the
correct position in a sorted list. An insertion sort works well for incremental
sorting, where elements are added to a list one at a time over an extended
period while keeping the list sorted.

Here is the pseudocode and the identifier table for the insertion sort algorithm
sorting the populated 1D array myList.

DECLARE myList : ARRAY[0:8] OF INTEGER

DECLARE upperBound : INTEGER

DECLARE lowerBound : INTEGER

DECLARE index : INTEGER

DECLARE key : BOOLEAN

DECLARE place : INTEGER

upperBound ← 8

lowerBound ← 0

FOR index ← lowerBound + 1 TO upperBound

 key ← myList[index]

 place ← index - 1

 IF myList[place] > key

 THEN

 WHILE place >= lowerBound AND myList[place] > key

 temp ← myList[place + 1]

 myList[place + 1] ← myList[place]

 myList[place] ← temp

 place ← place - 1

 ENDWHILE

 myList[place + 1] ← key

 ENDIF

NEXT index

Identifier Description
myList Array to be searched
upperBound Upper bound of the array
lowerBound Lower bound of the array
index Pointer to current array element
key Element being placed
place Position in array of element being moved

▲ Table	19.6

457591_19_CI_AS & A_Level_CS_450-497.indd 461 26/04/19 9:14 AM

462

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Figure 19.3 shows the changes to the 1D array myList as the insertion sort is
completed.

Index of element being checked
myList 1 2 3 4 5 6 7 8

[0] 27 19 19 19 19 16 16 16 16 16 16 16 16
[1] 19 27 27 27 27 19 19 19 19 19 16 16 16
[2] 36 36 36 36 36 27 27 27 21 21 19 19 19
[3] 42 42 42 42 42 36 36 36 27 27 21 21 21
[4] 16 16 16 16 16 42 42 42 36 36 27 27 27
[5] 89 89 89 89 89 89 89 89 42 42 36 36 36
[6] 21 21 21 21 21 21 21 21 89 89 42 42 42
[7] 16 16 16 16 16 16 16 16 16 16 89 89 55
[8] 55 55 55 55 55 55 55 55 55 55 55 55 89

▲ Figure	19.3

The element shaded blue is being checked and placed in the correct position. The
elements shaded yellow are the other elements that also need to be moved if the
element being checked is out of position. When sorting the same array, myList,
the insert sort made 21 swaps and the bubble sort shown in Chapter 10 made
38 swaps. The insertion sort performs better on partially sorted lists because,
when each element is found to be in the wrong order in the list, it is moved
to approximately the right place in the list. The bubble sort will only swap the
element in the wrong order with its neighbour.
As the number of elements in a list increases, the time taken to sort the list
increases. It has been shown that, as the number of elements increases, the
performance of the bubble sort deteriorates faster than the insertion sort.

600

500

400

300

200

100

0
1000 5000 10000

bubble sort

50000 100000 200000 300000

Ti
m

e
(s

ec
o

n
d

s)

Number of elements in the list

insertion sort

quick sort

▲ Figure	19.4 Time performance of sorting algorithms

457591_19_CI_AS & A_Level_CS_450-497.indd 462 26/04/19 9:14 AM

463

19.1
Algorithm

s

19
The code structure for an insertion sort in each of the programming languages
is very similar to the bubble sort program. You will need to assign values to
lowerBound and upperBound and use a nested loop like those shown in
the table below.

Nested loop Language
for index in range(lowerBound + 1, upperBound):

 key = myList[index]

 place = index -1

 if myList[place] > key:

 while place >= lowerBound and myList[place] > key:

 temp = myList[place + 1]

 myList[place + 1] = myList [place]

 myList[place] = temp

 place = place -1

 myList[place + 1] = key

Python

For index = lowerBound + 1 To upperBound

 myKey = myList(index)

 place = index - 1

 If myList(place) > myKey Then

 While (place >= lowerBound) And (myList(place) > myKey)

 temp = myList(place + 1)

 myList(place + 1) = myList(place)

 myList(place) = temp

 place = place - 1

 End While

 myList(place + 1) = myKey

 End If

Next

VB cannot use key
as a variable

for (index = lowerBound + 1; index < upperBound; index++)

 {

 key = myList[index];

 place = index - 1;

 if (myList[place] > key)

 {

 do

 {

 temp = myList[place + 1];

 myList[place + 1] = myList[place];

 myList[place] = temp;

 place = place - 1

 }

 while ((place >= lowerBound) || (myList[place + 1] > key));

 myList[place + 1] = key;

 }

 }

Java

▲ Table	19.7

457591_19_CI_AS & A_Level_CS_450-497.indd 463 26/04/19 9:14 AM

464

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
ACTIVITY	19D

In your chosen programming language write a short program to complete
the insertion sort.

EXTENSION	
ACTIVITY	19A

There are many
other more efficient
sorting algorithms.
In small groups,
investigate different
sorting algorithms,
finding out how the
method works and
the efficiency of that
method. Share your
results.

19.1.3	 Understanding and using abstract data types (ADTs)
Abstract data types (ADTs) were introduced in Chapter 10. Remember that an ADT
is a collection of data and a set of operations on that data. There are several
operations that are essential when using an ADT

» finding an item already stored
» adding a new item
» deleting an item.

We started considering the ADTs stacks, queues and linked lists in Chapter 10.
If you have not already done so, read Section 10.4 to ensure that you are ready
to work with these data structures. Ensure that you can write algorithms to set
up then add and remove items from stacks and queues.

Stacks
In Chapter 10, we looked at the data and the operations for a stack using
pseudocode. You will need to be able to write a program to implement a stack.
The data structures and operations required to implement a similar stack using
a fixed length integer array and separate sub routines for the push and pop
operations are set out below in each of the three prescribed programming
languages. If you are unsure how the operations work, look back at Chapter 10.

Stack data structure Language
stack = [None for index in range(0,10)]

basePointer = 0

topPointer = -1

stackFull = 10

item = None

Python

empty stack with
no elements

Public Dim stack() As Integer = {Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}

Public Dim basePointer As Integer = 0

Public Dim topPointer As Integer = -1

Public Const stackFull As Integer = 10

Public Dim item As Integer

VB

empty stack with
no elements
and variables
set to public for
subroutine access

public static int stack[] = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

public static int basePointer = 0;

public static int topPointer = -1;

public static final int stackFull = 10;

public static int item;

Java

empty stack with
no elements
and variables
set to public for
subroutine access

▲ Table	19.8

457591_19_CI_AS & A_Level_CS_450-497.indd 464 26/04/19 9:14 AM

465

19.1
Algorithm

s

19
Stack pop operation Language
def pop():

 global topPointer, basePointer, item

 if topPointer == basePointer -1:

 print("Stack is empty,cannot pop")

 else:

 item = stack[topPointer]

 topPointer = topPointer -1

Python

global used
within subroutine
to access
variables

topPointer
points to the top
of the stack

Sub pop()

 If topPointer = basePointer - 1 Then

 Console.WriteLine("Stack is empty, cannot pop")

 Else

 item = stack(topPointer)

 topPointer = topPointer - 1

 End If

End Sub

VB

topPointer
points to the top
of the stack

static void pop()

{

 if (topPointer == basePointer - 1)

 System.out.println("Stack is empty,cannot pop");

 else

 {

 item = stack[topPointer - 1];

 topPointer = topPointer - 1;

 }

}

Java

topPointer
points to the top
of the stack

Stack push operation Language
def push(item):

 global topPointer

 if topPointer < stackFull - 1:

 topPointer = topPointer + 1

 stack[topPointer] = item

 else:

 print("Stack is full, cannot push")

Python

Sub push(ByVal item)

 If topPointer < stackFull - 1 Then

 topPointer = topPointer + 1

 stack(topPointer) = item

 Else

 Console.WriteLine("Stack is full, cannot push")

 End if

End Sub

VB

▲ Table	19.9

➔

457591_19_CI_AS & A_Level_CS_450-497.indd 465 26/04/19 9:14 AM

466

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
static void push(int item)

{

 if (topPointer < stackFull - 1)

 {

 topPointer = topPointer + 1;

 stack[topPointer] = item;

 }

 else

 System.out.println("Stack is full, cannot push");

}

Java

ACTIVITY	19E

In your chosen programming language, write a program using subroutines
to implement a stack with 10 elements. Test your program by pushing two
integers 7 and 32 onto the stack, popping these integers off the stack, then
trying to remove a third integer, and by pushing the integers 1, 2, 3, 4, 5, 6, 7,
8, 9 and 10 onto the stack, then trying to push 11 on to the stack.

Queues
In Chapter 10, we looked at the data and the operations for a circular queue
using pseudocode. You will need to be able to write a program to implement a
queue. The data structures and operations required to implement a similar queue
using a fixed length integer array and separate sub routines for the enqueue and
dequeue operations are set out below in each of the three programing languages.
If you are unsure how the operations work, look back at Chapter 10.

Queue data structure Language
queue = [None for index in range(0,10)]

frontPointer = 0

rearPointer = -1

queueFull = 10

queueLength = 0

Python

empty queue with
no items

Public Dim queue() As Integer = {Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}

Public Dim frontPointer As Integer = 0

Public Dim rearPointer As Integer = -1

Public Const queueFull As Integer = 10

Public Dim queueLength As Integer = 0

Public Dim item As Integer

VB

empty queue
with no items
and variables,
set to public for
subroutine access

public static int queue[] = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

public static int frontPointer = 0;

public static int rearPointer = -1;

public static final int queueFull = 10;

public static int queueLength = 0;

public static int item;

Java

empty queue
with no elements
and variables,
set to public for
subroutine access

▲

 Table	19.10

▲ Table	19.11

457591_19_CI_AS & A_Level_CS_450-497.indd 466 26/04/19 9:14 AM

467

19.1
Algorithm

s

19
Queue enqueue (add item to queue) operation Language
def enQueue(item):

 global queueLength, rearPointer

 if queueLength < queueFull:

 if rearPointer < len(queue) - 1:

 rearPointer = rearPointer + 1

 else:

 rearPointer = 0

 queueLength = queueLength + 1

 queue[rearPointer] = item

 else:

 print("Queue is full, cannot enqueue")

Python

global used
within subroutine
to access variables

If the
rearPointer
is pointing to
the last element
of the array and
the queue is not
full, the item is
stored in the first
element of the
array

Sub enQueue(ByVal item)

 If queueLength < queueFull Then

 If rearPointer < queue.length - 1 Then

 rearPointer = rearPointer + 1

 Else

 rearPointer = 0

 End If

 queueLength = queueLength + 1

 queue(rearPointer) = item

 Else

 Console.WriteLine("Queue is full, cannot enqueue")

 End If

End Sub

VB

If the
rearPointer
is pointing to
the last element
of the array and
the queue is not
full, the item is
stored in the first
element of the
array

static void enQueue(int item)

{

 if (queueLength < queueFull)

 {

 if (rearPointer < queue.length - 1)

 rearPointer = rearPointer + 1;

 else

 rearPointer = 0;

 queueLength = queueLength + 1;

 queue[rearPointer] = item;

 }

 else

 System.out.println("Queue is full, cannot enqueue");

};

Java

If the
rearPointer
is pointing to the
last element of
the array and the
queue is not full,
the item is stored
in the first element
of the array

▲ Table	19.12

457591_19_CI_AS & A_Level_CS_450-497.indd 467 26/04/19 9:14 AM

468

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Queue dequeue (remove item from queue) operation Language
def deQueue():

 global queueLength, frontPointer, item

 if queueLength == 0:

 print("Queue is empty,cannot dequeue")

 else:

 item = queue[frontPointer]

 if frontPointer == len(queue) - 1:

 frontPointer = 0

 else:

 frontPointer = frontPointer + 1

 queueLength = queueLength -1

Python

If the
frontPointer
points to the last
element in the array
and the queue is not
empty, the pointer
is updated to point
at the first item in
the array rather than
the next item in the
array

Sub deQueue()

 If queueLength = 0 Then

 Console.WriteLine("Queue is empty, cannot dequeue")

 Else

 item = queue(frontPointer)

 If frontPointer = queue.length - 1 Then

 frontPointer = 0

 Else

 frontPointer = frontPointer + 1
 End if

 queueLength = queueLength - 1

 End If

End Sub

VB

If the
frontPointer
points to the last
element in the array
and the queue is not
empty, the pointer
is updated to point
at the first item in
the array rather than
the next item in the
array

static void deQueue()

{

 if (queueLength == 0)

 System.out.println("Queue is empty,cannot dequeue");

 else

 {

 item = queue[frontPointer];

 if (frontPointer == queue.length - 1)

 frontPointer = 0;

 else

 frontPointer = frontPointer + 1;

 queueLength = queueLength - 1;

 }

}

Java

If the
frontPointer
points to the last
element in the array
and the queue is not
empty, the pointer
is updated to point
at the first item in
the array rather than
the next item in the
array

▲ Table	19.13

457591_19_CI_AS & A_Level_CS_450-497.indd 468 26/04/19 9:14 AM

469

19.1
Algorithm

s

19
ACTIVITY	19F

In your chosen programming language, write a program using subroutines
to implement a queue with 10 elements. Test your program by adding two
integers 7 and 32 to the queue, removing these integers from the queue, then
trying to remove a third integer, and by adding the integers 1, 2, 3, 4, 5, 6, 7, 8,
9 and 10 to the queue then trying to add 11 to the queue.

Linked lists

Finding an item in a linked list
In Chapter 10, we looked at defining a linked list as an ADT; now we need
to consider writing algorithms using a linked list. Here is the declaration
algorithm and the identifier table from Chapter 10.

DECLARE mylinkedList ARRAY[0:11] OF INTEGER

DECLARE myLinkedListPointers ARRAY[0:11] OF INTEGER

DECLARE startPointer : INTEGER

DECLARE heapStartPointer : INTEGER

DECLARE index : INTEGER

heapStartPointer ← 0

startPointer ← -1 // list empty

FOR index ← 0 TO 11

 myLinkedListPointers[index] ← index + 1

NEXT index

// the linked list heap is a linked list of all the
spaces in the linked list, this is set up when the
linked list is initialised

myLinkedListPointers[11] ← -1

// the final heap pointer is set to -1 to show no
further links

The above code sets up a linked list ready for use. The identifier table is below.

Identifier Description
myLinkedList Linked list to be searched

myLinkedListPointers Pointers for linked list

startPointer Start of the linked list

heapStartPointer Start of the heap

index Pointer to current element in the linked list

▲ Table	19.14

457591_19_CI_AS & A_Level_CS_450-497.indd 469 26/04/19 9:14 AM

470

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Figure 19.5 below shows an empty linked list and its corresponding pointers.

myLinkedList myLinkedListPointers

heapStartPointer → [0] 1

[1] 2
[2] 3
[3] 4

startPointer = -1 [4] 5
[5] 6
[6] 7
[7] 8
[8] 9
[9] 10
[10] 11
[11] −1

▲

 Figure	19.5

Figure 19.6 below shows a populated linked list and its corresponding pointers.

myLinkedList myLinkedListPointers

[0] 27 −1
[1] 19 0
[2] 36 1
[3] 42 2

startPointer → [4] 16 3
heapStartPointer → [5] 6

[6] 7
[7] 8
[8] 9
[9] 10
[10] 11
[11] −1

▲

 Figure	19.6

The algorithm to find if an item is in the linked list myLinkedList and
return the pointer to the item if found or a null pointer if not found, could be
written as a function in pseudocode as shown below.

DECLARE itemSearch : INTEGER

DECLARE itemPointer : INTEGER

CONSTANT nullPointer = -1

FUNCTION find(itemSearch) RETURNS INTEGER

DECLARE found : BOOLEAN

itemPointer ← startPointer

457591_19_CI_AS & A_Level_CS_450-497.indd 470 26/04/19 9:14 AM

471

19.1
Algorithm

s

19
found ← FALSE

 WHILE (itemPointer <> nullPointer) AND NOT found DO

 IF myLinkedList[itemPointer] = itemSearch

 THEN

 found ← TRUE

 ELSE

 itemPointer ← myLinkedListPointers[itemPointer]

 ENDIF

 ENDWHILE

RETURN itemPointer

// this function returns the item pointer of the value found or -1 if the
item is not found

The following programs use a function to search for an item in a populated
linked list.

Python

#Python program for finding an item in a linked list

myLinkedList = [27, 19, 36, 42, 16, None, None, None, None, None, None, None]

myLinkedListPointers = [-1, 0, 1, 2, 3 ,6 ,7 ,8 ,9 ,10 ,11, -1]

startPointer = 4

nullPointer = -1

def find(itemSearch):

 found = False

 itemPointer = startPointer

 while itemPointer != nullPointer and not found:

 if myLinkedList[itemPointer] == itemSearch:

 found = True

 else:

 itemPointer = myLinkedListPointers[itemPointer]

 return itemPointer

#enter item to search for

item = int(input("Please enter item to be found "))

result = find(item)

if result != -1:

 print("Item found")

else:

 print("Item not found")

Calling the find function

Populating
the linked
list

Defining the find
function

457591_19_CI_AS & A_Level_CS_450-497.indd 471 26/04/19 9:14 AM

472

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
VB

'VB program for finding an item in a linked list

Module Module1

 Public Dim startPointer As Integer = 4

 Public Const nullPointer As Integer = -1

 Public Dim item As Integer

 Public Dim itemPointer As Integer

 Public Dim result As Integer

 Public Dim myLinkedList() As Integer = {27, 19, 36, 42, 16,
 Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}

 Public Dim myLinkedListPointers() As Integer = {-1, 0, 1, 2,
 3, 6, 7, 8, 9, 10, 11, -1}

 Public Sub Main()

 'enter item to search for

 Console.Write("Please enter item to be found ")

 item = Integer.Parse(Console.ReadLine())

 result = find(item)

 If result <> -1 Then

 Console.WriteLine("Item found")

 Else

 Console.WriteLine("Item not found")

 End If

 Console.ReadKey()

 End Sub

 Function find(ByVal itemSearch As Integer) As Integer

 Dim found As Boolean = False

 itemPointer = startPointer

 While (itemPointer <> nullPointer) And Not found

 If itemSearch = myLinkedList(itemPointer) Then

 found = True

 Else

 itemPointer = myLinkedListPointers(itemPointer)

 End If

 End While

 Return itemPointer

 End Function

End Module

Calling the find function

Populating
the
linked list

Defining the
find function

457591_19_CI_AS & A_Level_CS_450-497.indd 472 26/04/19 9:14 AM

473

19.1
Algorithm

s

19

Populating
the
linked list

Java

//Java program for finding an item in a linked list

import java.util.Scanner;

class LinkedListAll

{

 public static int myLinkedList[] = new int[] {27, 19, 36, 42, 16, 0,
 0, 0, 0, 0, 0, 0};

 public static int myLinkedListPointers[] = new int[] {-1, 0, 1, 2,
 3, 6, 7, 8, 9, 10, 11, -1};

 public static int startPointer = 4;

 public static final int nullPointer = -1;

 static int find(int itemSearch)

 {

 boolean found = false;

 int itemPointer = startPointer;

 do

 {

 if (itemSearch == myLinkedList[itemPointer])

 {

 found = true;

 }

 else

 {

 itemPointer = myLinkedListPointers[itemPointer];

 }

 }

 while ((itemPointer != nullPointer) && !found);

 return itemPointer;

 }

 public static void main(String args[])

 {

 Scanner input = new Scanner(System.in);

 System.out.println("Please enter item to be found ");

 int item = input.nextInt();

 int result = find(item);

 if (result != -1)

 {

 System.out.println("Item found");

 }

 else

 {

 System.out.println("Item not found");

 }

 }

 }

Calling the find function

Populating the
linked list

Defining the
find function

457591_19_CI_AS & A_Level_CS_450-497.indd 473 26/04/19 9:14 AM

http://Scanner(System.in

474

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
The trace table below shows the algorithm being used to search for 42 in
myLinkedList.

startPointer itemPointer searchItem

Already set to 4 4 42

3

▲ Table	19.15	Trace table

Inserting items into a linked list
The algorithm to insert an item in the linked list myLinkedList could be
written as a procedure in pseudocode as shown below.

DECLARE itemAdd : INTEGER

DECLARE startPointer : INTEGER

DECLARE heapstartPointer : INTEGER

DECLARE tempPointer : INTEGER

CONSTANT nullPointer = -1

PROCEDURE linkedListAdd(itemAdd)

 // check for list full

 IF heapStartPointer = nullPointer

 THEN

 OUTPUT "Linked list full"

 ELSE

 // get next place in list from the heap

 tempPointer ← startPointer // keep old start pointer

 startPointer ← heapStartPointer // set start pointer to next position in heap

 heapStartPointer ← myLinkedListPointers[heapStartPointer] // reset heap start pointer

 myLinkedList[startPointer] ← itemAdd // put item in list

 myLinkedListPointers[startPointer] ← tempPointer // update linked list pointer

 ENDIF

ENDPROCEDURE

Here is the identifier table.

Identifier Description
startPointer Start of the linked list
heapStartPointer Start of the heap
nullPointer Null pointer set to -1
itemAdd Item to add to the list
tempPointer Temporary pointer

▲ Table	19.16

ACTIVITY	19G

In the programming
language of your
choice, use the code
given to write a
program to set up
the populated linked
list and find an item
stored in it.

457591_19_CI_AS & A_Level_CS_450-497.indd 474 26/04/19 9:14 AM

475

19.1
Algorithm

s

19
Figure 19.7 below shows the populated linked list and its corresponding
pointers again.

myLinkedList myLinkedListPointers

[0] 27 −1
[1] 19 0
[2] 36 1
[3] 42 2

startPointer → [4] 16 3
heapStartPointer → [5] 6

[6] 7
[7] 8
[8] 9
[9] 10
[10] 11
[11] −1

▲ Figure	19.7

The trace table below shows the algorithm being used to add 18 to
myLinkedList.

startPointer heapStartPointer itemAdd tempPointer

Already set to 4 Already set to 5 18

5 6 4

▲ Table	19.17	Trace table

The linked list, myLinkedList, will now be as shown below.

myLinkedList myLinkedListPointers

[0] 27 −1
[1] 19 0
[2] 36 1
[3] 42 2
[4] 16 3

startPointer → [5] 18 4
heapStartPointer → [6] 7

[7] 8
[8] 9
[9] 10
[10] 11
[11] −1

▲ Figure	19.8

457591_19_CI_AS & A_Level_CS_450-497.indd 475 26/04/19 9:14 AM

476

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
The following procedure adds an item to a linked list.

Python

def insert(itemAdd):

 global startPointer

 if heapStartPointer == nullPointer:

 print("Linked List full")

 else:

 tempPointer = startPointer

 startPointer = heapStartPointer

heapStartPointer = myLinkedListPointers[heapStartPointer]

 myLinkedList[startPointer] = itemAdd

 myLinkedListPointers[startPointer] = tempPointer

Adjusting the pointers and adding the item

VB

Sub insert (ByVal itemAdd)

 Dim tempPointer As Integer

 If heapStartPointer = nullPointer Then

 Console.WriteLine("Linked List full")

 Else

 tempPointer = startPointer

 startPointer = heapStartPointer

 heapStartPointer = myLinkedListPointers(heapStartPointer)

 myLinkedList(startPointer) = itemAdd

 myLinkedListPointers(startPointer) = tempPointer

 End if

End Sub

Adjusting the pointers and adding the item

Java

static void insert(int itemAdd)

{

 if (heapStartPointer == nullPointer)

 System.out.println("Linked List is full");

 else

 {

int tempPointer = startPointer;

 startPointer = heapStartPointer;

 heapStartPointer = myLinkedListPointers[heapStartPointer];

 myLinkedList[startPointer] = itemAdd;

 myLinkedListPointers[startPointer] = tempPointer; }

}

457591_19_CI_AS & A_Level_CS_450-497.indd 476 26/04/19 9:14 AM

477

19.1
Algorithm

s

19
ACTIVITY	19H

Use the algorithm to add 25 to myLinkedList. Show this in a trace table and
show myLinkedList once 25 has been added. Add the insert procedure to
your program, add code to input an item, add this item to the linked list then
print out the list and the pointers before and after the item was added.

Deleting items from a linked list
The algorithm to delete an item from the linked list myLinkedList could be
written as a procedure in pseudocode as shown below.

DECLARE itemDelete : INTEGER

DECLARE oldIndex : INTEGER

DECLARE index : INTEGER

DECLARE startPointer : INTEGER

DECLARE heapStartPointer : INTEGER

DECLARE tempPointer : INTEGER

CONSTANT nullPointer = -1

PROCEDURE linkedListDelete(itemDelete)

 // check for list empty

 IF startPointer = nullPointer

 THEN

 OUTPUT "Linked list empty"

 ELSE

 // find item to delete in linked list

 index ← startPointer

 WHILE myLinkedList[index] <> itemDelete AND

 (index <> nullPointer) DO

 oldIndex ← index

 index ← myLinkedListPointers[index]

 ENDWHILE

 IF index = nullPointer

 THEN

 OUTPUT "Item ", itemDelete, " not found"

 ELSE

 // delete the pointer and the item

 tempPointer ← myLinkedListPointers[index]

 myLinkedListPointers[index] ← heapStartPointer

 heapStartPointer ← index

 myLinkedListPointers[oldIndex] ← tempPointer

 ENDIF

 ENDIF

ENDPROCEDURE

457591_19_CI_AS & A_Level_CS_450-497.indd 477 26/04/19 9:14 AM

478

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Here is the identifier table.

Identifier Description
startPointer Start of the linked list
heapStartPointer Start of the heap
nullPointer Null pointer set to −1
index Pointer to current list element
oldIndex Pointer to previous list element
itemDelete Item to delete from the list
tempPointer Temporary pointer

▲ Figure	19.18

The trace table below shows the algorithm being used to delete 36 from
myLinkedList.

startPointer heapStartPointer itemDelete index oldIndex tempPointer

Already set to 4 Already set to 5 36 4 4

3 3

2

2 1

The linked list, myLinkedList, will now be as follows.

myLinkedList myLinkedListPointers

[0] 27 −1
[1] 19 0

heapStartPointer → [2] 36 6
[3] 42 1
[4] 16 3

startPointer → [5] 18 4
[6] 7
[7] 8
[8] 9
[9] 10
[10] 11
[11] −1

▲ Figure	19.9

updated
pointers

▲ Table	19.19	Trace table

457591_19_CI_AS & A_Level_CS_450-497.indd 478 26/04/19 9:14 AM

479

19.1
Algorithm

s

19
The following procedure deletes an item from a linked list.

Python

def delete(itemDelete):

 global startPointer, heapStartPointer

 if startPointer == nullPointer:

 print("Linked List empty")

 else:

 index = startPointer

 while myLinkedList[index] != itemDelete and index != nullPointer:

 oldindex = index

 index = myLinkedListPointers[index]

 if index == nullPointer:

 print("Item ", itemDelete, " not found")

 else:

 myLinkedList[index] = None

 tempPointer = myLinkedListPointers[index]

 myLinkedListPointers[index] = heapStartPointer

 heapStartPointer = index

 myLinkedListPointers[oldindex] = tempPointer

VB

Sub delete (ByVal itemDelete)

 Dim tempPointer, index, oldIndex As Integer

 If startPointer = nullPointer Then

 Console.WriteLine("Linked List empty")

 Else

 index = startPointer

 While myLinkedList(index) <> itemDelete And index <> nullPointer

 Console.WriteLine(myLinkedList(index) & " " & index)

 Console.ReadKey()

 oldIndex = index

 index = myLinkedListPointers(index)

 End While

 if index = nullPointer Then

 Console.WriteLine("Item " & itemDelete & " not found")

457591_19_CI_AS & A_Level_CS_450-497.indd 479 26/04/19 9:14 AM

480

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
 Else

 myLinkedList(index) = nothing

 tempPointer = myLinkedListPointers(index)

 myLinkedListPointers(index) = heapStartPointer

 heapStartPointer = index

 myLinkedListPointers(oldIndex) = tempPointer

 End If

 End If

End Sub

Java

static void delete(int itemDelete)

{

 int oldIndex = -1;

 if (startPointer == nullPointer)

 System.out.println("Linked List is empty");

 else

 {

 int index = startPointer;

 while (myLinkedList[index] != itemDelete && index != nullPointer)

 {

 oldIndex = index;

 index = myLinkedListPointers[index];

 }

 if (index == nullPointer)

 System.out.println("Item " + itemDelete + " not found");

 else

 {

 myLinkedList[index] = 0;

 int tempPointer = myLinkedListPointers[index];

 myLinkedListPointers[index] = heapStartPointer;

 heapStartPointer = index;

 myLinkedListPointers[oldIndex] = tempPointer;

 }

 }

}

457591_19_CI_AS & A_Level_CS_450-497.indd 480 26/04/19 9:14 AM

481

19.1
Algorithm

s

19
ACTIVITY	19I

Use the algorithm to remove 16 from myLinkedList. Show this in a trace
table and show myLinkedList once 16 has been removed. Add the delete
procedure to your program, add code to input an item, delete this item to the
linked list, then print out the list and the pointers before and after the item
was deleted.

Binary trees
A binary tree is another frequently used ADT. It is a hierarchical data structure
in which each parent node can have a maximum of two child nodes. There
are many uses for binary trees; for example, they are used in syntax analysis,
compression algorithms and 3D video games.

Figure 19.10 shows the binary tree for the data stored in myList sorted in
ascending order. Each item is stored at a node and each node can have up to
two branches with the rule if the value to be added is less than the current
node branch left, if the value to be added is greater than or equal to the
current node branch right.

Root node
Right pointer

Right subtree

Left pointer

Left subtree

Leaf node

36

42

89

55

27

21

19

17

16

▲ Figure	19.10 Example of an ordered binary tree

A binary tree can also be used to represent an arithmetic expression. Consider

(a + b) * (c – a)

*

+

a ab c

–

▲ Figure	19.11 Example of an expression as a binary tree

EXTENSION	ACTIVITY	19B

Find out about different tree traversals and how they are used to convert an
expression into reverse Polish.

ACTIVITY	19J

Draw the binary tree
for the expression
(x – y) /
(x * y + z).

457591_19_CI_AS & A_Level_CS_450-497.indd 481 26/04/19 9:14 AM

482

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19

The root pointer points to the first node in a binary tree. A null pointer is a
value stored in the left or right pointer in a binary tree to indicate that there
are no nodes below this node on the left or right.

Finding an item in a binary tree
The algorithm to find if an item is in the binary tree myTree and return the
pointer to its node if found or a null pointer if not found, could be written as a
function in pseudocode, as shown.

The data structure for an ordered binary tree can be created in pseudocode as
follows:

 TYPE node

 DECLARE item : INTEGER

 DECLARE leftPointer : INTEGER

 DECLARE rightPointer : INTEGER

 ENDTYPE

 DECLARE myTree[0 : 8] OF node

 DECLARE rootPointer : INTEGER

 DECLARE nextFreePointer : INTEGER

ACTIVITY	19K

Create the data structure in pseudocode for a binary tree to store a list of
names. Your list must be able to store at least 50 names.

The populated contents of the data structure myTree is shown below.

myTree item leftPointer rightPointer

[0] 27 1 2

[1] 19 4 6

[2] 36 −1 3

[3] 42 −1 5

[4] 16 −1 7

[5] 89 8 −1

[6] 21 −1 −1

[7] 17 −1 −1

[8] 55 −1 −1

▲ Figure	19.12

Pointers to
items in the
tree. −1 is
used as a
null pointer

Root pointer

457591_19_CI_AS & A_Level_CS_450-497.indd 482 26/04/19 9:14 AM

483

19.1
Algorithm

s

19
 DECLARE rootPointer : INTEGER

 DECLARE itemPointer : INTEGER

 DECLARE itemSearch : INTEGER

 CONSTANT nullPointer = -1

 rootPointer ← 0

 FUNCTION find(itemSearch) RETURNS INTEGER

 itemPointer ← rootPointer

 WHILE myTree[itemPointer].item <> itemSearch AND

 (itemPointer <> nullPointer) DO

 IF myTree[itemPointer].item > itemSearch

 THEN

 itemPointer ← myTree[itemPointer].leftPointer

 ELSE

 itemPointer ← myTree[itemPointer].rightPointer

 ENDIF

 ENDWHILE

 RETURN itemPointer

Here is the identifier table for the binary tree search algorithm shown above.

Identifier Description
myTree Tree to be searched
node ADT for tree
rootPointer Pointer to the start of the tree
leftPointer Pointer to the left branch
rightPointer Pointer to the right branch
nullPointer Null pointer set to −1
itemPointer Pointer to current item
itemSearch Item being searched for

▲ Table	19.20

The trace table below shows the algorithm being used to search for 42 in
myTree.

rootPointer itemPointer itemSearch

0 0 42

2

3

▲ Table	19.21	Trace table

ACTIVITY	19L

Use the algorithm
to search for 55 and
75 in myTree. Show
the results of each
search in a trace
table.

457591_19_CI_AS & A_Level_CS_450-497.indd 483 26/04/19 9:14 AM

484

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Inserting items into a binary tree
The binary tree needs free nodes to add new items. For example, myTree,
shown in Figure 19.13 below, now has room for 12 items. The last three nodes
have not been filled yet, there is a pointer to the next free node and the free
nodes are set up like a heap in a linked list, using the left pointer.

myTree item leftPointer rightPointer

[0] 27 1 2

[1] 19 4 6

[2] 36 −1 3

[3] 42 −1 5

[4] 16 −1 7

[5] 89 8 −1

[6] 21 −1 −1

[7] 17 −1 −1

[8] 55 −1 −1

[9] 10

[10] 11

[11] −1

▲ Figure	19.13

Root pointer

next free
pointer

pointers to
items in the
tree. −1 is used
as a null pointer

Leaves have
null left and
right pointers

The algorithm to insert an item at a new node in the binary tree myTree could
be written as a procedure in pseudocode as shown below.

TYPE node

 DECLARE item : INTEGER

 DECLARE leftPointer : INTEGER

 DECLARE rightPointer : INTEGER

 DECLARE oldPointer : INTEGER

 DECLARE leftBranch : BOOLEAN

ENDTYPE

DECLARE myTree[0 : 11] OF node

// binary tree now has extra spaces

DECLARE rootPointer : INTEGER

DECLARE nextFreePointer : INTEGER

DECLARE itemPointer : INTEGER

DECLARE itemAdd : INTEGER

DECLARE itemAddPointer : Integer

CONSTANT nullPointer = -1

// needed to use the binary tree

PROCEDURE nodeAdd(itemAdd)

 // check for full tree
 IF nextFreePointer = nullPointer

 THEN

 OUTPUT "No nodes free"

457591_19_CI_AS & A_Level_CS_450-497.indd 484 26/04/19 9:14 AM

485

19.1
Algorithm

s

19
 ELSE

 //use next free node

 itemAddPointer ← nextFreePointer

 nextFreePointer ← myTree[nextFreePointer].leftPointer

 itemPointer ← rootPointer

 // check for empty tree

 IF itemPointer = nullPointer

 THEN

 rootPointer ← itemAddPointer

 ELSE

 // find where to insert a new leaf

 WHILE (itemPointer <> nullPointer) DO

 oldPointer ← itemPointer

 IF myTree[itemPointer].item > itemAdd

 THEN // choose left branch

 leftBranch ← TRUE

 itemPointer ← myTree[itemPointer].leftPointer

 ELSE // choose right branch

 leftBranch ← FALSE

 itemPointer ← myTree[itemPointer].rightPointer

 ENDIF

 ENDWHILE

 IF leftBranch //use left or right branch

 THEN

 myTree[oldPointer].leftPointer ← itemAddPointer

 ELSE

 myTree[oldPointer].rightPointer ← itemAddPointer

 ENDIF

 ENDIF

 // store item to be added in the new node

 myTree[itemAddPointer].leftPointer ← nullPointer

 myTree[itemAddPointer].rightPointer ← nullPointer

 myTree[itemAddPointer].item ← itemAdd

 ENDIF

ENDPROCEDURE

457591_19_CI_AS & A_Level_CS_450-497.indd 485 26/04/19 9:14 AM

486

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Here is the identifier table.

Identifier Description
myTree Tree to be searched
node ADT for tree
rootPointer Pointer to the start of the tree
leftPointer Pointer to the left branch
rightPointer Pointer to the right branch
nullPointer Null pointer set to -1
itemPointer Pointer to current item in tree
itemAdd Item to add to tree
nextFreePointer Pointer to next free node
itemAddPointer Pointer to position in tree to store item to

be added
oldPointer Pointer to leaf node that is going to point

to item added
leftBranch Flag to identify whether to go down the

left branch or the right branch

▲ Table	19.22

The trace table below shows the algorithm being used to add 18 to myTree.

leftBranch nextFreePointer itemAddPointer rootPointer itemAdd itemPointer oldPointer

Already set to 9 9 Already set to 0 18

10 0 0

TRUE 1 1

TRUE 4 4

FALSE 7 7

−1

The tree, myTree will now be as shown below.

myTree item leftPointer rightPointer

[0] 27 1 2

[1] 19 4 6

[2] 36 −1 3

[3] 42 −1 5

[4] 16 −1 7

[5] 89 8 −1

[6] 21 −1 −1

[7] 17 −1 9

[8] 55 −1 −1

[9] 18 −1 −1

[10] 11

[11] −1

▲ Table	19.23

new leaf node

pointer to
new node
in correct
position

next free
pointer now 10

▲ Figure	19.14

457591_19_CI_AS & A_Level_CS_450-497.indd 486 26/04/19 9:14 AM

487

19.1
Algorithm

s

19
ACTIVITY	19M

Use the algorithm to add 25 to myTree. Show this in a trace table and show
myTree once 25 has been added.

Implementing binary trees in Python, VB.NET or Java requires the use of
objects and recursion. An example will be given in Chapter 20.

Graphs
A graph is a non-linear data structure consisting of nodes and edges. This is an
ADT used to implement directed and undirected graphs. A graph consists of a
set of nodes and edges that join a pair of nodes. If the edges have a direction
from one node to the other it is a directed graph.

Undirected graph Directed graph

Nodes

Edges

▲ Figure	19.15

As we saw in Chapter 18, graphs are used to represent real life networks, such as

» bus routes, where the nodes are bus stops and the edges connect two stops
next to each other

» websites, where each web page is a node and the edges show the links
between each web page

» social media networks, where each node contains information about a
person and the edges connect people who are friends.

Each edge may have a weight; for example, in the bus route, the weight could
be the distance between bus stops or the cost of the bus fare.

A path is the list of nodes connected by edges between two given nodes and a
cycle is a list of nodes that return to the same node.

For example, a graph of the bus routes in a town could be as follows. The
distance between each bus stop in kilometres is shown on the graph.

0.5

0.9

1.2

0.7

2.52.01.5

0.5

0.5

Train
station

School
Town
centre

Shopping
centre

Gardens River

▲ Figure	19.16

A path from School to Gardens could be Path = (School, Train station, River,
Gardens).

ACTIVITY	19N

Find another path
from School to
Gardens. Find the
shortest path from
Town centre to Train
station. Find the
shortest cycle from
the Town centre.

457591_19_CI_AS & A_Level_CS_450-497.indd 487 26/04/19 9:14 AM

http://VB.NET

488

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
19.1.4	 Implementing one ADT from another ADT
Every ADT is a collection of data and the methods used on the data. When
an ADT is defined, the definition can refer to other data types. For example,
myLinkedList refers to the data type INTEGER in its data definition.

A linked list type could be defined as follows.

TYPE linkedList

 DECLARE item : INTEGER

 DECLARE Pointer : INTEGER

ENDTYPE

// a linked list to store integers

And then used as follows.

DECLARE myLinkedList : ARRAY [0:11] OF linkedList

DECLARE heapStartPointer : INTEGER

DECLARE startPointer : INTEGER

DECLARE index : INTEGER

ACTIVITY	19O

Write pseudocode to declare a linked list to store names. Use this to write
pseudocode to set up a linked list that will store 30 names. Write a program
to store and display names in this linked list.

The data types for a stack, queue and a binary tree have been defined using
existing data types.

Another data type is a dictionary, which is an ADT that consists of pairs
consisting of a key and a value, where the key is used to find the value.
Each key can only appear once. Keys in a dictionary are unordered. A value is
retrieved from a dictionary by specifying its corresponding key. The same value
may appear more than once. A dictionary differs from a set because the values
can be duplicated. As a dictionary is not an ordered list, it can be declared
using a linked list as part of the definition.

A dictionary type could be defined in pseudocode as follows.

TYPE linkedList

 DECLARE item : STRING

 DECLARE pointer : INTEGER

ENDTYPE

TYPE dictionary

 DECLARE key : myLinkedList : ARRAY [0:19] OF
linkedList

 DECLARE value : ARRAY [0:19] OF STRING

ENDTYPE

457591_19_CI_AS & A_Level_CS_450-497.indd 488 26/04/19 9:14 AM

489

19.1
Algorithm

s

19
And then used as follows.

DECLARE myDictionary : linkedList

DECLARE heapStartPointer : INTEGER

DECLARE startPointer : INTEGER

DECLARE index : INTEGER

Each of the programming languages used in Cambridge International A Level
Computer Science provide a dictionary data type, as shown in the table below.

Dictionary data type example Language

studentdict = {

 "Leon": 27,

 "Ahmad": 78,

 "Susie": 64

}

Python

Dim studentdict As New Dictionary(Of String, Integer)

 studentdict.Add("Leon", 27)

 studentdict.Add("Ahmad", 78)

 studentdict.Add("Susie", 64)

VB

studentdict = dict([("Leon", 27), ("Ahmad", 78), ("Susie", 64)])

Or

Dictionary<Integer, String> studentdict = new Hashtable<Integer, String>();

 studentdict.put(27,"Leon");

 studentdict.put(78,"Ahmad");

 studentdict.put(64,"Susie");

Java
Dictionary
is no longer
used in Java
but can be
implemented
using a hash
table

▲ Table	19.24

Description Example

O(1) describes an algorithm that always takes the same time to perform the task deciding if a number is even or odd

O(N) describes an algorithm where the time to perform the task will grow linearly
in direct proportion to N, the number of items of data the algorithm is using

a linear search

O(N2) describes an algorithm where the time to perform the task will grow
linearly in direct proportion to the square of N, the number of items of
data the algorithm is using

bubble sort, insertion sort

O(2N) describes an algorithm where the time to perform the task doubles
every time the algorithm uses an extra item of data

calculation of Fibonacci numbers
using recursion (see Section 19.2)

O(Log N) describes an algorithm where the time to perform the task goes up
linearly as the number of items goes up exponentially

binary search

▲ Table	19.25 Big O order of time complexity

19.1.5	 Comparing algorithms
Big O notation is a mathematical notation used to describe the performance
or complexity of an algorithm in relation to the time taken or the memory used
for the task. It is used to describe the worst-case scenario; for example, how
the maximum number of comparisons required to find a value in a list using a
particular search algorithm increases with the number of values in the list.

Big O order of time complexity

ACTIVITY	19P

In the programming
language of your
choice, write a
program to use
a dictionary to
store the names of
students as their
keys and their
examination scores
as their values. Then
find a student's
examination score,
add a student and
score and delete a
student and score.

457591_19_CI_AS & A_Level_CS_450-497.indd 489 26/04/19 9:14 AM

490

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
Big O order of space complexity

Description Example

O(1) describes an algorithm that always uses the
same space to perform the task

any algorithm that just
uses variables, for example
d = a + b + c

O(N) describes an algorithm where the space to
perform the task will grow linearly in direct
proportion to N, the number of items of data
the algorithm is using

any algorithm that uses arrays,
for example a loop to calculate
a running total of values input
to an array of N elements

▲ Table	19.26 Big O order of space complexity

ACTIVITY	19Q

1 Using diagrams, describe the structure of
a) a binary tree
b) a linked list.

2	 a) Explain what is meant by a dictionary data type.
b) Show how a dictionary data type can be constructed from a linked list.

3 Compare the performance of a linear search and a binary search using
Big O notation.

19.2	Recursion
WHAT	YOU	SHOULD	ALREADY	KNOW
Remind yourself of the definitions of the following mathematical functions,
which many of you will be familiar with, and see how they are constructed.
■ Factorials
■ Arithmetic sequences
■ Fibonacci numbers
■ Compound interest

19.2.1	 Understanding recursion
Recursion is a process using a function or procedure that is defined in terms of
itself and calls itself. The process is defined using a base case, a terminating
solution to a process that is not recursive, and a general case, a solution to a
process that is recursively defined.

For example, a function to calculate a factorial for any positive whole number
n! is recursive. The definition for the function uses:

 a base case of 0! = 1

 a general case of n! = n * (n–1)!

Key	terms
Recursion – a process
using a function or
procedure that is
defined in terms of
itself and calls itself.
Base	case – a
terminating solution
to a process that is not
recursive.
General	case – a
solution to a process
that is recursively
defined.
Winding – process
which occurs when a
recursive function or
procedure is called
until the base case is
found.
Unwinding – process
which occurs when a
recursive function finds
the base case and the
function returns the
values.

457591_19_CI_AS & A_Level_CS_450-497.indd 490 26/04/19 9:14 AM

491

19.2
R

ecursion

19

Here is a simple recursive factorial program written in Python, VB and Java
using a function.

Python

#Python program recursive factorial function

def factorial(number):

 if number == 0:

 answer = 1

 else:

 answer = number * factorial(number - 1)

 return answer

print(factorial(0))

print(factorial(5))

This can be written in pseudocode as a recursive function.

FUNCTION factorial (number : INTEGER) RETURNS INTEGER
 IF number = 0
 THEN
 answer ← 1 // base case
 ELSE
 answer ← number * factorial (number - 1)
 // recursive call with general case
 ENDIF
 RETURN answer
ENDFUNCTION

With recursive functions, the statements after the recursive function call are not
executed until the base case is reached; this is called winding. After the base case
is reached and can be used in the recursive process, the function is unwinding.

In order to understand how the winding and unwinding processes in recursion
work, we can use a trace table for a specific example: 3!

Call number Function call number answer RETURN

1 Factorial (3) 3 3 * factorial (2)

2 Factorial (2) 2 2 * factorial (1)

3 Factorial (1) 1 1 * factorial (0)

4 Factorial (0) 0 1 1

3 continued Factorial (1) 1 1 * 1 1

2 continued Factorial (2) 2 2 * 1 2

1 continued Factorial (3) 3 3 * 2 6

▲ Table	19.27

}

}

winding

base case

unwinding

457591_19_CI_AS & A_Level_CS_450-497.indd 491 26/04/19 9:14 AM

492

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
VB

'VB program recursive factorial function

Module Module1

 Sub Main()

 Console.WriteLine(factorial(0))

 Console.Writeline(factorial(5))

 Console.ReadKey()

 End Sub

 Function factorial(ByVal number As Integer) As Integer

 Dim answer As Integer

 If number = 0 Then

 answer = 1

 Else

 answer = number * factorial(number - 1)

 End If

 return answer

 End Function

End Module

Java

// Java program recursive factorial function

public class Factorial {

 public static void main(String[] args) {

 System.out.println(factorial(0));

 System.out.println(factorial(5));

 }

 public static int factorial(int number)

 {

 int answer;

 if (number == 0)

 answer = 1;

 else

 answer = number * factorial(number - 1);

 return answer;

 }

}

ACTIVITY	19R

Write the recursive factorial function in the programming language of your
choice. Test your program with 0! and 5!

Complete trace tables for 0! and 5! using the recursive factorial function
written in pseudocode and compare the results from your program with the
trace tables.

457591_19_CI_AS & A_Level_CS_450-497.indd 492 26/04/19 9:14 AM

493

19.2
R

ecursion

19
Compound interest can be calculated using a recursive function. Where the
principal is the amount of money invested, rate is the rate of interest and
years is the number of years the money has been invested.

The base case is total0 = principal where years = 0

The general case is totaln = totaln-1 * rate

▲ Table	19.28

DEFINE FUNCTION compoundInt(principal, rate, years : REAL) RETURNS REAL
 IF years = 0
 THEN
 total ← principal
 ELSE
 total ← compoundInt(principal * rate, rate, years - 1)
 ENDIF
 RETURN total
ENDFUNCTION

This function can be traced for a principal of 100 over three years at 1.05
(5% interest).

Call
number Function call years total RETURN

1 compoundInt(100, 1.05, 3) 3 compoundInt(105, 1.05, 2)

2 compoundInt(105, 1.05, 2) 2 compoundInt(105, 1.05, 1)

3 compoundInt(105, 1.05, 1) 1 compoundInt(105, 1.05, 0)

4 compoundInt(105, 1.05, 0) 0 100 100

3 cont compoundInt(105, 1.05, 1) 1 105 105

2 cont compoundInt(105, 1.05, 2) 2 110.25 110.25

1 cont compoundInt(105, 1.05, 3) 3 115.76 115.76

▲ Table	19.29

ACTIVITY	19S	

The Fibonacci series is defined as a sequence of numbers in which the first
two numbers are 0 and 1, depending on the selected beginning point of the
sequence, and each subsequent number is the sum of the previous two.

Identify the base case and the general case for this series. Write a
pseudocode algorithm to find and output the nth term. Test your algorithm by
drawing a trace table for the fourth term.

EXTENSION	
ACTIVITY	19C

Write your function
from Activity 19S
in the high-level
programming
language of your
choice. Test this with
the 5th and 27th
terms. Benefits of recursion

Recursive solutions can contain fewer programming statements than an
iterative solution. The solutions can solve complex problems in a simpler
way than an iterative solution. However, if recursive calls to procedures and
functions are very repetitive, there is a very heavy use of the stack, which
can lead to stack overflow. For example, factorial(100) would require 100
function calls to be placed on the stack before the function unwinds.

457591_19_CI_AS & A_Level_CS_450-497.indd 493 26/04/19 9:14 AM

494

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
19.2.2	 How a compiler implements recursion
Recursive code needs to make use of the stack; therefore, in order to implement
recursive procedures and functions in a high-level programming language, a
compiler must produce object code that pushes return addresses and values of local
variables onto the stack with each recursive call, winding. The object code then
pops the return addresses and values of local variables off the stack, unwinding.

ACTIVITY	19T

1 Explain what is meant by recursion and give the benefits of using
recursion in programming.

2 Explain why a compiler needs to produce object code that uses the stack
for a recursive procedure.

1 Data is stored in the array NameList[1:10]. This data is to be sorted.

a) i) Copy and complete this pseudocode algorithm for an insertion
sort. [7]

FOR ThisPointer ← 2 TO ...

 // use a temporary variable to store item which is to
// be inserted into its correct location

 Temp ← NameList[ThisPointer]

 Pointer ← ThisPointer – 1

 WHILE (NameList[Pointer] > Temp) AND

 // move list item to next location

 NameList[......................] ← NameList[.....................]
Pointer ← ...

 ENDWHILE

 // insert value of Temp in correct location

 NameList[....................................] ←

ENDFOR

ii) A special case is when NameList is already in order. The algorithm in
part a) i) is applied to this special case.

 Explain how many iterations are carried out for each of the loops. [3]

b) An alternative sort algorithm is a bubble sort:

FOR ThisPointer ← 1 TO 9

 FOR Pointer ← 1 TO 9

 IF NameList[Pointer] > NameList[Pointer + 1]

 THEN

 Temp ← NameList[Pointer]

 NameList[Pointer] ← NameList[Pointer + 1]

 NameList[Pointer + 1] ← Temp

 ENDIF

 ENDFOR

ENDFOR

End of chapter
questions

457591_19_CI_AS & A_Level_CS_450-497.indd 494 26/04/19 9:14 AM

495

19.2
R

ecursion

19
i) As in part a) ii), a special case is when NameList is already in order. The

algorithm in part b) is applied to this special case.

 Explain how many iterations are carried out for each of the loops. [2]

ii) Rewrite the algorithm in part b), using pseudocode, to reduce the
number of unnecessary comparisons.

 Use the same variable names where appropriate. [5]

Cambridge International AS & A Level Computer Science 9608
Paper 41 Q5 June 2015

2 A Queue Abstract Data type (ADT) has these associated operations:
– create queue
– add item to queue
– remove item from queue

 The queue ADT is to be implemented as a linked list of nodes.
 Each node consists of data and a pointer to the next node.

a) The following operations are carried out:

 CreateQueue
 AddName("Ali")
 AddName("Jack")
 AddName("Ben")
 AddName("Ahmed")
 RemoveName
 AddName("Jatinder")
 RemoveName

 Copy the diagram and add appropriate labels to show the final state of the
queue. Use the space on the left as a workspace.

 Show your final answer in the node shapes on the right. [3]

b) Using pseudocode, a record type, Node, is declared as follows:

TYPE Node
 DECLARE Name : STRING
 DECLARE Pointer : INTEGER
ENDTYPE

 The statement

DECLARE Queue : ARRAY[1:10] OF Node

 reserves space for 10 nodes in array Queue. ➔

457591_19_CI_AS & A_Level_CS_450-497.indd 495 4/30/19 8:02 AM

496

19
 C

o
m

p
u

ta
ti

o
n

a
l

th
in

k
in

g
 a

n
d

 p
r

o
b

le
m

 s
o

lv
in

g

19
i) The CreateQueue operation links all nodes and initialises the three

pointers that need to be used: HeadPointer, TailPointer and
FreePointer.

 Copy and complete the diagram to show the value of all pointers after
CreateQueue has been executed. [4]

Queue

HeadPointer Name Pointer

[1]

[2]

TailPointer [3]

[4]

[5]

FreePointer [6]

[7]

[8]

[9]

[10]

ii) The algorithm for adding a name to the queue is written, using
pseudocode, as a procedure with the header:

 PROCEDURE AddName(NewName)

 where NewName is the new name to be added to the queue.

 The procedure uses the variables as shown in the identifier table.

Identifier Data type Description
Queue Array[1:10] OF Node Array to store node data
NewName STRING Name to be added
FreePointer INTEGER Pointer to next free node in array
HeadPointer INTEGER Pointer to first node in queue
TailPointer INTEGER Pointer to last node in queue
CurrentPointer INTEGER Pointer to current node

 PROCEDURE AddName(BYVALUE NewName : STRING)

 // Report error if no free nodes remaining

 IF FreePointer = 0

 THEN

 Report Error

 ELSE

 // new name placed in node at head of
free list

 CurrentPointer ← FreePointer

 Queue[CurrentPointer].Name ← NewName

 // adjust free pointer

457591_19_CI_AS & A_Level_CS_450-497.indd 496 26/04/19 9:14 AM

497

19.2
R

ecursion

19
 FreePointer ← Queue[CurrentPointer].

Pointer

 // if first name in queue then adjust
head pointer

 IF HeadPointer = 0

 THEN

 HeadPointer ← CurrentPointer

 ENDIF

 // current node is new end of queue

 Queue[CurrentPointer].Pointer ← 0

 TailPointer ← CurrentPointer

 ENDIF

 ENDPROCEDURE

 Copy and complete the pseudocode for the procedure RemoveName.
Use the variables listed in the identifier table. [6]

 PROCEDURE RemoveName()

 // Report error if Queue is empty

...

...

...

...

 OUTPUT Queue[………………………………………………].Name

 // current node is head of queue

...

 // update head pointer

...

 // if only one element in queue then update tail
pointer

...

...

...

...

 // link released node to free list

...

...

...

 ENDPROCEDURE

Cambridge International AS & A Level Computer Science 9608
Paper 41 Q6 June 2015

457591_19_CI_AS & A_Level_CS_450-497.indd 497 26/04/19 9:14 AM

498

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

	 20	 Further	programming

In this chapter, you will learn about

★ the characteristics of a number of programming paradigms, including
low-level programming, imperative (procedural) programming,
object-oriented programming and declarative programming

★ how to write code to perform file-processing operations on serial,
sequential and random files

★ exceptions and the importance of exception handling.

20.1	Programming paradigms

WHAT	YOU	SHOULD	ALREADY	KNOW
In Chapter 4, Section 4.2, you learnt about
assembly language, and in Chapter 11, Section 11.3,
you learnt about structured programming. Review
these sections then try these three questions
before you read the first part of this chapter.
1 Describe four modes of addressing in

assembly language.
2 Write an assembly language program to add

the numbers 7 and 5 together and store the
result in the accumulator.

3	 a) Explain the difference between a
procedure and a function.

b) Describe how to pass parameters.
c) Describe the difference between a

procedure definition and a procedure call.
4 Write a short program that uses a procedure.
 Throughout this section, you will be prompted

to refer to previous chapters to review related
content.

Key	terms
Programming	paradigm – a set of programming
concepts.
Low-level	programming – programming instructions
that use the computer’s basic instruction set.
Imperative	programming	– programming paradigm in
which the steps required to execute a program are set
out in the order they need to be carried out.
Object-oriented	programming	(OOP) – a programming
methodology that uses self-contained objects, which
contain programming statements (methods) and data,
and which communicate with each other.
Class – a template defining the methods and data of a
certain type of object.
Attributes	(class) – the data items in a class.

Method – a programmed procedure that is defined as
part of a class.
Encapsulation – process of putting data and methods
together as a single unit, a class.
Object – an instance of a class that is self-contained
and includes data and methods.
Property – data and methods within an object that
perform a named action.
Instance – An occurrence of an object during the
execution of a program.
Data	hiding – technique which protects the integrity of
an object by restricting access to the data and methods
within that object.

457591_20_CI_AS & A_Level_CS_498-540.indd 498 26/04/19 9:05 AM

499

20.1 Program
m

ing paradigm
s

20
Inheritance – process in which the methods and data
from one class, a superclass or base class, are copied
to another class, a derived class.

Polymorphism – feature of object-oriented programming
that allows methods to be redefined for derived classes.

Overloading – feature of object-oriented programming
that allows a method to be defined more than once in a
class, so it can be used in different situations.

Containment (aggregation) – process by which one
class can contain other classes.

Getter – a method that gets the value of a property.

Setter – a method used to control changes to a variable.

Constructor – a method used to initialise a new object.

Destructor – a method that is automatically invoked
when an object is destroyed.

Declarative programming – statements of facts and
rules together with a mechanism for setting goals in
the form of a query.

Fact – a ‘thing’ that is known.

Rules – relationships between facts.

A programming paradigm is a set of programming concepts. We have already
considered two different programming paradigms: low-level and imperative
(procedural) programming.

The style and capability of any programming language is defined by its
paradigm. Some programming languages, for example JavaScript, only follow
one paradigm; others, for example Python, support multiple paradigms. Most
programming languages are multi-paradigm. In this section of the chapter,
we will consider four programming paradigms: low-level, imperative, object-
oriented and declarative.

20.1.1 Low-level programming
Low-level programming uses instructions from the computer’s basic
instruction set. Assembly language and machine code both use low-level
instructions. This type of programming is used when the program needs to
make use of specific addresses and registers in a computer, for example when
writing a printer driver.

In Chapter 4, Section 4.2.4, we looked at addressing modes. These are also
covered by the Cambridge International A Level syllabus. Review Section 4.2.4
before completing Activity 20A.

457591_20_CI_AS & A_Level_CS_498-540.indd 499 4/30/19 8:03 AM

500

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

20.1.2	 Imperative programming
In imperative programming, the steps required to execute a program are
set out in the order they need to be carried out. This programming paradigm
is often used in the early stages of teaching programming. Imperative
programming is often developed into structured programming, which has a
more logical structure and makes use of procedures and functions, together
with local and global variables. Imperative programming is also known as
procedural programming.

Programs written using the imperative paradigm may be smaller and take less
time to execute than programs written using the object-oriented or declarative
paradigms. This is because there are fewer instructions and less data storage is
required for the compiled object code. Imperative programming works well for
small, simple programs. Programs written using this methodology can be easier
for others to read and understand.

In Chapter 11, Section 11.3, we looked at structured programming. This is also
covered by the Cambridge International A Level syllabus. Review Section 11.3
then complete Activity 20B.

ACTIVITY	20A

A section of memory in a computer contains these denary values:

Address Denary value

230 231

231 5

232 7

233 9

234 11

235 0

Give the value stored in the accumulator (ACC) and the index register (IX)
after each of these instructions have been executed and state the mode of
addressing used.

Address Opcode Operand

500 LDM #230

501 LDD 230

502 LDI 230

503 LDR #1

504 LDX 230

505 CMP #0

506 JPE 509

507 INC IX

508 JMP 504

509 JMP 509

// this stops the program, it executes the same
instruction until the computer is turned off!

457591_20_CI_AS & A_Level_CS_498-540.indd 500 4/30/19 8:04 AM

501

20.1 Program
m

ing paradigm
s

20

20.1.3	 Object-oriented programming (OOP)
Object-oriented programming (OOP) is a programming methodology
that uses self-contained objects, which contain programming statements
(methods) and data, and which communicate with each other. This
programming paradigm is often used to solve more complex problems as
it enables programmers to work with real life things. Many procedural
programming languages have been developed to support OOP. For example,
Java, Python and Visual Basic all allow programmers to use either procedural
programming or OOP.

Object-oriented programming uses its own terminology, which we will
explore here.

Class
A class is a template defining the methods and data of a certain type
of object. The attributes are the data items in a class. A method is a
programmed procedure that is defined as part of a class. Putting the data
and methods together as a single unit, a class, is called encapsulation. To
ensure that only the methods declared can be used to access the data within
a class, attributes need to be declared as private and the methods need to be
declared as public.

For example, a shape can have name, area and perimeter as attributes and
the methods set shape, calculate area, calculate perimeter.
This information can be shown in a class diagram (Figure 20.1).

Shape
Name : STRING
Area : REAL
Perimeter : REAL
SetShape ()
calculateArea ()
calculatePerimeter ()

▲	Figure	20.1 Shape class diagram

ACTIVITY	20B

Write a pseudocode algorithm to calculate the areas of five different shapes
(square, rectangle, triangle, parallelogram and circle) using the basic
imperative programming paradigm (no procedures or functions, and using
only global variables).

Rewrite the pseudocode algorithm in a more structured way using the
procedural programming paradigm (make sure you use procedures,
functions, and local and global variables).

Write and test both algorithms using the programming language of your
choice.

attributes declared as private

class name

attributes declared as public

457591_20_CI_AS & A_Level_CS_498-540.indd 501 26/04/19 9:05 AM

502

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Object
When writing a program, an object needs to be declared using a class type
that has already been defined. An object is an instance of a class that is self-
contained and includes data and methods. Properties of an object are the data
and methods within an object that perform named actions. An occurrence of an
object during the execution of a program is called an instance.

For example, a class employee is defined and the object myStaff is
instanced in these programs using Python, VB and Java.

Python

 class employee:

 def __init__ (self, name, staffno):

 self.name = name

 self.staffno = staffno

 def showDetails(self):

 print("Employee Name " + self.name)

 print("Employee Number " , self.staffno)

 myStaff = employee("Eric Jones", 72)

 myStaff.showDetails()

VB

Module Module1

 Public Sub Main()

 Dim myStaff As New employee("Eric Jones", 72)

 myStaff.showDetails()

 End Sub

 class employee:

 Dim name As String

 Dim staffno As Integer

 Public Sub New (ByVal n As String, ByVal s As Integer)

 name = n

 staffno = s

 End Sub

 Public Sub showDetails()

 Console.Writeline("Employee Name " & name)

 Console.Writeline("Employee Number " & staffno)

 Console.ReadKey()

 End Sub

 End Class

End Module

object

Class
definition

class definition

object

457591_20_CI_AS & A_Level_CS_498-540.indd 502 26/04/19 9:05 AM

503

20.1 Program
m

ing paradigm
s

20
Java

class employee {

 String name;

 int staffno;

 employee(String n, int s){

 name = n;

 staffno = s;

 }

 void showDetails (){

 System.out.println("Employee Name " + name);

 System.out.println("Employee Number " + staffno);

 }

public static void main(String[] args) {

 Dim myStaff As New employee("Eric Jones", 72)

 myStaff.showDetails();

 }

}

Class definition

object

Data hiding protects the integrity of an object by restricting access to the
data and methods within that object. One way of achieving data hiding in OOP
is to use encapsulation. Data hiding reduces the complexity of programming
and increases data protection and the security of data.

Here is an example of a definition of a class with private attributes in Python,
VB and Java.

Python

class employee:

 def __init__(self, name, staffno):

 self.__name = name

 self.__staffno = staffno

 def showDetails(self):

 print("Employee Name " + self.__name)

 print("Employee Number " , self.__staffno)

attributes are private

method is public

use of __ denotes
private in Python

457591_20_CI_AS & A_Level_CS_498-540.indd 503 26/04/19 9:05 AM

504

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

VB

class employee:

 Private name As String

 Private staffno As Integer

 Public Sub New (ByVal n As String, ByVal s As Integer)

 name = n

 staffno = s

 End Sub

 Public Sub showDetails()

 Console.Writeline("Employee Name " & name)

 Console.Writeline("Employee Number " & staffno)

 Console.ReadKey()

 End Sub

End Class

Attributes are private

Constructor to set attributes

Methods are public

Java

// Java employee OOP program

class employee {

 private String name;

 private int staffno;

 employee(String n, int s){

 name = n;

 staffno = s;

 }

 public void showDetails (){

 System.out.println("Employee Name " + name);

 System.out.println("Employee Number " + staffno);

 }

}

 public class MainObject{

 public static void main(String[] args) {

 employee myStaff = new employee("Eric Jones", 72);

 myStaff.showDetails();

 }

}

Attributes are private

Constructor to set attributes

Methods are public

457591_20_CI_AS & A_Level_CS_498-540.indd 504 26/04/19 9:05 AM

505

20.1 Program
m

ing paradigm
s

20
ACTIVITY	20C

Write a short program to declare a class, student, with the private
attributes name, dateOfBirth and examMark, and the public method
displayExamMark. Declare an object myStudent, with a name and exam
mark of your choice, and use your method to display the exam mark.

Inheritance
Inheritance is the process by which the methods and data from one class, a
superclass or base class, are copied to another class, a derived class.

Figure 20.2 shows single inheritance, in which a derived class inherits from a
single superclass.

superclass
derived classes

parallelogramtriangle

shape

rectanglesquare circle

▲	Figure	20.2 Inheritance diagram – single inheritance

Multiple inheritance is where a derived class inherits from more than one
superclass (Figure 20.3).

superclass 1 superclass 2

derived class

▲	Figure	20.3 Inheritance diagram – multiple inheritance

EXTENSION	ACTIVITY	20A

Not all programming languages support multiple inheritance. Check if the
language you are using does.

Here is an example that shows the use of inheritance.

A base class employee and the derived classes partTime and fullTime
are defined. The objects permanentStaff and temporaryStaff are
instanced in these examples and use the method showDetails.

457591_20_CI_AS & A_Level_CS_498-540.indd 505 26/04/19 9:05 AM

506

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Python

class employee:

 def __init__ (self, name, staffno):

 self.__name = name

 self.__staffno = staffno

 self.__fullTimeStaff = True

 def showDetails(self):

 print("Employee Name " + self.__name)

 print("Employee Number " , self.__staffno)

class partTime(employee):

 def __init__(self, name, staffno):

 employee.__init__(self, name, staffno)

 self.__fullTimeStaff = False

 self.__hoursWorked = 0

 def getHoursWorked (self):

 return(self.__hoursWorked)

class fullTime(employee):

 def __init__(self, name, staffno):

 employee.__init__(self, name, staffno)

 self.__fullTimeStaff = True

 self.__yearlySalary = 0

 def getYearlySalary (self):

 return(self.__yearlySalary)

permanentStaff = fullTime("Eric Jones", 72)

permanentStaff.showDetails()

temporaryStaff = partTime ("Alice Hue", 1017)

temporaryStaff.showDetails ()

base class employee

derived class partTime

derived class fullTime

VB

'VB Employee OOP program with inheritance

Module Module1

 Public Sub Main()

 Dim permanentStaff As New fullTime("Eric Jones", 72, 50000.00)

 permanentStaff.showDetails()

 Dim temporaryStaff As New partTime("Alice Hu", 1017, 45)

 temporaryStaff.showDetails()

 End Sub

457591_20_CI_AS & A_Level_CS_498-540.indd 506 26/04/19 9:05 AM

507

20.1 Program
m

ing paradigm
s

20
 class employee

 Protected name As String

 Protected staffno As Integer

 Private fullTimeStaff As Boolean

 Public Sub New (ByVal n As String, ByVal s As Integer)

 name = n

 staffno = s

 End Sub

 Public Sub showDetails()

 Console.Writeline("Employee Name " & name)

 Console.Writeline("Employee Number " & staffno)

 Console.ReadKey()

 End Sub

 End Class

 class partTime : inherits employee

 Private ReadOnly fullTimeStaff = false

 Private hoursWorked As Integer

 Public Sub New (ByVal n As String, ByVal s As Integer, ByVal h As Integer)

 MyBase.new (n, s)

 hoursWorked = h

 End Sub

 Public Function getHoursWorked () As Integer

 Return (hoursWorked)

 End Function

 End Class

 class fullTime : inherits employee

 Private ReadOnly fullTimeStaff = true

 Private yearlySalary As Decimal

 Public Sub New (ByVal n As String, ByVal s As Integer, ByVal y As Decimal)

 MyBase.new (n, s)

 yearlySalary = y

 End Sub

 Public Function getYearlySalary () As Decimal

 Return (yearlySalary)

 End Function

 End Class

End Module

base class employee

derived class partTime

derived class fullTime

457591_20_CI_AS & A_Level_CS_498-540.indd 507 26/04/19 9:05 AM

508

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Java

// Java employee OOP program with inheritance

class employee {

 private String name;

 private int staffno;

 private boolean fullTimeStaff;

 employee(String n, int s){

 name = n;

 staffno = s;

 }

 public void showDetails (){

 System.out.println("Employee Name " + name);

 System.out.println("Employee Number " + staffno);

 }

}

class partTime extends employee {

 private boolean fullTimeStaff = false;

 private int hoursWorked;

 partTime (String n, int s, int h){

 super (n, s);

 hoursWorked = h;

 }

 public int getHoursWorked () {

 return hoursWorked;

 }

}

 class fullTime extends employee {

 private boolean fullTimeStaff = true;

 private double yearlySalary;

 fullTime (String n, int s, double y){

 super (n, s);

 yearlySalary = y;

 }

 public double getYearlySalary () {

 return yearlySalary;

 }

}

base class employee

derived class partTime

derived class fullTime

457591_20_CI_AS & A_Level_CS_498-540.indd 508 26/04/19 9:05 AM

509

20.1 Program
m

ing paradigm
s

20
public class MainInherit{

 public static void main(String[] args) {

 fullTime permanentStaff = new fullTime("Eric Jones", 72, 50000.00);

 permanentStaff.showDetails();

 partTime temporaryStaff = new partTime("Alice Hu", 1017, 45);

 temporaryStaff.showDetails();

 }

}

Figure 20.4 shows the inheritance diagram for the base class employee and
the derived classes partTime and fullTime.

employee
name : STRING

staffNo : INTEGER

fullTimeStaff : BOOLEAN
showDetails ()

partTime fullTime

hoursWorked : INTEGER yearlySalary : REAL

getHoursWorked () GetYearlySalary ()

▲	Figure	20.4 Inheritance diagram for employee, partTime and fullTime

ACTIVITY	20D

Write a short program to declare a class, student, with the private
attributes name, dateOfBirth and examMark, and the public method
displayExamMark.

Declare the derived classes fullTimeStudent and partTimeStudent.

Declare objects for each derived class, with a name and exam mark of your
choice, and use your method to display the exam marks for these students.

Polymorphism and overloading
Polymorphism is when methods are redefined for derived classes. Overloading
is when a method is defined more than once in a class so it can be used in
different situations.

Example of polymorphism
A base class shape is defined, and the derived classes rectangle and
circle are defined. The method area is redefined for both the rectangle
class and the circle class. The objects myRectangle and myCircle are
instanced in these programs.

all employees have
these attributes

all employees have
these methods

only full time
employees have
these attributes
and methods

only part time employ-
ees have these attrib-
utes and methods

457591_20_CI_AS & A_Level_CS_498-540.indd 509 26/04/19 9:05 AM

510

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Python

class shape:

 def __init__(self):

 self.__areaValue = 0

 self.__perimeterValue = 0

 def area(self):

 print("Area ", self.__areaValue)

 def perimeter(self):

 print("Perimeter ", self.__areaValue)

class rectangle(shape):

 def __init__(self, length, breadth):

 shape.__init__(self)

 self.__length = length

 self.__breadth = breadth

 def area (self):

 self.__areaValue = self.__length * self.__breadth

 print("Area ", self.__areaValue)

class circle(shape):

 def __init__(self, radius):

 shape.__init__(self)

 self.__radius = radius

 def area (self):

 self.__areaValue = self.__radius * self.__radius * 3.142

 print("Area ", self.__areaValue)

myCircle = circle(20)

myCircle.area()

myRectangle = rectangle (10,17)

myRectangle.area()

original method in shape class

redefined method in rectangle class

redefined method in circle class

VB

'VB shape OOP program with polymorphism

Module Module1

 Public Sub Main()

 Dim myCircle As New circle(20)

 myCircle.area()

 Dim myRectangle As New rectangle(10,17)

457591_20_CI_AS & A_Level_CS_498-540.indd 510 26/04/19 9:05 AM

511

20.1 Program
m

ing paradigm
s

20
 myRectangle.area()

 Console.ReadKey()

 End Sub

 class shape

 Protected areaValue As Decimal

 Protected perimeterValue As Decimal

 Overridable Sub area()

 Console.Writeline("Area " & areaValue)

 End Sub

 Overridable Sub perimeter()

 Console.Writeline("Perimeter " & perimeterValue)

 End Sub

 End Class

 class rectangle : inherits shape

 Private length As Decimal

 Private breadth As Decimal

 Public Sub New (ByVal l As Decimal, ByVal b As Decimal)

 length = l

 breadth = b

 End Sub

 Overrides Sub Area ()

 areaValue = length * breadth

 Console.Writeline("Area " & areaValue)

 End Sub

 End Class

 class circle : inherits shape

 Private radius As Decimal

 Public Sub New (ByVal r As Decimal)

 radius = r

 End Sub

 Overrides Sub Area ()

 areaValue = radius * radius * 3.142

 Console.Writeline("Area " & areaValue)

 End Sub

 End Class

End Module

original method in shape class

redefined method in rectangle class

redefined method in circle class

457591_20_CI_AS & A_Level_CS_498-540.indd 511 26/04/19 9:05 AM

512

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Java

// Java shape OOP program with polymorphism

class shape {

 protected double areaValue;

 protected double perimeterValue;

 public void area (){

 System.out.println("Area " + areaValue);

 }

}

class rectangle extends shape {

 private double length;

 private double breadth;

 rectangle(double l, double b){

 length = l;

 breadth = b;

 }

 public void area (){

 areaValue = length * breadth;

 System.out.println("Area " + areaValue);

 }

}

class circle extends shape {

 private double radius;

 circle (double r){

 radius = r;

 }

 public void area (){

 areaValue = radius * radius * 3.142;

 System.out.println("Area " + areaValue);

 }

}

public class MainShape{

 public static void main(String[] args) {

 circle myCircle = new circle(20);

 myCircle.area();

 rectangle myRectagle = new rectangle(10, 17);

 myRectagle.area();

 }

}

original method in shape class

redefined method in rectangle class

redefined method in circle class

457591_20_CI_AS & A_Level_CS_498-540.indd 512 26/04/19 9:05 AM

513

20.1 Program
m

ing paradigm
s

20
ACTIVITY	20E

Write a short program to declare the class shape with the public method area.

Declare the derived classes circle, rectangle and square.

Use polymorphism to redefine the method area for these derived classes.

Declare objects for each derived class and instance them with suitable data.

Use your methods to display the areas for these shapes.

Example of overloading
One way of overloading a method is to use the method with a different number
of parameters. For example, a class greeting is defined with the method
hello. The object myGreeting is instanced and uses this method with no
parameters or one parameter in this Python program. This is how Python, VB
and Java manage overloading.

Python

class greeting:

 def hello(self, name = None):

 if name is not None:

 print ("Hello " + name)

 else:

 print ("Hello")

myGreeting = greeting()

myGreeting.hello()

myGreeting.hello("Christopher")

method used with no parameters

method used with one parameter

VB

Module Module1

 Public Sub Main()

 Dim myGreeting As New greeting

 myGreeting.hello()

 myGreeting.hello("Christopher")

 Console.ReadKey()

 End Sub

 Class greeting

 Public Overloads Sub hello()

 Console.WriteLine("Hello")

 End Sub

 Public Overloads Sub hello(ByVal name As String)

 Console.WriteLine("Hello " & name)

method used with no parameters

method used with one parameter

457591_20_CI_AS & A_Level_CS_498-540.indd 513 26/04/19 9:05 AM

514

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

 End Sub

 End Class

End Module

Java

class greeting{

 public void hello(){

 System.out.println("Hello");

 }

 public void hello(String name){

 System.out.println("Hello " + name);

 }

}

class mainOverload{

 public static void main(String args[]){

 greeting myGreeting = new greeting();

 myGreeting.hello();

 myGreeting.hello("Christopher");

 }

}.

method used with no parameters

method used with one parameter

ACTIVITY	20F

Write a short program to declare the class greeting, with the public
method hello, which can be used without a name, with one name or with a
first name and last name.

Declare an object and use the method to display each type of greeting.

Containment
Containment, or aggregation, is the process by which one class can contain
other classes. This can be presented in a class diagram.

When the class ‘aeroplane’ is defined, and the definition contains references to
the classes – seat, fuselage, wing, cockpit – this is an example of containment.

aeroplane

seat fuselage wing cockpit

▲	Figure	20.5

When deciding whether to use inheritance or containment, it is useful to think
about how the classes used would be related in the real world.

457591_20_CI_AS & A_Level_CS_498-540.indd 514 26/04/19 9:05 AM

515

20.1 Program
m

ing paradigm
s

20
For example

» when looking at shapes, a circle is a shape – so inheritance would be used
» when looking at the aeroplane, an aeroplane contains wings – so

containment would be used.

Consider the people on board an aeroplane for a flight. The containment diagram
could look like this if there can be up to 10 crew and 350 passengers on board:

flight
flightID : STRING
numberOfCrew : INTEGER
flightCrew [1 : 10] OF crew
numberOfPassengers : INTEGER
flightPassengers [1 : 350] OF
passenger
:
:
addCrew ()
addPassenger ()
removeCrew ()
removePassenger
:
:

crew passenger

firstName : STRING
lastName : STRING
role : STRING
:
:

firstName : STRING
lastName : STRING
seatNumber : STRING
:
:

showCrewDetails ()
:
:

showPassengerDetails ()
:
:

▲	Figure	20.6

ACTIVITY	20G

Draw a containment diagram for a course at university where there are up
to 50 lectures, three examinations and the final mark is the average of the
marks for the three examinations.

Object methods
In OOP, the basic methods used during the life of an object can be divided into
these types: constructors, setters, getters, and destructors.

A constructor is the method used to initialise a new object. Each object is initialised
when a new instance is declared. When an object is initialised, memory is allocated.

457591_20_CI_AS & A_Level_CS_498-540.indd 515 26/04/19 9:05 AM

516

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

For example, in the first program in Chapter 20, this is the method used to
construct a new employee object.

Constructor Language

def __init __(self, name, staffno):

 self. __name = name

 self. __staffno = staffno

Python

Public Sub New (ByVal n As String, ByVal s As Integer)

 name = n

 staffno = s

End Sub

VB

▲ Table	20.1

Constructing an object Language

myStaff = employee("Eric Jones",72) Python

Dim myStaff As New employee("Eric Jones", 72) VB

employee myStaff = new employee("Eric Jones", 72); Java

▲ Table	20.2

A setter is a method used to control changes to any variable that is declared
within an object. When a variable is declared as private, only the setters
declared within the object’s class can be used to make changes to the variable
within the object, thus making the program more robust.

For example, in the employee base class, this code is a setter:

Setter Language

def setName(self, n):

 self. __ name = n

Python

Public Sub setName (ByVal n As String)

 name = n

End Sub

VB

public void setName(String n){

 this.name = n;

}

Java

▲ Table	20.3

A getter is a method that gets the value of a property of an object.

For example, in the partTimeStaff derived class, this method is a getter:

Getter Language

def getHoursWorked (self):

 return(self. __ hoursWorked)

Python

Public Function getHoursWorked () As Integer

 Return (hoursWorked)

VB

public int getHoursWorked () {

 return hoursWorked;}

Java

▲ Table	20.4

457591_20_CI_AS & A_Level_CS_498-540.indd 516 26/04/19 9:05 AM

517

20.1 Program
m

ing paradigm
s

20
A destructor is a method that is invoked to destroy an object. When an object
is destroyed the memory is released so that it can be reused. Both Java and
VB use garbage collection to automatically destroy objects that are no longer
used so that the memory used can be released. In VB garbage collection can be
invoked as a method if required but it is not usually needed.

For example, in any of the Python programs above, this could be used as a
destructor:

def __del__(self)

Here is an example of a destructor being used in a Python program:

class shape:

 def __init__(self):

 self.__areaValue = 0

 self.__perimeterValue = 0

 def __del__(self):

 print("Shape deleted")

 def area(self):

 print("Area ", self.__areaValue)

 def perimeter(self):

 print("Perimeter ", self.__areaValue)

:

:

del myCircle

destructor

object destroyed

Here are examples of destructors in Python and VB.

Destructor Language

def __del __(self):

 print ("Object deleted")

Python

Protected Overrides Sub Finalize()

 Console.WriteLine("Object deleted")

 Console.ReadKey()

VB – only if required,
automatically called at
end of program

Java – not used

▲ Table	20.5

Writing a program for a binary tree
In Chapter 19, we looked at the data structure and some of the operations for
a binary tree using fixed length arrays in pseudocode. You will need to be able
to write a program to implement a binary tree, search for an item in the binary
tree and store an item in a binary tree. Binary trees are best implemented using
objects, constructors, containment, functions, procedures and recursion.

» Objects – tree and node
» Constructor – adding a new node to the tree
» Containment – the tree contains nodes
» Function – search the binary tree for an item
» Procedure – insert a new item in the binary tree

457591_20_CI_AS & A_Level_CS_498-540.indd 517 26/04/19 9:05 AM

518

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

The data structures and operations to implement a binary tree for integer
values in ascending order are set out in Tables 20.6–9 below. If you are unsure
how the binary tree works, review Chapter 19.

Binary tree data structure – Class node Language

class Node:

 def __init __(self, item):

 self.left = None

 self.right = None

 self.item = item

Python – the values for new nodes are
set here. Python uses None for null
pointers

Public Class Node

 Public item As Integer

 Public left As Node

 Public right As Node

 Public Function GetNodeItem()

 Return item

 End Function

End Class

VB with a recursive definition of node
to allow for a tree of any size

class Node

{

 int item;

 Node left;

 Node right;

 GetNodeItem(int item)

 {

 this.item = item;

 }

}

Java with a recursive definition of
node to allow for a tree of any size

▲ Table	20.6

Binary tree data structure – Class tree Language

tree = Node(27) Python – the root of the tree is set as an
instance of Node

Public Class BinaryTree

 Public root As Node

 Public Sub New()

 root = Nothing

 End Sub

End Class

VB uses Nothing for null pointers

class BinaryTree

{

 Node root;

 BinaryTree(int item)

 {

 this.item = item;

 }

}

Java uses null for null pointers

▲ Table	20.7

457591_20_CI_AS & A_Level_CS_498-540.indd 518 26/04/19 9:05 AM

519

20.1 Program
m

ing paradigm
s

20
Add integer to binary tree Language

def insert(self, item):

 if self.item:

 if item < self.item:

 if self.left is None:

 self.left = Node(item)

 else:

 self.left.insert(item)

 elif item > self.item:

 if self.right is None:

 self.right = Node(item)

 else:

 self.right.insert(item)

 else:

 self.item = item

Python showing a
recursive procedure to
insert a new node and
the pointers to it

Public Sub insert(ByVal item As Integer)

 Dim newNode As New Node()

 if root Is Nothing Then

 root = newNode

 Else

 Dim CurrentNode As Node = root

 If item < current.item Then

 If current.left Is Nothing Then

 current.left = Node(item)

 Else

 current.left.insert(item)

 End If

 Else If

 If item > current.item Then

 If current.right Is Nothing Then

 current.right = Node(item)

 Else

 current.right.insert(item)

 End If

 Else If

 current.item = item

 End If

 End If

End Sub

VB showing a recursive
procedure to insert a
new node

457591_20_CI_AS & A_Level_CS_498-540.indd 519 26/04/19 9:05 AM

520

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Add integer to binary tree Language

void insert(tree node, int item)

{

 if (item < node.item)

 {

 if (node.left != null)

 insert(node.left, item);

 else

 node.left = new tree(item);

 }

 else if (item > node.item)

 {

 if (node.right != null)

 insert(node.right, item);

 else

 node.right = new tree(item);

 }

}

Java showing a
recursive procedure to
insert a new node

▲ Table	20.8

Search for integer in binary tree Language

def search(self, item):

 while self.item != item:

 if item < self.item:

 self.item = self.left

 else:

 self.item = self.right

 if self.item is None:

 return None

 return self.item

Python – the
function returns
the value searched
for if it is found,
otherwise it returns
None

Public Function search(ByVal item As Integer) As Integer

 Dim current As Node = root

 While current.item <> item

 If item < current.item Then

 current = current.left

 Else

 current = current.right

 End If

 If current Is Nothing Then

 Return Nothing

 End If

 End While

 Return current.item

End Function

VB – the function
returns the value
searched for if it is
found, otherwise it
returns Nothing

457591_20_CI_AS & A_Level_CS_498-540.indd 520 26/04/19 9:05 AM

521

20.1 Program
m

ing paradigm
s

20
Search for integer in binary tree Language

tree search(int item, tree node)

{

 while (item <> node.item)

 {

 if(item < node.item)

 node = node.left;

 else

 node = node.right;

 if (node = null)

 return null;

 }

 return node;

}

Java – the function
returns the value
searched for if it is
found, otherwise it
returns null

▲ Table	20.9	

ACTIVITY	20H

In your chosen programming language, write a program using objects and
recursion to implement a binary tree. Test your program by setting the root
of the tree to 27, then adding the integers 19, 36, 42 and 16 in that order.

EXTENSION	ACTIVITY	20B

Complete a pre-order and post-order traverse of your binary tree and print
the results.

20.1.4	 Declarative programming
Declarative programming is used to extract knowledge by the use of queries
from a situation with known facts and rules. In Chapter 8, Section 8.3 we
looked at the use of SQL scripts to query relational databases. It can be argued
that SQL uses declarative programming. Review Section 8.3 to remind yourself
how SQL performs queries.

Here is an example of an SQL query from Chapter 8:

 SELECT FirstName, SecondName

 FROM Student

 WHERE ClassID = '7A'

 ORDER BY SecondName

Declarative programming uses statements of facts and rules together with a
mechanism for setting goals in the form of a query. A fact is a ‘thing’ that is
known, and rules are relationships between facts. Writing declarative programs
is very different to writing imperative programs. In imperative programming,
the programmer writes a list of statements in the order that they will be
performed. But in declarative programming, the programmer can state the facts
and rules in any order before writing the query.

457591_20_CI_AS & A_Level_CS_498-540.indd 521 26/04/19 9:05 AM

522

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Prolog is a declarative programming language that uses predicate logic to write
facts and rules. For example, the fact that France is a country would be written
in predicate logic as:

country(france).

Note that all facts in Prolog use lower-case letters and end with a full stop.

Another fact about France – the language spoken in France is French – could be
written as:

language(france,french).

A set of facts could look like this:

country(france).

country(germany).

country(japan).

country(newZealand).

country(england).

country(switzerland).

language(france,french).

language(germany,german).

language(japan,japanese).

language(newZealand,english).

language(england,english).

language(switzerland,french).

language(switzerland,german).

language(switzerland,italian).

These facts are used to set up a knowledge base. This knowledge base can be
consulted using queries.

For example, a query about countries that speak a certain language, English,
could look like this:

language(Country,english)

Note that a variable in Prolog – Country, in this example – begins with an
uppercase-letter.

This would give the following results:

newZealand ;

england.

The results are usually shown in the order the facts are stored in the knowledge base.

A query about the languages spoken in a country, Switzerland, could look like this:

language(switzerland,Language).

And these are the results:

french, german, italian.

457591_20_CI_AS & A_Level_CS_498-540.indd 522 26/04/19 9:05 AM

523

20.1 Program
m

ing paradigm
s

20
When a query is written as a statement, this statement is called a goal and the
result is found when the goal is satisfied using the facts and rules available.

ACTIVITY	20I

Use the facts above to write queries to find out which language is spoken
in England and which country speaks Japanese. Take care with the use of
capital letters.

EXTENSION	ACTIVITY	20C	

Download SWI-Prolog and write a short program to provide facts about
other countries and languages and save the file. Then consult the file to find
out which languages are spoken in some of the countries. Note that SWI-
prolog is available as a free download.

The results for the country Switzerland query would look like this in
SWI-Prolog:

?– 1anguage(switzerland,Language).

Language = french ;

Language = german ;

Language = italian.

prompt

press ; to get the next result

Most knowledge bases also make use of rules, which are also written using
predicate logic.

Here is a knowledge base for the interest paid on bank accounts. The facts
about each account include the name of the account holder, the type of
account (current or savings), and the amount of money in the account. The
facts about the interest rates are the percentage rate, the type of account and
the amount of money needed in the account for that interest rate to be paid.

bankAccount(laila,current,500.00).

bankAccount(stefan,savings,50).

bankAccount(paul,current,45.00).

bankAccount(tasha,savings,5000.00).

interest(twoPercent,current,500.00).

interest(onePercent,current,0).

interest(tenPercent,savings,5000.00).

interest(fivePercent,savings,0).

savingsRate(Name,Rate) :-

 bankAccount(Name,Type,Amount),

 interest(Rate,Type,Base),

 Amount >= Base.

facts

rule for the rate of
interest to be used

457591_20_CI_AS & A_Level_CS_498-540.indd 523 26/04/19 9:05 AM

524

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Here is an example of a query using the above rule:

savingsRate(stefan,X).

And here is the result:

fivePercent

Here are examples of queries to find bank account details:

bankAccount(laila,X,Y). bankAccount(victor,X,Y)

And here are the results:

current, 500.0 false

ACTIVITY	20J

Carry out the following activities using the information above.
1 Write a query to find out the interest rate for Laila’s bank account.
2 Write a query to find who has savings accounts.
3	 a) Set up a savings account for Robert with 300.00.

b) Set up a new fact about savings accounts allowing for an interest rate
of 7% if there is 2000.00 or more in a savings account.

EXTENSION	ACTIVITY	20D

Use SWI-Prolog to check your answers to the previous activity.

ACTIVITY	20K

1 Explain the difference between the four modes of addressing in a
low-level programming language. Illustrate your answer with assembly
language code for each mode of addressing.

2 Compare and contrast the use of imperative (procedural) programming
with OOP. Use the shape programs you developed in Activities 20B and
20E to illustrate your answer with examples to show the difference in the
paradigms.

3 Use the knowledge base below to answer the following questions:

 language(fortran,highLevel).

 language(cobol,highLevel).

 language(visualBasic,highLevel).

 language(visualBasic,oop).

 language(python,highLevel).

 language(python,oop).

 language(assembly,lowLevel).

 language(masm,lowLevel).

 translator(assembler,lowLevel).

 translator(compiler,highLevel).

457591_20_CI_AS & A_Level_CS_498-540.indd 524 26/04/19 9:05 AM

525

20.2 File processing and exception handling

20
 teaching(X):-

 language(X,oop),

 language(X,highLevel).

a) Write two new facts about Java, showing that it is a high-level
language and uses OOP.

b) Show the results from these queries
i) teaching(X).
ii) teaching(masm).

c) Write a query to show all programming languages translated by an
assembler.

20.2	File processing and exception
handling

WHAT	YOU	SHOULD	ALREADY	KNOW	
In Chapter 10, Section 10.3, you learnt about text
files, and in Chapter 13, Section 13.2, you learnt
about file organisation and access. Review these
sections, then try these three questions before
you read the second part of this chapter.
1	 a) Write a program to set up a text file to

store records like this, with one record on
every line.

TYPE

TstudentRecord

 DECLARE name : STRING

 DECLARE address : STRING

 DECLARE className : STRING

ENDTYPE

b) Write a procedure to append a record.
c) Write a procedure to find and delete a

record.
d) Write a procedure to output all the

records.
2 Describe three types of file organisation
3 Describe two types of file access and explain

which type of files each one is used for.

Key	terms

Read – file access mode in which data can be read from
a file.
Write – file access mode in which data can be written
to a file; any existing data stored in the file will be
overwritten.
Append – file access mode in which data can be added
to the end of a file.
Open – file-processing operation; opens a file ready to
be used in a program.

Close – file-processing operation; closes a file so it can
no longer be used by a program.
Exception – an unexpected event that disrupts the
execution of a program.
Exception	handling – the process of responding to an
exception within the program so that the program does
not halt unexpectedly.

457591_20_CI_AS & A_Level_CS_498-540.indd 525 26/04/19 9:05 AM

526

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

20.2.1	 File processing operations
Files are frequently used to store records that include data types other than
string. Also, many programs need to handle random access files so that a record
can be found quickly without reading through all the preceding records.

A typical record to be stored in a file could be declared like this in pseudocode:

TYPE

TstudentRecord

 DECLARE name : STRING

 DECLARE registerNumber : INTEGER

 DECLARE dateOfBirth : DATE

 DECLARE fullTime : BOOLEAN

ENDTYPE

Storing records in a serial or sequential file
The algorithm to store records sequentially in a serial (unordered) or sequential
(ordered on a key field) file is very similar to the algorithm for storing lines
of text in a text file. The algorithm written in pseudocode below stores the
student records sequentially in a serial file as they are input.

Note that PUTRECORD is the pseudocode to write a record to a data file and
GETRECORD is the pseudocode to read a record from a data file.

DECLARE studentRecord : ARRAY[1:50] OF TstudentRecord

DECLARE studentFile : STRING

DECLARE counter : INTEGER

counter ← 1

studentFile ← "studentFile.dat"

OPEN studentFile FOR WRITE

REPEAT

 OUTPUT "Please enter student details"

 OUTPUT "Please enter student name"

 INPUT studentRecord.name[counter]

 IF studentRecord.name <> ""

 THEN

 OUTPUT "Please enter student’s register number"

 INPUT studentRecord.registerNumber[counter]

 OUTPUT "Please enter student’s date of birth"

 INPUT studentRecord.dateOfBirth[counter]

 OUTPUT "Please enter True for fulltime or
False for part-time"

 INPUT studentRecord.fullTime[counter]

 PUTRECORD, studentRecord[counter]

 counter ← counter + 1

457591_20_CI_AS & A_Level_CS_498-540.indd 526 26/04/19 9:05 AM

527

20.2 File processing and exception handling

20
 ELSE

 CLOSEFILE(studentFile)

 ENDIF

UNTIL studentRecord.name = ""

OUTPUT "The file contains these records: "

OPEN studentFile FOR READ

counter ← 1

REPEAT

 GETRECORD, studentRecord[counter]

 OUTPUT studentRecord[counter]

 counter ← counter + 1

UNTIL EOF(studentFile)

CLOSEFILE(studentFile)

Identifier name Description
studentRecord Array of records to be written to the file

studentFile File name

counter Counter for records

▲ Table	20.10

If a sequential file was required, then the student records would need
to be input into an array of records first, then sorted on the key field
registerNumber, before the array of records was written to the file.

Here are programs in Python, VB and Java to write a single record to a file.

Python

import pickle

class student:

 def __init __(self):

 self.name = ""

 self.registerNumber = 0

 self.dateOfBirth = datetime.datetime.now()

 self.fullTime = True

studentRecord = student()

studentFile = open('students.DAT','w+b')

print("Please enter student details")

studentRecord.name = input("Please enter student name ")

studentRecord.registerNumber = int(input("Please enter student's register number "))

year = int(input("Please enter student's year of birth YYYY "))

month = int(input("Please enter student's month of birth MM "))

day = int(input("Please enter student's day of birth DD "))

Library to use binary files

Create a binary file to store the data

457591_20_CI_AS & A_Level_CS_498-540.indd 527 26/04/19 9:05 AM

528

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

studentRecord.dateOfBirth = datetime.datetime(year, month, day)

studentRecord.fullTime = bool(input("Please enter True for full-time or False for
part-time "))

pickle.dump (studentRecord, studentFile)

print(studentRecord.name, studentRecord.registerNumber, studentRecord.dateOfBirth,

 studentRecord.fullTime)

studentFile.close()

studentFile = open('students.DAT','rb')

studentRecord = pickle.load(studentFile)

print(studentRecord.name, studentRecord.registerNumber, studentRecord.dateOfBirth,

 studentRecord.fullTime)

studentFile.close()

Write record to file

Open binary file to read from

Read record from file

VB

Option Explicit On

Imports System.IO

Module Module1

 Public Sub Main()

 Dim studentFileWriter As BinaryWriter

 Dim studentFileReader As BinaryReader

 Dim studentFile As FileStream

 Dim year, month, day As Integer

 Dim studentRecord As New student()

 studentFile = New FileStream("studentFile.DAT", FileMode.Create)

 studentFileWriter = New BinaryWriter(studentFile)

 Console.Write("Please enter student name ")

 studentRecord.name = Console.ReadLine()

 Console.Write("Please enter student's register number ")

 studentRecord.registerNumber = Integer.Parse(Console.ReadLine())

 Console.Write("Please enter student's year of birth YYYY ")

 year =Integer.Parse(Console.ReadLine())

 Console.Write("Please enter student's month of birth MM ")

 month =Integer.Parse(Console.ReadLine())

 Console.Write("Please enter student's day of birth DD ")

 day =Integer.Parse(Console.ReadLine())

 studentRecord.dateOfBirth = DateSerial(year, month, day)

 Console.Write("Please enter True for full-time or False for part-time ")

 studentRecord.fullTime = Boolean.Parse(Console.ReadLine())

Library to use Input and Output

Create a file to store the data

457591_20_CI_AS & A_Level_CS_498-540.indd 528 26/04/19 9:05 AM

529

20.2 File processing and exception handling

20
 studentFileWriter.Write(studentRecord.name)

 studentFileWriter.Write(studentRecord.registerNumber)

 studentFileWriter.Write(studentRecord.dateOfBirth)

 studentFileWriter.Write(studentRecord.fullTime)

 studentFileWriter.Close()

 studentFile.Close()

 studentFile = New FileStream("studentFile.DAT", FileMode.Open)

 studentFileReader = New BinaryReader(studentFile)

 studentRecord.name = studentFileReader.ReadString()

 studentRecord.registerNumber = studentFileReader.ReadInt32()

 studentRecord.dateOfBirth = studentFileReader.ReadString()

 studentRecord.fullTime = studentFileReader.ReadBoolean()

 studentFileReader.Close()

 studentFile.Close()

 Console.WriteLine (studentRecord.name & " " & studentRecord.registerNumber

 & " " & studentRecord.dateOfBirth & " " & studentRecord.fullTime)

 Console.ReadKey ()

 End Sub

 class student:

 Public name As String

 Public registerNumber As Integer

 Public dateOfBirth As Date

 Public fullTime As Boolean

 End Class

End Module

Write record to file

Open file to read from

Read record from file

Java
(Java programs using files need to include exception handling – see Section 20.2.2
later in this chapter.)

import java.io.File;

import java.io.FileWriter;

import java.util.Scanner;

import java.util.Date;

import java.text.SimpleDateFormat;

class Student {

 private String name;

 private int registerNumber;

 private Date dateOfBirth;

457591_20_CI_AS & A_Level_CS_498-540.indd 529 26/04/19 9:05 AM

http://java.io
http://java.io

530

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

 private boolean fullTime;

 Student(String name, int registerNumber, Date dateOfBirth, boolean fullTime) {

 this.name = name;

 this.registerNumber = registerNumber;

 this.dateOfBirth = dateOfBirth;

 this.fullTime = fullTime;

 }

 public String toString() {

 return name + " " + registerNumber + " " + dateOfBirth + " " + fullTime;

 }

}

public class StudentRecordFile {

 public static void main(String[] args) throws Exception {

 Scanner input = new Scanner(System.in);

 System.out.println("Please Student details");

 System.out.println("Please enter Student name ");

 String nameIn = input.next();

 System.out.println("Please enter Student's register number ");

 int registerNumberIn = input.nextInt();

 System.out.println("Please enter Student's date of birth as YYYY-MM-DD ");

 String DOBIn = input.next();

 SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd");

 Date dateOfBirthIn = format.parse(DOBIn);

 System.out.println("Please enter true for full-time or false for part-time ");

 boolean fullTimeIn = input.nextBoolean();

 Student studentRecord = new Student(nameIn, registerNumberIn, dateOfBirthIn,
fullTimeIn);

 System.out.println(studentRecord.toString());

 // This is the file that we are going to write to and then read from

 File studentFile = new File("Student.txt");

 // Write the record to the student file

 // Note - this try-with-resources syntax only works with Java 7 and later

 try (FileWriter studentFileWriter = new FileWriter(studentFile)) {

 studentFileWriter.write(studentRecord.toString());

 }

 // Print all the lines of text in the student file

 try (Scanner studentReader = new Scanner(studentFile)) {

457591_20_CI_AS & A_Level_CS_498-540.indd 530 26/04/19 9:05 AM

http://Scanner(System.in

531

20.2 File processing and exception handling

20
 while (studentReader.hasNextLine()) {

 String data = studentReader.nextLine();

 System.out.println(data);

 }

 }

 }

}

ACTIVITY	20L

In the programming language of your choice, write a program to
n input a student record and save it to a new serial file
n read a student record from that file
n extend your program to work for more than one record.

EXTENSION	ACTIVITY	20E

In the programming language of your choice, extend your program to sort
the records on registerNumber before storing in the file.

Adding a record to a sequential file
Records can be appended to the end of a serial file by opening the file in
append mode. If records need to be added to a sequential file, then the whole
file needs to be recreated and the record stored in the correct place.

The algorithm written in pseudocode below inserts a student record into the
correct place in a sequential file.

DECLARE studentRecord : TstudentRecord

DECLARE newStudentRecord : TstudentRecord

DECLARE studentFile : STRING

DECLARE newStudentFile : STRING

DECLARE recordAddedFlag : BOOLEAN

recordAddedFlag ← FALSE

studentFile ← "studentFile.dat"

newStudentFile ← "newStudentFile.dat"

CREATE newStudentFile // creates a new file to write to

OPEN newStudentFile FOR WRITE

OPEN studentFile FOR READ

OUTPUT "Please enter student details"

OUTPUT "Please enter student name"

INPUT newStudentRecord.name

OUTPUT "Please enter student’s register number"

457591_20_CI_AS & A_Level_CS_498-540.indd 531 26/04/19 9:05 AM

532

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

INPUT newStudentRecord.registerNumber

OUTPUT "Please enter student’s date of birth"

INPUT newStudentRecord.dateOfBirth

OUTPUT "Please enter True for full-time or False for part-time"

INPUT newStudentRecord.fullTime

REPEAT

 WHILE NOT recordAddedFlag OR EOF(studentFile)

 GETRECORD, studentRecord // gets record from existing file

 IF newStudentRecord.registerNumber > studentRecord.registerNumber

 THEN

 PUTRECORD studentRecord

 // writes record from existing file to new file

 ELSE

 PUTRECORD newStudentRecord

 // or writes new record to new file in the correct place

 recordAddedFlag ← TRUE

 ENDIF

 ENDWHILE

IF EOF (studentFile)

THEN

 PUTRECORD newStudentRecord

 // add new record at end of the new file

ELSE

 REPEAT

 GETRECORD, studentRecord

 PUTRECORD studentRecord

 //transfers all remaining records to the new file

 ENDIF UNTIL EOF(studentRecord)

CLOSEFILE(studentFile)

CLOSEFILE(newStudentFile)

DELETE(studentFile)

// deletes old file of student records

RENAME newStudentfile, studentfile

// renames new file to be the student record file

457591_20_CI_AS & A_Level_CS_498-540.indd 532 26/04/19 9:05 AM

533

20.2 File processing and exception handling

20
Identifier name Description
studentRecord record from student file

newStudentRecord new record to be written to the file

studentFile student file name

newStudentFile temporary file name

▲ Table	20.11

Note that you can directly append a record to the end of a file in a
programming language by opening the file in append mode, as shown in the
table below.

Opening a file in append mode Language

myFile = open("fileName", "a") Opens the
file with
the name
fileName in
append mode
in Python

myFile = New FileStream("fileName", FileMode.Append) Opens the
file with
the name
fileName in
append mode
in VB.NET

FileWriter myFile = new FileWriter("fileName", true); Opens the
file with
the name
fileName in
append mode
in Java

▲ Table	20.12

ACTIVITY	20M

In the programming language of your choice, write a program to
n input a student record and append it to the end of a sequential file
n find and output a student record from a sequential file using the key field

to identify the record
n extend your program to check for record not found (if required).

EXTENSION	ACTIVITY	20F

Extend your program to input a student record and save it to in the correct
place in the sequential file created in Extension Activity 20E.

Adding a record to a random file
Records can be added to a random file by using a hashing function on the key
field of the record to be added. The hashing function returns a pointer to the
address where the record is to be added.

457591_20_CI_AS & A_Level_CS_498-540.indd 533 26/04/19 9:05 AM

http://VB.NET

534

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

In pseudocode, the address in the file can be found using the command:

SEEK <filename>,<address>

The record can be stored in the file using the command:

PUTRECORD <filename>,<recordname>

Or it can be retrieved using:

GETRECORD <filename>,<recordname>

The file needs to be opened as random:

OPEN studentFile FOR RANDOM

The algorithm written in pseudocode below inserts a student record into a
random file.

DECLARE studentRecord : TstudentRecord

DECLARE studentFile : STRING

DECLARE Address : INTEGER

studentFile ← "studentFile.dat"

OPEN studentFile FOR RANDOM

// opens file for random access both read and write

OUTPUT "Please enter student details"

OUTPUT "Please enter student name"

INPUT StudentRecord.name

OUTPUT "Please enter student’s register number"

INPUT studentRecord.registerNumber

OUTPUT "Please enter student’s date of birth"

INPUT studentRecord.dateOfBirth

OUTPUT "Please enter True for full-time or False for
part-time"

INPUT studentRecord.fullTime

address ← hash(studentRecord,registerNumber)

// uses function hash to find pointer to address

SEEK studentFile,address

// finds address in file

PUTRECORD studentFile,studentRecord

//writes record to the file

CLOSEFILE(studentFile)

457591_20_CI_AS & A_Level_CS_498-540.indd 534 26/04/19 9:05 AM

535

20.2 File processing and exception handling

20
EXTENSION	ACTIVITY	20G

In the programming language of your choice, write a program to input a
student record and save it to a random file.

Finding a record in a random file
Records can be found in a random file by using a hashing function on the key field
of the record to be found. The hashing function returns a pointer to the address
where the record is to be found, as shown in the example pseudocode below.

DECLARE studentRecord : TstudentRecord

DECLARE studentFile : STRING

DECLARE Address : INTEGER

studentFile ← "studentFile.dat"

OPEN studentFile FOR RANDOM

// opens file for random access both read and write

OUTPUT "Please enter student’s register number"

INPUT studentRecord.registerNumber

address ← hash(studentRecord.registerNumber)

// uses function hash to find pointer to address

SEEK studentFile,address

// finds address in file

GETRECORD studentFile,studentRecord

//reads record from the file

OUTPUT studentRecord

CLOSEFILE(studentFile)

EXTENSION	ACTIVITY	20H

In the programming language of your choice, write a program to find and output
a student record from a random file using the key field to identify the record.

20.2.2	Exception handling
An exception is an unexpected event that disrupts the execution of a program.
Exception handling is the process of responding to an exception within the
program so that the program does not halt unexpectedly. Exception handling
makes a program more robust as the exception routine traps the error then
outputs an error message, which is followed by either an orderly shutdown of
the program or recovery if possible.

An exception may occur in many different ways, for example

» dividing by zero during a calculation
» reaching the end of a file unexpectedly when trying to read a record from a file
» trying to open a file that has not been created
» losing a connection to another device, such as a printer.

457591_20_CI_AS & A_Level_CS_498-540.indd 535 26/04/19 9:05 AM

536

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

Exceptions can be caused by

» programming errors
» user errors
» hardware failure.

Error handling is one of the most important aspects of writing robust programs
that are to be used every day, as users frequently make errors without realising,
and hardware can fail at any time. Frequently, error handling routines can take
a programmer as long, or even longer, to write and test as the program to
perform the task itself.

The structure for error handling can be shown in pseudocode as:

TRY

 <statements>

EXCEPT

 <statements>

ENDTRY

Here are programs in Python, VB and Java to catch an integer division by zero
exception.

Python

def division(firstNumber, secondNumber):

 try:

 myAnswer = firstNumber // secondNumber

 print('Answer ', myAnswer)

 except:

 print('Divide by zero')

division(12, 3)

division(10, 0)

integer division //

VB

Module Module1

Public Sub Main()

 division(12, 3)

 division(10, 0)

 Console.ReadKey()

End Sub

Sub division(ByVal firstNumber As Integer, ByVal secondNumber As Integer)

 Dim myAnswer As Integer

 Try

 myAnswer = firstNumber \ secondNumber

 Console.WriteLine("Answer " & myAnswer)

integer division \

457591_20_CI_AS & A_Level_CS_498-540.indd 536 26/04/19 9:05 AM

537

20

20.2 File processing and exception handling

 Catch e As DivideByZeroException

 Console.WriteLine("Divide by zero")

 End Try

End Sub

End Module

Java

public class Division {

 public static void main(String[] args) {

 division(12, 3);

 division(10, 0);

 }

 public static void division(int firstNumber, int secondNumber){

 int myAnswer;

 try {

 myAnswer = firstNumber / secondNumber;

 System.out.println("Answer " + myAnswer);

 }

 catch (ArithmeticException e){

 System.out.println("Divide by zero");

 }

 }

}

Automatic Integer division because
there are integers on both sides of
the division operator

ACTIVITY	20N

In the programming language of your choice, write a program to check that a
value input is an integer.

ACTIVITY	20O

In the programming language of your choice, extend the file handling
programs you wrote in Section 20.2.1 to use exception handling to ensure
that the files used exist and allow for the condition unexpected end of file.

457591_20_CI_AS & A_Level_CS_498-540.indd 537 26/04/19 9:05 AM

538

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

End of chapter
questions

1 A declarative programming language is used to represent the following facts and
rules:

01 male(ahmed).

02 male(raul).

03 male(ali).

04 male(philippe).

05 female(aisha).

06 female(gina).

07 female(meena).

08 parent(ahmed, raul).

09 parent(aisha, raul).

10 parent(ahmed, philippe).

11 parent(aisha, philippe).

12 parent(ahmed, gina).

13 parent(aisha, gina).

14 mother(A, B) IF female(A) AND parent(A, B).

These clauses have the following meaning:

Clause Explanation
01 Ahmed is male

05 Aisha is female

08 Ahmed is a parent of Raul

14 A is the mother of B if A is female and A is a parent of B

a) More facts are to be included.

 Ali and Meena are the parents of Ahmed.

 Write the additional clauses to record this. [2]

 15 ………

 16 ………

b) Using the variable C, the goal

parent(ahmed, C)

 returns

C = raul, philippe, gina

 Write the result returned by the goal [2]

parent(P, gina)

P = ………

c) Use the variable M to write the goal to find the mother of Gina. [1]

457591_20_CI_AS & A_Level_CS_498-540.indd 538 26/04/19 9:05 AM

539

20

20.2 File processing and exception handling

d) Write the rule to show that F is the father of C. [2]

father(F, C)

IF…………………………………………………………………………

e) Write the rule to show that X is a brother of Y. [4]

brother(X, Y)

IF…………………………………………………………………………

Cambridge International AS & A Level Computer Science 9608

Paper 42 Q2 November 2015

2 A college has two types of student: full-time and part-time.

 All students have their name and date of birth recorded.

 A full-time student has their address and telephone number recorded.

 A part-time student attends one or more courses. A fee is charged for each
course. The number of courses a part-time student attends is recorded, along
with the total fee and whether or not the fee has been paid.

 The college needs a program to process data about its students. The program will
use an object-oriented programming language.

a) Copy and complete the class diagram showing the appropriate properties and
methods. [7]

Student

StudentName : STRING

...

...

...

ShowStudentName ()

...

...

...

FullTimeStudent PartTimeStudent

Address : STRING

...............................

...............................

...............................

...............................

...............................

...............................

...............................

Constructor ()

showAddress ()

...............................

...............................

...............................

...............................

...............................

...............................

b) Write program code:

i) for the class definition for the superclass Student. [2]

➔

457591_20_CI_AS & A_Level_CS_498-540.indd 539 26/04/19 9:05 AM

540

20

20
 F

u
r

th
e

r
 p

r
o

g
r

a
m

m
in

g

ii) for the class definition for the subclass FullTimeStudent. [3]

iii) to create a new instance of FullTimeStudent with:

– identifier: NewStudent

– name: A. Nyone

– date of birth: 12/11/1990

– telephone number: 099111 [3]

Cambridge International AS & A Level Computer Science 9608
Paper 42 Q3 November 2015

3 a) When designing and writing program code, explain what is meant by:

– an exception

– exception handling. [3]

b) A program is to be written to read a list of exam marks from an existing text
file into a 1D array.

 Each line of the file stores the mark for one student.

 State three exceptions that a programmer should anticipate for this program. [3]

c) The following pseudocode is to read two numbers.

01 DECLARE Num1 : INTEGER

02 DECLARE Num2 : INTEGER

03 DECLARE Answer : INTEGER

04 TRY

05 OUTPUT "First number..."

06 INPUT Num1

07 OUTPUT "Second number..."

08 INPUT Num2

09 Answer ← Num1 / (Num2 − 6)
10 OUTPUT Answer

11 EXCEPT ThisException : EXCEPTION

12 OUTPUT ThisException.Message

13 FINALLY

14 // remainder of the program follows

29

30 ENDTRY

 The programmer writes the corresponding program code.

 A user inputs the number 53 followed by 6. The following output is produced:

First number...53

Second number...6

Arithmetic operation resulted in an overflow

i) State the pseudocode line number which causes the exception
to be raised. [1]

ii) Explain the purpose of the pseudocode on lines 11 and 12. [3]

Cambridge International AS & A Level Computer Science 9608
Paper 42 Q5(b)–(d) June 2016

457591_20_CI_AS & A_Level_CS_498-540.indd 540 26/04/19 9:05 AM

541

G
lo

ssa
r

y

Glossary

A* algorithm – an algorithm that finds the shortest route
between nodes or vertices but uses an additional heuristic
approach to achieve better performance than Dijkstra’s
algorithm.

Abnormal test data – test data that should be rejected by a program.

Absolute addressing – mode of addressing in which the
contents of the memory location in the operand are used.

Abstract data type (ADT) – a collection of data and a set of
operations on that data.

Abstraction – the process of extracting information that is
essential, while ignoring what is not relevant, for the
provision of a solution.

Acceptance testing – the testing of a completed program to
prove to the customer that it works as required.

Access rights (data security) – use of access levels to ensure
only authorised users can gain access to certain data.

Access rights (database) – the permissions given to database
users to access, modify or delete data.

Accumulator – temporary general purpose register which stores
numerical values at any part of a given operation.

Acknowledgement – message sent to a receiver to indicate that
data has been received without error.

ACM – Association for Computing Machinery.

Adaptive maintenance – the alteration of a program to perform
new tasks.

Address bus – carries the addresses throughout the computer
system.

Addressing modes – different methods of using the operand
part of a machine code instruction as a memory address.

Algorithm – an ordered set of steps to be followed in the
completion of a task.

Alpha testing – the testing of a completed or nearly completed
program in-house by the development team.

Analogue to digital converter (ADC) – needed to convert
analogue data (read from sensors, for example) into a form
understood by a computer.

Analysis – part of the program development lifecycle; a process
of investigation, leading to the specification of what a
program is required to do.

Anti-spyware software – software that detects and removes
spyware programs installed illegally on a user’s computer
system.

Antivirus software – software that quarantines and deletes files
or programs infected by a virus (or other malware); it can be
run in the background or initiated by the user.

Append – file access mode in which data can be added to the end
of a file.

Argument – the value passed to a procedure or function.

Arithmetic shift – the sign of the number is preserved.

Arithmetic-logic unit (ALU) – component in the processor
which carries out all arithmetic and logical operations.

ARPAnet – Advanced Research Projects Agency Network.

Array – a data structure containing several elements of the same
data type.

Artificial intelligence (AI) – machine or application which
carries out a task that requires some degree of intelligence
when carried out by a human counterpart.

Artificial neural networks – networks of interconnected nodes
based on the interconnections between neurons in the
human brain; the system is able to think like a human using
these neural networks, and its performance improves with
more data.

ASCII code – coding system for all the characters on a keyboard
and control codes.

Assembler – a computer program that translates programming
code written in assembly language into machine code;
assemblers can be one pass or two pass.

Assembly language – a low-level chip/machine specific
programming language that uses mnemonics.

Asymmetric encryption – encryption that uses public keys
(known to everyone) and private keys (secret keys).

Asynchronous serial data transmission – serial refers to a
single wire being used to transmit bits of data one after the
other; asynchronous refers to a sender using its own clock/
timer device rather sharing the same clock/timer with the
recipient device.

Attribute (database) – an individual data item stored for an
entity; for example, for a person, attributes could include
name, address, date of birth.

Attributes (class) – the data items in a class.

Audio compression – method used to reduce the size of a sound
file using perceptual music shaping.

Authentication – a way of proving somebody or something is
who or what they claim to be.

Automatic repeat request (ARQ) – a type of verification check.

Back propagation – method used in artificial neural networks
to calculate error gradients so that actual node/neuron
weightings can be adjusted to improve the performance of
the model.

Back-up utility – software that makes copies of files on another
portable storage device.

Backus-Naur form (BNF) notation – a formal method of
defining the grammatical rules of a programming language.

Bad sector – a faulty sector on an HDD which can be soft or
hard.

Base case – a terminating solution to a process that is not
recursive.

BCS – British Computer Society.

Belady’s anomaly – phenomenon which means it is possible to
have more page faults when increasing the number of page
frames.

Beta testing – the testing of a completed program by a small
group of users before it is released.

Bidirectional – used to describe a bus in which bits can travel
in both directions.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 541 25/04/19 2:17 PM

542

G
lo

ss
a

r
y Big O notation – a mathematical notation used to describe the

performance or complexity of an algorithm.

Binary – base two number system based on the values 0 and 1 only.

Binary coded decimal (BCD) – number system that uses 4 bits
to represent each denary digit.

Binary file – a file that does not contain text only; the file is
machine-readable but not human-readable.

Binary floating-point number – a binary number written in the
form M × 2E (where M is the mantissa and E is the exponent).

Binary search – a method of searching an ordered list by testing
the value of the middle item in the list and rejecting the half
of the list that does not contain the required value.

Binary tree – a hierarchical data structure in which each parent
node can have a maximum of two child nodes.

Binder 3D printing – 3D printing method that uses a two-stage
pass; the first stage uses dry powder and the second stage
uses a binding agent.

Biometrics – use of unique human characteristics to identify a
user (such as fingerprints or face recognition).

BIOS – basic input/output system.

Birefringence – a reading problem with DVDs caused by
refraction of laser light into two beams.

Bit – abbreviation for binary digit.

Bit depth – number of bits used to represent the smallest unit
in, for example, a sound or image file; the larger the bit
depth, the better the quality of the sound or colour image.

Bit rate – number of bits per second that can be transmitted
over a network; it is a measure of the data transfer rate over
a digital telecoms network.

Bit streaming – contiguous sequence of digital bits sent over a
network/internet.

Bit-map image – system that uses pixels to make up an image.

BitTorrent – protocol used in peer-to-peer networks when
sharing files between peers.

Black-box testing – a method of testing a program that tests a
module’s inputs and outputs.

Block chaining – form of encryption, in which the previous
block of ciphertext is XORed with the block of plaintext and
then encrypted thus preventing identical plaintext blocks
producing identical ciphertext.

Block cipher – the encryption of a number of contiguous bits in
one go rather than one bit at a time.

Bluetooth – wireless connectivity that uses radio waves in the
2.45 GHz frequency band.

Boolean algebra – a form of algebra linked to logic circuits and
based on TRUE and FALSE.

Bootstrap – a small program that is used to load other programs
to ‘start up’ a computer.

Boundary test data – test data that is on the limit of that
accepted by a program or data that is just outside the limit
of that rejected by a program.

Breakpoint – a deliberate pause in the execution of a program
during testing so that the contents of variables, registers,
and so on can be inspected to aid debugging.

Bridge – device that connects LANs which use the same protocols.

Broadcast – communication where pieces of data are sent from
sender to receiver.

Bubble sort – a method of sorting data in an array into
alphabetical or numerical order by comparing adjacent items
and swapping them if they are in the wrong order.

Buffering – store which holds data temporarily.

Burst time – the time when a process has control of the CPU.

Bus network topology – network using single central cable in
which all devices are connected to this cable; data can only
travel in one direction and only one device is allowed to
transmit at a time.

By reference – a method of passing a parameter to a procedure
in which the value of the variable can be changed by the
procedure.

By value – a method of passing a parameter to a procedure in
which the value of the variable cannot be changed by the
procedure.

Cache memory – a high speed auxiliary memory which permits
high speed data transfer and retrieval.

Candidate key – an attribute or smallest set of attributes in a
table where no tuple has the same value.

Capacitive – type of touch screen technology based on glass
layers forming a capacitor; fingers touching the screen cause
a change in the electric field.

Certificate authority (CA) – commercial organisation used to
generate a digital certificate requested by website owners or
individuals.

Character set – a list of characters that have been defined by
computer hardware and software; it is necessary to have
a method of coding, so that the computer can understand
human characters.

Chatbot – computer program set up to simulate conversational
interaction between humans and a website.

Check digit – additional digit appended to a number to check if
entered data is error-free.

Checksum – verification method used to check if data
transferred has been altered or corrupted; calculated from
the block of data to be sent.

Ciphertext – the product when plaintext is put through an
encryption algorithm.

Circuit switching – method of transmission in which a dedicated
circuit/channel lasts throughout the duration of the
communication.

CISC – complex instruction set computer.

Class – a template defining the methods and data of a certain
type of object.

Classless inter-domain routing (CIDR) – increases IPv4
flexibility by adding a suffix to the IP address, such as
200.21.100.6/18.

CLI – command line interface.

Client-server – network that uses separate dedicated servers
and specific client work stations; all client computers are
connected to the dedicated servers.

Clock cycle – clock speeds are measured in terms of GHz; this is
the vibrational frequency of the clock which sends out pulses
along the control bus; a 3.5 GHZ clock cycle means 3.5 billion
clock cycles a second.

Close – file-processing operation; closes a file so it can no
longer be used by a program.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 542 25/04/19 2:17 PM

543

G
lo

ssa
r

y

Cloud storage – method of data storage where data is stored on
off-site servers.

Cluster – a number of computers (containing SIMD processors)
networked together.

CMOS – complementary metal-oxide semiconductor.

Coaxial cable – cable made up of central copper core, insulation,
copper mesh and outer insulation.

Code generation – the third stage in the process of compilation;
this stage produces an object program.

Coding – part of the program development lifecycle; the writing
of the program or suite of programs.

Collision – situation in which two messages/data from different
sources are trying to transmit along the same data channel.

Colour depth – number of bits used to represent the colours in a
pixel, e.g. 8 bit colour depth can represent 28 = 256 Colours.

Combination circuit – circuit in which the output depends
entirely on the input values.

Compiler – a computer program that translates a source program
written in a high-level language to machine code or p-code,
object code.

Composite data type – a data type constructed using several of the
basic data types available in a particular programming language.

Composite key – a set of attributes that form a primary key to
provide a unique identifier for a table.

Conflict – situation in which two devices have the same IP address.

Constant – a named value that cannot change during the
execution of a program.

Constructor – a method used to initialise a new object.

Containment (aggregation) – process by which one class can
contain other classes.

Context switching – procedure by which, when the next process
takes control of the CPU, its previous state is reinstated or
restored.

Contiguous – items next to each other.

Control – to automatically take readings from a device, then use
the data from those readings to adjust the device.

Control bus – carries signals from control unit to all other
computer components.

Control unit – ensures synchronisation of data flow and
programs throughout the computer by sending out control
signals along the control bus.

Core – a unit made up of ALU, control unit and registers which is
part of a CPU; a CPU may contain a number of cores.

Corrective maintenance – the correction of any errors that
appear during use.

Cross-coupling – interconnection between two logic gates
which make up a flip-flop.

CSMA/CD – carrier sense multiple access with collision detection;
a method used to detect collisions and resolve the issue.

Culture – the attitudes, values and practices shared by a group
of people/society.

Current instruction register (CIR) – this is a register used to
contain the instruction which is currently being executed or
decoded.

Cyclic shift – no bits are lost; bits shifted out of one end of the
register are introduced at the other end of the register.

Data bus – allows data to be carried from processor to memory
(and vice versa) or to and from input/output devices.

Data definition language (DDL) – a language used to create,
modify and remove the data structures that form a database.

Data dictionary – a set of data that contains metadata (data
about other data) for a database.

Data hiding – technique which protects the integrity of an
object by restricting access to the data and methods within
that object.

Data integrity – the accuracy, completeness and consistency of
data.

Data management – the organisation and maintenance of data
in a database to provide the information required.

Data manipulation language (DML) – a language used to add,
modify, delete and retrieve the data stored in a relational
database.

Data modelling – the analysis and definition of the data
structures required in a database and to produce a data
model.

Data privacy – the privacy of personal information, or other
information stored on a computer, that should not be
accessed by unauthorised parties.

Data protection laws – laws which govern how data should be
kept private and secure.

Data redundancy – situation in which the same data is stored
on several servers in case of maintenance or repair.

Data security – methods taken to prevent unauthorised access
to data and to recover data if lost or corrupted.

Data type – a classification attributed to an item of data, which
determines the types of value it can take and how it can be
used.

Database – a structured collection of items of data that can be
accessed by different applications programs.

Database management system (DBMS) – systems software for
the definition, creation and manipulation of a database.

Debugging – the process of finding logic errors in a computer
program by running or tracing the program.

Declarative programming – statements of facts and rules
together with a mechanism for setting goals in the form of
a query.

Decomposition – the process of breaking a complex problem
into smaller parts.

Deep learning – machines that think in a way similar to the
human brain; they handle huge amounts of data using
artificial neural networks.

Design – part of the program development lifecycle; it uses the
program specification from the analysis stage to show how
the program should be developed.

Destructor – a method that is automatically invoked when an
object is destroyed.

Developer interface – feature of a DBMS that provides
developers with the commands required for definition,
creation and manipulation of a database.

Device driver – software that communicates with the operating
system and translates data into a format understood by the
device.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 543 4/30/19 8:05 AM

544

G
lo

ss
a

r
y Dictionary – an abstract data type that consists of pairs, a key

and a value, in which the key is used to find the value.

Digest –a fixed-size numeric representation of the contents of
a message produced from a hashing algorithm; this can be
encrypted to form a digital signature.

Digital certificate – an electronic document used to prove the
identity of a website or individual; it contains a public key
and information identifying the website owner or individual;
issued by a CA.

Digital rights management (DRM) – used to control the access
to copyrighted material.

Digital signature – electronic way of validating the authenticity
of digital documents (that is, making sure they have not
been tampered with during transmission) and also proof that
a document was sent by a known user.

Digital to analogue converter (DAC) – needed to convert digital
data into electric currents that can drive motors, actuators
and relays, for example.

Dijkstra’s algorithm – an algorithm that finds the shortest path
between two nodes or vertices in a graph/network.

Direct 3D printing – 3D printing technique where print head
moves in the x, y and z directions. Layers of melted material
are built up using nozzles like an inkjet printer.

Direct access – a method of file access in which a record can be
physically found in a file without physically reading other
records.

Direct addressing – mode of addressing in which the contents
of the memory location in the operand are used; same as
absolute addressing.

Direct memory access (DMA) controller – device that allows
certain hardware to access RAM independently of the CPU.

Dirty – term used to describe a page in memory that has been
modified.

Disk compression – software that compresses data before
storage on an HDD.

Disk content analysis software – utility that checks disk drives
for empty space and disk usage by reviewing files and folders.

Disk defragmenter – utility that reorganises the sectors on
a hard disk so that files can be stored in contiguous data
blocks.

Disk formatter – utility that prepares a disk to allow data/files
to be stored and retrieved.

Disk thrashing – problem resulting from use of virtual memory;
excessive swapping in and out of virtual memory leads to
a high rate of hard disk read/write head movements thus
reducing processing speed.

DNS cache poisoning – altering IP addresses on a DNS server by
a ‘pharmer’ or hacker with the intention of redirecting a user
to their fake website.

Domain name service (DNS) – (also known as domain name
system) gives domain names for internet hosts and is a
system for finding IP addresses of a domain name.

Dry run – a method of testing a program that involves working
through a program or module from a program manually.

Dual core – a CPU containing two cores.

Dual layering – used in DVDs; uses two recording layers.

Dynamic link file (DLL) – a library routine that can be linked to
another program only at the run time stage.

Dynamic RAM (DRAM) – type of RAM chip that needs to be
constantly refreshed.

Eavesdropper – a person who intercepts data being transmitted.

Electronically erasable programmable read-only memory
(EEPROM) – a read-only (ROM) chip that can be modified by
the user which can then be erased and written to repeatedly
using pulsed voltages.

Emulation – the use of an app/device to imitate the behaviour
of another program/device; for example, running an OS on a
computer which is not normally compatible.

Encapsulation – process of putting data and methods together
as a single unit, a class.

Encryption – the use of encryption keys to make data
meaningless without the correct decryption key.

Entity – anything that can have data stored about it; for
example, a person, place, event, thing.

Entity-relationship (E-R) model or E-R diagram – a graphical
representation of a database and the relationships between
the entities.

Enumerated data type – a non-composite data type defined by
a given list of all possible values that has an implied order.

Erasable PROM (EPROM) – type of ROM that can be programmed
more than once using ultraviolet (UV) light.

Ethernet – protocol IEEE 802.3 used by many wired LANs.

Ethical hacking – hacking used to test the security and
vulnerability of a computer system; the hacking is carried
out with the permission of the computer system owner, for
example, to help a company identify risks associated with
malicious hacking of their computer systems.

Ethics – moral principles governing an individual’s or
organisation’s behaviour, such as a code of conduct.

Even parity – binary number with an even number of 1-bits.

Exception – an unexpected event that disrupts the execution of
a program.

Exception handling – the process of responding to an exception
within the program so that the program does not halt
unexpectedly.

Exponent – the power of 2 that the mantissa (fractional part) is
raised to in a floating-point number.

Extreme test data – test data that is on the limit of that
accepted by a program.

Fact – a ‘thing’ that is known.

False positive – a file or program identified by a virus checker
as being infected but the user knows this cannot be correct.

Fetch-execute cycle – a cycle in which instructions and data are
fetched from memory and then decoded and finally executed.

Fibre optic cable – cable made up of glass fibre wires which use
pulses of light (rather than electricity) to transmit data.

Field – a column in a table in a database.

File – a collection of data stored by a computer program to be
used again.

File access – the method used to physically find a record in the
file.

File organisation – the way that records of data are physically
stored in a file, including the structure and ordering of the
records.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 544 25/04/19 2:17 PM

545

G
lo

ssa
r

y

File server – a server on a network where central files and other
data are stored; they can be accessed by a user logged onto
the network.

Finite state machine (FSM) – a mathematical model of a
machine that can be in one state of a fixed set of possible
states; one state is changed to another by an external input;
this is known as a transition.

Firewall – software or hardware that sits between a computer
and external network which monitors and filters all incoming
and outgoing activities.

First in first out (FIFO) page replacement – page replacement
that keeps track of all pages in memory using a queue
structure; the oldest page is at the front of the queue and is
the first to be removed when a new page is added.

First normal form (1NF) – the status of a relational database in
which entities do not contain repeated groups of attributes.

Flag – indicates the status of a bit in the status register; for
example, N = 1 indicates the result of an addition gives a
negative value.

Flash memory – a type of EEPROM, particularly suited to use in
drives such as SSDs, memory cards and memory sticks.

Flip-flop circuits – electronic circuits with two stable
conditions using sequential circuits.

Flowchart – a diagrammatic representation of an algorithm.

Foreign key – a set of attributes in one table that refer to the
primary key in another table.

Fragmented – storage of data in non-consecutive sectors; for
example, due to editing and deletion of old data.

Frame rate – number of video frames that make up a video per
second.

Frames – fixed-size physical memory blocks.

Free Software Foundation – organisation promoting the free
distribution of software, giving users the freedom to run,
copy, change or adapt the coding as needed.

Freeware – software that can be downloaded free of charge;
however, it is covered by the usual copyright laws and cannot
be modified; nor can the code be used for another purpose.

FTP – file transfer protocol.

Full adder circuit – two half adders combined to allow the sum
of several binary bits.

Function – a set of statements that can be grouped together
and easily called in a program whenever required, rather
than repeating all of the statements each time. Unlike a
procedure, a function always returns a value.

Gateway – device that connects LANs which use different
protocols.

General case – a solution to a process that is recursively defined.

Getter – a method that gets the value of a property.

Graph – a non-linear data structure consisting of nodes and edges.

Gray codes – ordering of binary numbers such that successive
numbers differ by one bit value only, for example, 00 01 11 10.

Guest OS – an OS running on a virtual machine.

GUI – graphical user interface.

Hacking – illegal access to a computer system without the
owner’s permission.

Half adder circuit – carries out binary addition on two bits
giving sum and carry.

Handshake – the process of initiating communication between
two devices; this is initiated by one device sending a
message to another device requesting the exchange of data.

Hard disk drive (HDD) – type of magnetic storage device that
uses spinning disks.

Hardware management – part of the operating system that
controls all input/output devices connected to a computer
(made up of sub-management systems such as printer
management, secondary storage management, and so on).

Hashing algorithm (cryptography) – a function which
converts a data string into a numeric string which is used in
cryptography.

Hashing algorithm (file access) – a mathematical formula used
to perform a calculation on the key field of the record; the
result of the calculation gives the address where the record
should be found.

HCI – human–computer interface.

Header (procedure or function) – the first statement in the
definition of a procedure or function, which contains its
name, any parameters passed to it, and, for a function, the
type of the return value.

Header (data packet) – part of a data packet containing key
data such as destination IP address, sequence number, and
so on.

Heuristic – method that employs a practical solution (rather
than a theoretical one) to a problem; when applied to
algorithms this includes running tests and obtaining results
by trial and error.

Heuristic checking – checking of software for behaviour that
could indicate a possible virus.

Hexadecimal – a number system based on the value 16 (uses the
denary digits 0 to 9 and the letters A to F).

High-bandwidth digital copy protection (HDCP) – part of HDMI
technology which reduces risk of piracy of software and
multimedia.

High-definition multimedia interface (HDMI) – type of port
connecting devices to a computer.

Hop number/hopping – number in the packet header used
to stop packets which never reach their destination from
‘clogging up’ routes.

Host – a computer or device that can communicate with other
computers or devices on a network.

Host OS – an OS that controls the physical hardware.

Host-to-host – a protocol used by TCP when communicating
between two devices.

HTTP – hypertext transfer protocol.

Hub – hardware used to connect together a number of devices to
form a LAN; directs incoming data packets to all devices on
the network (LAN).

Hybrid network – network made up of a combination of other
network topologies.

HyperText Mark-up Language (HTML) – used to design web
pages and to write http(s) protocols, for example.

Hypervisor – virtual machine software that creates and runs
virtual machines.

Icon – small picture or symbol used to represent, for example, an
application on a screen.

Identifier – a unique name applied to an item of data.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 545 25/04/19 2:17 PM

546

G
lo

ss
a

r
y IEEE – Institute of Electrical and Electronics Engineers.

Image resolution – number of pixels that make up an image;
for example, an image could contain 4096 × 3192 pixels
(13 074 432 pixels in total).

IMAP – internet message access protocol.

Immediate access store (IAS) – holds all data and programs
needed to be accessed by the control unit.

Immediate addressing – mode of addressing in which the value
of the operand only is used.

Imperative programming – programming paradigm in which the
steps required to execute a program are set out in the order
they need to be carried out.

In demand paging – a form of data swapping where pages of
data are not copied from HDD/SSD into RAM until they are
actually required.

Index (database) – a data structure built from one or more
columns in a database table to speed up searching for data.

Index (array) – a numerical indicator of an item of data’s
position in an array.

Indexed addressing – mode of addressing in which the contents
of the memory location found by adding the contents of the
index register (IR) to the address of the memory location in
the operand are used.

Indirect addressing – mode of addressing in which the contents
of the contents of the memory location in the operand are
used.

Inheritance – process in which the methods and data from one
class, a superclass or base class, are copied to another class,
a derived class.

Insertion sort – a method of sorting data in an array into
alphabetical or numerical order by placing each item in turn
in the correct position in the sorted list.

Instance – An occurrence of an object during the execution of a
program.

Instruction – a single operation performed by a CPU.

Instruction set – the complete set of machine code instructions
used by a CPU.

Integrated development environment (IDE) – a suite of
programs used to write and test a computer program written
in a high-level programming language.

Integration testing – a method of testing a program that tests
combinations of program modules that work together.

Intellectual property rights – rules governing an individual’s
ownership of their own creations or ideas, prohibiting the
copying of, for example, software without the owner’s
permission.

Internet – massive network of networks, made up of computers
and other electronic devices; uses TCP/IP communication
protocols.

Internet protocol (IP) – uses IPv4 or IPv6 to give addresses to
devices connected to the internet.

Internet service provider (ISP) – company which allows a user
to connect to the internet; they will usually charge a monthly
fee for the service they provide.

Interpreter – a computer program that analyses and executes a
program written in a high-level language line by line.

Interrupt – signal sent from a device or software to a processor
requesting its attention; the processor suspends all
operations until the interrupt has been serviced.

Interrupt dispatch table (IDT) – data structure used to
implement an interrupt vector table.

Interrupt priority – all interrupts are given a priority so that
the processor knows which need to be serviced first and
which interrupts are to be dealt with quickly.

Interrupt priority levels (IPL) – values given to interrupts
based on values 0 to 31.

Interrupt service routine (ISR) or interrupt handler – software
which handles interrupt requests (such as ‘printer out of
paper’) and sends the request to the CPU for processing.

IPv4 – IP address format which uses 32 bits, such as 200.21.100.6.

IPv6 – newer IP address format which uses 128 bits, such as
A8F0:7FFF:F0F1:F000:3DD0: 256A:22FF:AA00.

Iterative model – a type of program development cycle in which
a simple subset of the requirements is developed, then
expanded or enhanced, with the development cycle being
repeated until the full system has been developed.

JavaScript – object-orientated (or scripting) programming
language used mainly on the web; used to enhance HTML
pages.

JPEG – Joint Photographic Expert Group; a form of lossy file
compression based on the inability of the eye to spot certain
colour changes and hues.

Karnaugh maps (K-maps) – a method used to simplify logic
statements and logic circuits; uses Gray codes.

Kernel – the core of an OS with control over process
management, memory management, interrupt handling,
device management and I/O operations.

Key distribution problem – security issue inherent in symmetric
encryption arising from the fact that, when sending the
secret key to a recipient, there is the risk that the key can be
intercepted by an eavesdropper/hacker.

Labelled data – data where we know the target answer and the
data object is fully recognised.

LAN – local area network (network covering a small area such as
a single building).

Latency – the lag in a system; for example, the time to find a
track on a hard disk, which depends on the time taken for the
disk to rotate around to its read-write head.

Least recently used (LRU) page replacement – page
replacement algorithm in which the page which has not been
used for the longest time is replaced.

Leech – a peer with negative feedback from swarm members.

Left shift – bits are shifted to the left.

Legal – relating to, or permissible by, law.

Lexical analysis – the first stage in the process of compilation;
removes unnecessary characters and tokenises the program.

Library program – a program stored in a library for future use by
other programmers.

Library routine – a tested and ready-to-use routine available in
the development system of a programming language that can
be incorporated into a program.

Linear search – a method of searching in which each element of
an array is checked in order.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 546 25/04/19 2:17 PM

547

G
lo

ssa
r

y

Linked list – a list containing several items in which each item
in the list points to the next item in the list.

Logic circuit – formed from a combination of logic gates and
designed to carry out a particular task; the output from a
logic circuit will be 0 or 1.

Logic error – an error in the logic of a program.

Logic gates – electronic circuits which rely on ‘on/off’ logic; the
most common ones are NOT, AND, OR, NAND, NOR and XOR.

Logical memory – the address space that an OS perceives to be
main storage.

Logical schema – a data model for a specific database that is
independent of the DBMS used to build that database.

Logical shift – bits shifted out of the register are replaced with
zeros.

Lossless file compression – file compression method where the
original file can be restored following decompression.

Lossy file compression – file compression method where
parts of the original file cannot be recovered during
decompression; some of the original detail is lost.

Low level scheduling – method by which a system assigns a
processor to a task or process based on the priority level.

Lower bound – the index of the first element in an array, usually
0 or 1.

Low-level programming – programming instructions that use
the computer’s basic instruction set.

Lurker – user/client that downloads files but does not supply
any new content to the community.

Machine code – the programming language that the CPU uses.

Machine learning – systems that learn without being
programmed to learn.

Maintenance – part of the program development lifecycle; the
process of making sure that the program continues to work
during use.

Malicious hacking – hacking done with the sole intent of
causing harm to a computer system or user (for example,
deletion of files or use of private data to the hacker’s
advantage).

Malware – malicious software that seeks to damage or gain
unauthorised access to a computer system.

MAN – metropolitan area network (network which is larger than
a LAN but smaller than a WAN; can cover several buildings in
a single city, such as a university campus).

Mantissa – the fractional part of a floating point number.

Mask – a number that is used with the logical operators AND, OR
or XOR to identify, remove or set a single bit or group of bits
in an address or register.

Massively parallel computers – the linking together of several
computers effectively forming one machine with thousands
of processors.

Memory cache – high speed memory external to processor which
stores data which the processor will need again.

Memory dump – contents of a computer memory output to
screen or printer.

Memory management – part of the operating system that
controls the main memory.

Memory optimisation – function of memory management that
determines how memory is allocated and deallocated.

Memory organisation – function of memory management that
determines how much memory is allocated to an application.

Memory protection – function of memory management that
ensures two competing applications cannot use same memory
locations at the same time.

Mesh network topology – interlinked computers/devices,
which use routing logic so data packets are sent from
sending stations to receiving stations only by the shortest
route.

Metadata – a set of data that describes and gives information
about other data.

Method – a programmed procedure that is defined as part of a
class.

MIMD – multiple instruction multiple data, computer
architecture which uses many processors, each of which can
use a separate data source.

MIME – multi-purpose internet mail extension; a protocol that
allows email attachments containing media files as well as
text to be sent.

MISD – multiple instruction single data, computer architecture
which uses many processors but the same shared data source.

Modem – modulator demodulator; device which converts digital
data to analogue data (to be sent down a telephone wire);
conversely it also converts analogue data to digital data
(which a computer can process).

Modulo-11 – method used to calculate a check digit based on
modulus division by 11.

Monitor – to automatically take readings from a device.

Morality – an understanding of the difference between right and
wrong, often founded in personal beliefs.

MP3/MP4 files – file compression method used for music and
multimedia files.

Multitasking – function allowing a computer to process more
than one task/process at a time.

NIC – network interface card; these cards allow devices to
connect to a network/internet (usually associated with a
MAC address set at the factory).

Node – device connected to a network (it can be a computer,
storage device or peripheral device).

Node or vertex – fundamental unit from which graphs are
formed (nodes and vertices are the points where edges
converge).

Non-composite data type – a data type that does not reference
any other data types.

Non-preemptive – type of scheduling in which a process
terminates or switches from a running state to a waiting state.

Normal test data – test data that should be accepted by a
program.

Normalisation (database) – the process of organising data
to be stored in a database into two or more tables and
relationships between the tables, so that data redundancy is
minimised.

Normalisation (floating-point) – a method to improve the
precision of binary floating-point numbers; positive numbers
should be in the format 0.1 and negative numbers in the
format 1.0.

Object – an instance of a class that is self-contained and
includes data and methods.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 547 25/04/19 2:17 PM

548

G
lo

ss
a

r
y Object code – a computer program after translation into machine

code.

Object-oriented programming (OOP) – a programming
methodology that uses self-contained objects, which contain
programming statements (methods) and data, and which
communicate with each other.

Odd parity – binary number with an odd number of 1-bits.

On demand (bit streaming) – system that allows users to
stream video or music files from a central server as and
when required without having to save the files on their own
computer/tablet/phone.

One’s complement – each binary digit in a number is reversed to
allow both negative and positive numbers to be represented.

Opcode – short for operation code, the part of a machine code
instruction that identifies the action the CPU will perform.

Open – file-processing operation; opens a file ready to be used
in a program.

Open Source Initiative – organisation offering the same
freedoms as the Free Software Foundation, but with more
of a focus on the practical consequences of the four shared
rules, such as more collaborative software development.

Operand – the part of a machine code instruction that identifies
the data to be used by the CPU.

Operating system – software that provides an environment
in which applications can run and provides an interface
between hardware and human operators.

Optical storage – CDs, DVDs and Blu-ray® discs that use laser
light to read and write data.

Optimal page replacement – page replacement algorithm that
looks forward in time to see which frame to replace in the
event of a page fault.

Optimisation (compilation) – the fourth stage in the process of
compilation; the creation of an efficient object program.

Optimisation (memory management) – function of memory
management deciding which processes should be in main
memory and where they should be stored.

Organic LED (OLED) – uses movement of electrons between
cathode and anode to produce an on-screen image; generates
its own light so no back lighting required.

Overclocking – changing the clock speed of a system clock to a
value higher than the factory/recommended setting.

Overflow – the result of carrying out a calculation which produces
a value too large for the computer’s allocated word size.

Overloading – feature of object-oriented programming that
allows a method to be defined more than once in a class, so
it can be used in different situations.

Packet – a message/data is split up into smaller groups of bits
for transmission over a network.

Packet switching – method of transmission where a message
is broken into packets which can be sent along paths
independently from each other.

Page fault – occurs when a new page is referred but is not yet in
memory.

Page replacement – occurs when a requested page is not in
memory and a free page cannot be used to satisfy allocation.

Page table – table that maps logical addresses to physical
addresses; it contains page number, flag status, frame
address and time of entry.

Pages – fixed-size logical memory blocks.

Paging – form of memory management which divides up physical
memory and logical memory into fixed-size memory blocks.

PAN – network that is centred around a person or their
workspace.

Parallel processing – operation which allows a process to be
split up and for each part to be executed by a different
processor at the same time.

Parameter – a variable applied to a procedure or function that
allows one to pass in a value for the procedure to use.

Parity bit – an extra bit found at the end of a byte that is set
to 1 if the parity of the byte needs to change to agree with
sender/receiver parity protocol.

Parity block – horizontal and vertical parity check on a block of
data being transferred.

Parity byte – additional byte sent with transmitted data to
enable vertical parity checking (as well as horizontal parity
checking) to be carried out.

Parity check – method used to check if data has been
transferred correctly; uses even or odd parity.

Pattern recognition – the identification of parts of a problem
that are similar and could use the same solution.

Peer – a client who is part of a peer-to-peer network/file sharing
community.

Peer-to-peer – network in which each node can share its files
with all the other nodes; each node has its own data; there is
no central server.

Perceptual music shaping – method where sounds outside
the normal range of hearing of humans, for example, are
eliminated from the music file during compression.

Perfective maintenance – the process of making improvements
to the performance of a program.

Pharming – redirecting a user to a fake website in order to
illegally obtain personal data about the user.

Phishing – legitimate-looking emails designed to trick a
recipient into giving their personal data to the sender of the
email.

PHP – hypertext processor; an HTML-embedded scripting
language used to write web pages.

Physical memory – main/primary RAM memory.

Pieces – splitting up of a file when using peer-to-peer file
sharing.

Pinching and rotating – actions by fingers on a touch screen to
carry out tasks such as move, enlarge, reduce, and so on.

Pipelining – allows several instructions to be processed
simultaneously without having to wait for previous
instructions to finish.

Piracy – the practice of using or making illegal copies of, for
example, software.

Pixel – smallest picture element that makes up an image.

Pixel density – number of pixels per square centimetre.

Plagiarism – the act of taking another person’s work and
claiming it as one’s own.

Plaintext – the original text/document/message before it is put
through an encryption algorithm.

Pointer data type – a non-composite data type that uses the
memory address of where the data is stored.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 548 25/04/19 2:17 PM

549

G
lo

ssa
r

y

Polymorphism – feature of object-oriented programming that
allows methods to be redefined for derived classes.

POP – post office protocol.

Port – external connection to a computer which allows it to
communicate with various peripheral devices; a number of
different port technologies exist.

Positive feedback – the output from a process which influences
the next input value to the process.

Post-WIMP – interfaces that go beyond WIMP and use touch
screen technology rather than a pointing device.

Preemptive – type of scheduling in which a process switches
from running state to steady state or from waiting state to
steady state.

Prettyprinting – the practice of displaying or printing well set
out and formatted source code, making it easier to read and
understand.

Primary key – a unique identifier for a table, it is a special case
of a candidate key.

Privacy – the right to keep personal information and data
secret, and for it to not be unwillingly accessed or shared
through, for example, hacking.

Private IP address – an IP address reserved for internal network
use behind a router.

Private key – encryption/decryption key which is known only to
a single user/computer.

Procedure – a set of statements that can be grouped together
and easily called in a program whenever required, rather than
repeating all of the statements each time.

Process – a program that has started to be executed.

Process control block (PCB) – data structure which contains all
the data needed for a process to run.

Process management – part of the operating system that
involves allocation of resources and permits the sharing and
exchange of data.

Process states – running, ready and blocked; the states of a
process requiring execution.

Product key – security method used in software to protect
against illegal copies or use.

Program counter (PC) – a register used in a computer to store
the address of the instruction which is currently being
executed.

Program development lifecycle – the process of developing
a program set out in five stages: analysis, design, coding,
testing and maintenance.

Program library – a library on a computer where programs and
routines are stored which can be freely accessed by other
software developers for use in their own programs.

Programmable ROM (PROM) – type of ROM chip that can be
programmed once.

Programming paradigm – a set of programming concepts.

Property – data and methods within an object that perform a
named action.

Protocol – a set of rules governing communication across a
network; the rules are agreed by both sender and recipient.

Pseudocode – a method of showing the detailed logical steps in
an algorithm, using keywords, identifiers with meaningful
names, and mathematical operators.

Public IP address – an IP address allocated by the user’s ISP to
identify the location of their device on the internet.

Public key – encryption/decryption key known to all users.

Public key infrastructure (PKI) – a set of protocols, standards
and services that allow users to authenticate each other
using digital certificates issued by a CA.

Public switched telephone network (PSTN) – network used by
traditional telephones when making calls or when sending
faxes.

Pull protocol – protocol used when receiving emails, in which
the client periodically connects to a server, checks for and
downloads new emails from a server and then closes the
connection.

Push protocol – protocol used when sending emails, in which
the client opens the connection to the server and keeps the
connection active all the time, then uploads new emails to
the server.

Quad core – a CPU containing four cores.

Quantum – a fixed time slice allocated to a process.

Quantum cryptography – cryptography based on the laws of
quantum mechanics (the properties of photons).

Quantum key distribution (QKD) – protocol which uses
quantum mechanics to securely send encryption keys over
fibre optic networks.

Quarantine – file or program identified as being infected by a
virus which has been isolated by antivirus software before it
is deleted at a later stage.

Qubit – the basic unit of a quantum of information (quantum bit).

Query processor – feature of a DBMS that processes and
executes queries written in structured query language (SQL).

Queue – a list containing several items operating on the first in,
first out (FIFO) principle.

Random access memory (RAM) – primary memory unit that can
be written to and read from.

Random file organisation – a method of file organisation in which
records of data are physically stored in a file in any available
position; the location of any record in the file is found by
using a hashing algorithm on the key field of a record.

Rapid application development (RAD) – a type of program
development cycle in which different parts of the
requirements are developed in parallel, using prototyping to
provide early user involvement in testing.

Read – file access mode in which data can be read from a file.

Read-only memory (ROM) – primary memory unit that can only
be read from.

Real-time (bit streaming) – system in which an event is
captured by camera (and microphone) connected to a
computer and sent to a server where the data is encoded; the
user can access the data ‘as it happens’ live.

Record (database) – a row in a table in a database.

Record (data type) – a composite data type comprising several
related items that may be of different data types.

Recursion – a process using a function or procedure that is
defined in terms of itself and calls itself.

Referential integrity – property of a database that does not
contain any values of a foreign key that are not matched to
the corresponding primary key.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 549 25/04/19 2:17 PM

550

G
lo

ss
a

r
y Refreshed – requirement to charge a component to retain its

electronic state.

Register – temporary component in the processor which can be
general or specific in its use; holds data or instructions as
part of the fetch-execute cycle.

Register Transfer Notation (RTN) – short hand notation to
show movement of data and instructions in a processor, can
be used to represent the operation of the fetch-execute
cycle.

Regression – statistical measure used to make predictions from
data by finding learning relationships between the inputs
and outputs.

Reinforcement learning – system which is given no training;
learns on basis of ‘reward and punishment’.

Relational database – a database where the data items are
linked by internal pointers.

Relationship – situation in which one table in a database has a
foreign key that refers to a primary key in another table in
the database.

Relative addressing – mode of addressing in which the memory
address used is the current memory address added to the
operand.

Removable hard disk drive – portable hard disk drive that is
external to the computer; it can be connected via a USB port
when required; often used as a device to back up files and
data.

Repeater – device used to boost a signal on both wired and
wireless networks.

Repeating hubs – network devices which are a hybrid of hub and
repeater unit.

Report window – a separate window in the runtime environment
of the IDE that shows the contents of variables during the
execution of a program.

Resistive – type of touch screen technology; when a finger
touches the screen, the glass layer touches the plastic layer,
completing the circuit and causing a current to flow at that
point.

Resolution – number of pixels per column and per row on a
monitor or television screen.

Reverse Polish notation (RPN) – a method of representing
an arithmetical expression without the use of brackets or
special punctuation.

Reward and punishment – improvements to a model based
on whether feedback is positive or negative; actions are
optimised to receive an increase in positive feedback.

Right shift – bits are shifted to the right.

RISC – reduced instruction set computer.

Round robin (scheduling) – scheduling algorithm that uses time
slices assigned to each process in a job queue.

Router – device which enables data packets to be routed
between different networks (for example, can join LANs to
form a WAN).

Routing table – a data table that contains the information
necessary to forward a package along the shortest or best
route to allow it to reach its destination.

Rules – relationships between facts.

Run length encoding (RLE) – a lossless file compression
technique used to reduce text and photo files in particular.

Run-time error – an error found in a program when it is
executed; the program may halt unexpectedly.

Sampling rate – number of sound samples taken per second.

Sampling resolution/bit depth – number of bits used to
represent sound amplitude.

Scheduling – process manager which handles the removal of
running programs from the CPU and the selection of new
processes.

Screen resolution – number of horizontal and vertical pixels
that make up a screen display; if the screen resolution is
smaller than the image resolution, the whole image cannot
be shown on the screen, or the original image will become
lower quality.

Second normal form (2NF) – the status of a relational database
in which entities are in 1NF and any non-key attributes
depend upon the primary key.

Secondary key – a candidate key that is an alternative to the
primary key.

Secure Sockets Layer (SSL) – security protocol used when
sending data over the internet.

Security management – part of the operating system that
ensures the integrity, confidentiality and availability of data.

Seed – a peer that has downloaded a file (or pieces of a file) and
has then made it available to other peers in the swarm.

Segment (transport layer) – this is a unit of data (packet)
associated with the transport layer protocols.

Segment map table – table containing the segment number,
segment size and corresponding memory location in physical
memory; it maps logical memory segments to physical memory.

Segment number – index number of a segment.

Segments (memory) – variable-size memory blocks into which
logical memory is split up.

Semi-supervised (active) learning – system that interactively
queries source data to reach the desired result; it uses both
labelled and unlabelled data, but mainly unlabelled data on
cost grounds.

Sensor – input device that reads physical data from its
surroundings.

Sequential access – a method of file access in which records are
searched one after another from the physical start of the file
until the required record is found.

Sequential circuit – circuit in which the output depends on
input values produced from previous output values.

Sequential file organisation – a method of file organisation in
which records of data are physically stored in a file, one after
another, in a given order.

Serial access – a method of file access in which records are
searched one after another from the physical start of the file
until the required record is found.

Serial file organisation – a method of file organisation in which
records of data are physically stored in a file, one after
another, in the order they were added to the file.

Session caching – function in TLS that allows a previous
computer session to be ‘remembered’, therefore preventing
the need to establish a new link each time a new session is
attempted.

Set – a given list of unordered elements that can use set theory
operations such as intersection and union.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 550 25/04/19 2:17 PM

551

G
lo

ssa
r

y

Setter – a method used to control changes to a variable.

Shareware – software that is free of charge initially (free
trial period); the full version of the software can only be
downloaded once the full fee for the software has been paid.

Shift – moving the bits stored in a register a given number of
places within the register; there are different types of shift.

Sign and magnitude – binary number system where left-most bit
is used to represent the sign (0 = + and 1 = –); the remaining
bits represent the binary value.

SIMD – single instruction multiple data, computer architecture
which uses many processors and different data inputs.

Single stepping – the practice of running a program one line/
instruction at a time.

SISD – single instruction single data, computer architecture
which uses a single processor and one data source.

SMTP – simple mail transfer protocol.

Softmodem – abbreviation for software modem; a software-
based modem that uses minimal hardware.

Solid state drive (SSD) – storage media with no moving parts
that relies on movement of electrons.

Source code – a computer program before translation into
machine code.

Spread spectrum frequency hopping – a method of transmitting
radio signals in which a device picks one of 79 channels at
random. If the chosen channel is already in use, it randomly
chooses another channel. It has a range up to 100 metres.

Spread spectrum technology – wideband radio frequency with a
range of 30 to 50 metres.

SQL script – a list of SQL commands that perform a given task,
often stored in a file for reuse.

Stack – a list containing several items operating on the last in,
first out (LIFO) principle.

Star network topology – a network that uses a central hub/
switch with all devices connected to this central hub/switch;
all data packets are directed through this central hub/switch.

Starve – to constantly deprive a process of the necessary
resources to carry out a task/process.

State-transition diagram – a diagram showing the behaviour of
a finite state machine (FSM).

State-transition table – a table showing every state of a finite
state machine (FSM), each possible input and the state after
the input.

Static RAM (SRAM) – type of RAM chip that uses flip-flops and
does not need refreshing.

Status register – used when an instruction requires some form
of arithmetic or logical processing.

Stepwise refinement – the practice of subdividing each part of
a larger problem into a series of smaller parts, and so on, as
required.

Stream cipher – the encryption of bits in sequence as they
arrive at the encryption algorithm.

Structure chart – a modelling tool used to decompose a problem
into a set of sub-tasks. It shows the hierarchy or structure
of the different modules and how they connect and interact
with each other.

Structured English – a method of showing the logical steps
in an algorithm, using an agreed subset of straightforward
English words for commands and mathematical operations.

Structured query language (SQL) – the standard query
language used with relational databases for data definition
and data modification.

State-transition table – a table showing every state of a finite
state machine (FSM), each possible input and the state after
the input.

Stub testing – the use of dummy modules for testing purposes.

Sub-netting – practice of dividing networks into two or more
sub-networks.

Sum of products (SoP) – a Boolean expression containing AND
and OR terms.

Super computer – a powerful mainframe computer.

Supervised learning – system which is able to predict future
outcomes based on past data; it requires both input and
output values to be used in the training process.

Swap space – space on HDD used in virtual memory, which saves
process data.

Swarm – connected peers (clients) that share a torrent/tracker.

Switch – hardware used to connect together a number of devices
to form a LAN; directs incoming data packets to a specific
destination address only.

Symbolic addressing – mode of addressing used in assembly
language programming; a label is used instead of a value.

Symmetric encryption – encryption in which the same secret
key is used to encrypt and decrypt messages.

Syntax analysis – the second stage in the process of
compilation; output from the lexical analysis is checked for
grammatical (syntax) errors.

Syntax diagram – a graphical method of defining and showing
the grammatical rules of a programming language.

Syntax error – an error in the grammar of a source program.

System clock – produces timing signals on the control bus to
ensure synchronisation takes place.

Table – a group of similar data, in a database, with rows for each
instance of an entity and columns for each attribute.

TCP – transmission control protocol.

Test plan – a detailed list showing all the stages of testing and
every test that will be performed for a particular program.

Test strategy – an overview of the testing required to meet the
requirements specified for a particular program; it shows how
and when the program is to be tested.

Testing – part of the program development lifecycle; the
testing of the program to make sure that it works under all
conditions.

Thick client – device which can work both off line and on line
and is able to do some processing even if not connected to a
network/internet.

Thin client – device that needs access to the internet for
it to work; it depends on a more powerful computer for
processing.

Third normal form (3NF) – the status of a relational database
in which entities are in 2NF and all non-key attributes are
independent.

Thrash point – point at which the execution of a process comes
to a halt since the system is busier paging in/out of memory
rather than actually executing them.

Timeout – time allowed to elapse before an acknowledgement is
received.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 551 4/30/19 8:06 AM

552

G
lo

ss
a

r
y Touch screen – screen on which the touch of a finger or stylus

allows selection or manipulation of a screen image; they
usually use capacitive or resistive technology.

Trace table – a table showing the process of dry-running a
program with columns showing the values of each variable as
it changes.

Tracker – central server that stores details of all other computers
in the swarm.

Translation lookaside buffer (TLB) – this is a memory cache
which can reduce the time taken to access a user memory
location; it is part of the memory management unit.

Translator – the systems software used to translate a source
program written in any language other than machine code.

Transport Layer Security (TLS) – a more up-to-date version of SSL.

Truth table – a method of checking the output from a logic
circuit; they use all the possible binary input combinations
depending on the number of inputs; for example, 2 inputs
have 22 (4) possible binary combinations, 3 inputs will have
23 (8) possible binary combinations, and so on.

Tuple – one instance of an entity, which is represented by a row
in a table.

Twisted pair cable – type of cable in which two wires of a single
circuit are twisted together; several twisted pairs make up a
single cable.

Two’s complement – each binary digit is reversed and 1 is
added in right-most position to produce another method of
representing positive and negative numbers.

Underflow – the result of carrying out a calculation which produces
a value too small for the computer’s allocated word size.

Unicode – coding system which represents all the languages of
the world (first 128 characters are the same as ASCII code).

Unidirectional – used to describe a bus in which bits can travel
in one direction only.

Uniform resource locator (URL) – specifies location of a web
page (for example, www.hoddereducation.co.uk).

Universal Serial Bus (USB) – a type of port connecting devices
to a computer.

Unlabelled data – data where objects are undefined and need to
be manually recognised.

Unsupervised learning – system which is able to identify hidden
patterns from input data; the system is not trained on the
‘right’ answer.

Unwinding – process which occurs when a recursive function
finds the base case and the function returns the values.

Upper bound – the index of the last element in an array.

User account – an agreement that allows an individual to use a
computer or network server, often requiring a user name and
password.

User defined data type – a data type based on an existing
data type or other data types that have been defined by a
programmer.

Utility program – parts of the operating system which carry out
certain functions, such as virus checking, defragmentation or
hard disk formatting.

Validation – method used to ensure entered data is reasonable
and meets certain input criteria.

Variable – a named value that can change during the execution
of a program.

Vector graphics – images that use 2D points to describe lines
and curves and their properties that are grouped to form
geometric shapes.

Verification – method used to ensure data is correct by using
double entry or visual checks.

Video Graphics Array (VGA) – type of port connecting devices
to a computer.

Virtual machine – an emulation of an existing computer system;
a computer OS running within another computer’s OS.

Virtual memory – type of paging that gives the illusion of
unlimited memory being available.

Virtual memory systems – memory management (part of OS) that
makes use of hardware and software to enable a computer to
compensate for shortage of actual physical memory.

Virtual reality headset – apparatus worn on the head that
covers the eyes like a pair of goggles; it gives the user the
‘feeling of being there’ by immersing them totally in the
virtual reality experience.

Voice over Internet Protocol (VoIP) – converts voice and webcam
images into digital packages to be sent over the internet.

Von Neumann architecture – computer architecture which
introduced the concept of the stored program in the 1940s.

Walkthrough – a method of testing a program; a formal version
of a dry run using pre-defined test cases.

WAN – wide area network (network covering a very large
geographical area).

(W)AP – (wireless) access point which allows a device to access
a LAN without a wired connection.

Waterfall model – a linear sequential program development cycle,
in which each stage is completed before the next is begun.

Web browser – software that connects to DNS to locate IP
addresses; interprets web pages sent to a user’s computer so that
documents and multimedia can be read or watched/listened to.

Web crawler – internet bot that systematically browses the
world wide web to update its web page content.

White-box testing – a method of testing a program that tests the
structure and logic of every path through a program module.

Wi-Fi – wireless connectivity that uses radio waves, microwaves.

WIMP – windows, icons, menu and pointing device.

Winding – process which occurs when a recursive function or
procedure is called until the base case is found.

WLAN – wireless LAN.

WNIC – wireless network interface cards/controllers.

Word – group of bits used by a computer to represent a single unit.

World Wide Web (WWW) – collection of multimedia web pages
stored on a website; uses the internet to access information
from servers and other computers.

WPAN – wireless personal area network; a local wireless network
which connects together devices in very close proximity
(such as in a user’s house); typical devices would be a laptop,
smartphone, tablet and printer.

Write – file access mode in which data can be written to a file;
any existing data stored in the file will be overwritten.

Zero compression – way of reducing the length of an IPv6
address by replacing groups of zeroes by a double colon (::);
this can only be applied once to an address to avoid
ambiguity.

457591_GLO_CI_AS & A_Level_CS_541-552.indd 552 25/04/19 2:17 PM

http://www.hoddereducation.co.uk

553

In
d

e
xIndex

1D arrays 241–2
2D arrays 242–3
3D printers 79

A
A* algorithm 425, 429–34, 541
abnormal test data 294, 298, 541
absolute addressing 121, 125, 541
abstract data types (ADTs) 238, 250–9,

464–89, 541
binary trees 451, 481–7, 542
graphs see graphs
implementing one ADT from another

ADT 488–9
linked lists 238, 250–1, 255–9, 464,

469–81, 547
queues 238, 250–1, 253–5, 464,

466–9, 549
stacks 238, 250–3, 464–6, 551

abstraction 217, 218–19, 541
acceptance testing 294, 299, 541
access rights

databases 208, 210, 541
data security 159, 161, 541

accumulator (ACC) 108, 109, 110, 541
accuracy 323–4
acknowledgement 170, 175, 541
actuators 84
adaptive maintenance 294, 299, 541
addition 3–5
address bus 108, 112, 541
addressing modes 121, 125–6, 541
Advanced Research Project Agency

Network (ARPAnet) 28, 29, 541
advertising 193
aggregation (containment) 499, 514–15,

543
Airbus A380 incompatible software issue

184
algorithms 219–35, 450–90, 541

abstract data types see abstract data
types (ADTs)

comparing 489–90
insertion and bubble sorting methods

458–64
linear and binary searching methods

451–7
page replacement 373, 388–9, 548
shortest path algorithms 425–34
writing 220–35

alpha testing 294, 299, 541
Amazon 33–4
analogue to digital converter (ADC) 19,

69, 81, 84, 541
analysis 283, 284, 285, 286, 541
AND gates 89, 91, 100

multi-input 101–2
anti-lock braking systems (ABS) 87

anti-spy software 160, 163, 541
antivirus software 137, 144, 163, 541
append file access mode 525, 531, 533,

541
application layer 329, 330–3
approximations 320–2
arguments 275, 280, 541
arithmetic-logic unit (ALU) 108,

109–10, 541
arithmetic operation instructions 124
arithmetic shift 130, 541
ARPAnet 28, 29, 541
arrays 238, 241–8, 541
artificial intelligence (AI) 189–93,

425–49, 541
impacts on society, the economy and

the environment 190–3
machine learning, deep learning and

434–45
shortest path algorithms 425–34

artificial neural networks 435, 439–41,
444, 541

ASCII code 2, 12–14, 541
assemblers 121, 122–3, 150, 151, 541
assembly language 121–9, 541

instructions 123–5
simple programs 126–8
stages of assembly 122–3

Association for Computing Machinery
(ACM) 179, 181, 541

asymmetric encryption 410, 413–14,
541

asynchronous serial data transmission
108, 114, 541

attributes
classes 498, 501, 541
databases 197, 200, 541

audio compression 21, 541
authentication 159, 160, 541
authenticity 411
auto-documenter 157
automatic repeat request (ARQ) 170,

175, 541

B
backing up data 167
back propagation 435, 441, 444–5, 541
back-up utility software 137, 146, 541
Backus-Naur form (BNF) notation 394,

397, 398, 400, 541
bad sectors 137, 143, 541
base case 490–1, 541
basic input/output system (BIOS) 108,

113, 542
Belady’s anomaly 373, 388, 541
beta testing 294, 299, 541
bidirectional buses 108, 112, 541
Big O notation 451, 489–90, 542

binary-coded decimal (BCD) system 2,
10–12, 542

binary files 329, 332, 542
binary floating-point numbers 313–25,

542
converting denary numbers into

317–25
converting into denary 314–17

binary number system 2–8, 542
converting between denary and 2–3
converting between hexadecimal and

8–9
binary search 451, 454–7, 542
binary shifts 130–1
binary trees 451, 481–7, 542

finding items 482–3
inserting items 484–7
writing programs for 517–21

binder 3D printing 69, 79, 542
biometrics 160, 163–4, 542
BIOS 108, 113, 542
birefringence 69, 76, 542
bit depth (sampling resolution) 15, 16,

20, 24, 542, 550
bit manipulation 130–2
bit-map images 15–18, 542

calculating file size 17–18
compared with vector graphics 18–19
file compression 22

bit rate 21, 22, 29, 52, 542
bits 2, 542
bit streaming 29, 52–3, 542
BitTorrent protocol 329, 335–7, 542
black and white images 23
black-box testing 294, 299, 542
block chaining 410, 411, 542
block cipher 410, 411, 542
blocked state 377–8
Bluetooth 28, 41–2, 542

protocols 335
Blu-ray® discs 76
Boolean algebra 89, 90–2, 95, 354–6,

542
and logic circuits 361–8
simplification using 355–6

bootstrap program 373, 374, 542
bots 165
boundary test data 294, 298, 542
break 273
breakpoint 150, 155, 542
bridges 28, 47, 542
British Computer Society (BCS) 179,

180, 541
broadcast 29, 50–1, 542
bubble sort 238, 245–8, 458–60, 542
buffering 29, 52, 542
bugs 294–6
burst time 373, 376, 542
buses 109, 112–14

457591_Ind_CI_AS & A_Level_CS_553-560.indd 553 4/30/19 8:07 AM

554

In
d

e
x bus network topology 28, 37, 39, 542

by reference method 275, 277–8, 542
bytecode 152–3
bytes 6–7
by value method 275, 277, 542

C
cache memory 68, 69, 71, 108, 113, 542,

547
Cambridge Analytica scandal 193
candidate keys 197, 200–1, 542
capacitive touch screens 69, 82–3, 542
carrier sense multiple access with

collision avoidance (CSMA/CA) 335
carrier sense multiple access with

collision detection (CSMA/CD) 29,
51, 543

car sensors 86–7
CASE statements 222, 223, 271–3
CDs 75–6
cellular networks 56
central processing unit (CPU) architecture

107–20
components 109–10
computer ports 108, 114–16, 549
fetch-execute cycle 108, 116–18, 544
interrupts 108, 118–19
registers 108, 109, 110–11, 550
system buses 109, 112–14

certificate authority (CA) 416, 418, 420,
421, 542

character set 2, 12, 542
chatbots 435, 442–3, 542
check digits 169, 171, 542
checksums 169, 172, 340, 542
ciphertext 410, 411, 542
circuit switching 55, 337, 338, 542

comparison with packet switching
340–1

CISC (complex instruction set computer)
347, 348, 542

classes 307, 498, 501, 542
classless inter-domain routing (CIDR)

54, 58, 59, 542
CLI (command line interface) 137,

138–9, 542
client/server network model 28, 32–4,

35–6, 542
clock cycle 108, 113, 542
clock page replacement 388–9
close (file processing) 525, 542
cloud software 41
cloud storage 28, 39–41, 543
clusters 347, 352, 543
CMOS 137, 138, 543
coaxial cables 28, 44, 543
code generation 394, 395, 397, 543
codes of conduct 180–3
coding 283, 284, 285, 286, 543
collisions 29, 50–1, 543
colour depth 15, 16, 24, 543
coloured images 24
colouring monochrome photos 442

combination circuits 354, 358, 543
command line interface (CLI) 137,

138–9, 542
commercial software 187
communication 27–67, 328–45

circuit switching and packet switching
337–43

internet see internet
networking 28–53
protocols 328–37

compare instructions 125
compilation, stages in 395–8
compilers 149, 151–2, 155, 394–5, 543
composite data types 238, 240, 306–7,

543
composite key 197, 543
computational thinking skills 450–97

algorithms see algorithms
recursion 490–4
skills 217–19

computer-assisted translation (CAT) 441
computer ethics 180–1
conditional instructions 125
conditional loops 456
confidentiality 411
conflicts 29, 50, 543
constants 264, 265–71, 543
constructors 499, 515–16, 543
containment (aggregation) 499, 514–15,

543
context switching 373, 379, 381, 543
contiguous 137, 140, 543

single (contiguous) memory allocation
383

control 85–7, 130, 131–2, 543
control bus 108, 112, 543
control unit 108, 109, 110, 543
copyright issues 186–9
cores 108, 113, 543
corrective maintenance 294, 299, 543
count-controlled loops 274, 275
criminal justice system 192
cross-coupling 354, 358–9, 543
CSMA/CA (carrier sense multiple access

with collision avoidance) 335
CSMA/CD (carrier sense multiple access

with collision detection) 29, 51,
543

culture 179, 543
current instruction register (CIR) 108,

110, 116, 117, 543
cyclic shift 130, 543

D
database management systems (DBMSs)

208–10, 543
databases 196–208, 543

normalisation 203–7
data bus 108, 112, 543
data definition language (DDL) 211–12,

543
data dependency 209
data dictionary 208, 209, 543

data entry, verification during 170–2
datagrams 330
data hiding 498, 503, 543
data inconsistency 209
data integrity 169–76, 411, 543
data input instructions 124
data-link layer 329, 330, 334–7
data loss

in cloud storage 40–1
preventing 160–4

data management 208, 209, 543
data manipulation language (DML) 211,

213–14, 543
data modelling 208, 210, 543
data movement instructions 123–4
data output instructions 124
data privacy 159, 160, 543
data protection laws 159, 160, 543
data recovery 167
data redundancy 28, 40, 209, 543
data representation 2–15, 304–27

ASCII code 2, 12–14, 541
file organisation and access 308–11
floating-point numbers 312–25
number systems 2–12
Unicode 2, 14, 15, 552
user-defined data types 304–7, 552

data security 40, 159–68, 410–24, 543
digital signatures and digital

certificates 418–23
encryption 160, 163, 410–14, 544
protocols 416–18
quantum cryptography 414–15, 549
when using cloud storage 40–1

data transfer, verification during 172–5
data types 238–41, 543

abstract see abstract data types (ADTs)
composite 238, 240, 306–7, 543
non-composite 305–6, 547

debugging 150, 155–6, 543
declarative programming 499, 521–4,

543
decomposition 217, 219, 330, 543
deep learning 434, 435, 439–43, 543
default 273
defragmentation software 144–5
De Morgan’s Laws 355
denary numbers 2, 7–8

converting between binary numbers
and 2–3

converting binary floating-point
numbers into 314–17

converting into binary floating-point
numbers 317–25

design 283, 284, 285, 286, 543
destructors 499, 515, 517, 543
developer interface 209, 210, 543
device driver 137, 543
dictionaries 451, 488–9, 544
digest 418, 419, 420, 544
digital certificates 418, 420–2, 544
digital rights management (DRM) 186,

187, 544
digital signatures 162, 418, 419–20, 544

457591_Ind_CI_AS & A_Level_CS_553-560.indd 554 4/30/19 8:07 AM

555

In
d

e
x

digital to analogue converter (DAC) 69,
80–1, 84, 544

Dijkstra’s algorithm 425–9, 544
direct 3D printing 69, 79, 544
direct access 308, 310, 311, 544
direct addressing 121, 125, 544
direct memory access (DMA) controller

373, 375, 544
dirty pages 373, 383, 544
disk compression 137, 145, 544
disk content analysis software 137,

145, 544
disk defragmenter 137, 145, 544
disk formatter 137, 143, 544
disk thrashing 373, 386, 544
DNS cache poisoning 160, 166, 544
DO ... ENDWHILE loops 274–5
domain name system/service (DNS) 54,

61–2, 330, 544
double entry 171
dry runs 294, 296–8, 544
dual core 108, 113, 544
dual layering 69, 75–6, 544
DV (digital video) cameras 20, 21
DVDs 75–6
dynamic link files (DLL) 138, 148, 544
dynamic RAM (DRAM) 68, 70–1, 544

E
eavesdropper 410, 411, 544
electromagnetic radiation 42–3
electronically erasable programmable

read-only memory (EEPROM) 69,
74, 544

Else 273
embedded systems 72
emulation 392, 544
encapsulation 498, 501, 544
encryption 160, 163, 410–14, 544
entities 197, 200, 544
entity-relationship (E-R) diagrams 197,

202, 544
enumerated data types 305, 544
erasable PROM (EPROM) 69, 72, 544
errors in programs 294–6
Ethernet 29, 50–1, 544

protocols 334–5
ethical hacking 160, 164, 544
ethics 179–85, 544
even parity 169, 173, 544
exception handling 525, 535–7, 544
exceptions 525, 535–6, 544
exploding laptop computers 184
exponent 313–24, 544
extreme test data 294, 298, 544

F
face recognition software 439–40
facts 499, 521–3, 544
false positives 137, 544
faults in programs 294–6
Federation Against Software Theft (FAST)

186

fetch-execute cycle 108, 116–18, 544
fibre optic cables 28, 44, 544
fields 197, 199–200, 544
file access 308, 309–11, 544
file-based approach 197–9

how a DBMS addresses limitations of
209–10

file compression 21–5, 145
file organisation 308–9, 544
file processing 525–35

adding records 531–5
finding records 535
storing records 526–31

files 238, 249–50, 544
bit-map image file sizes 17–18
management of 142

file server 28, 30, 545
file transfer protocol (FTP) 329, 330,

331–2, 545
fingerprint scans 164
finite state machine (FSM) 287, 292,

545
firewalls 48, 160, 162–3, 545
first come first served (FCFS) scheduling

379, 381
first in first out (FIFO) page replacement

373, 388, 545
first normal form (1NF) 197, 203,

204–5, 545
flags 108, 111, 545
flash memory 69, 74–5, 374, 545
flip-flop circuits 354, 358–61, 545
floating-point numbers 312–25
flooding 38
flowcharts 219, 220, 221, 545

writing pseudocode from 229–31
foreign keys 197, 200, 201, 545
FOR loops 225, 226
FOR ... NEXT loops 274, 275
fragmentation 69, 73, 545
frame rate 15, 21, 24, 545
frames

memory blocks 373, 383–4, 545
packets 330

Free Software Foundation 186,
187–8, 545

freeware 186, 189, 545
FTP (file transfer protocol) 329, 330,

331–2, 545
full adder circuits 354, 357–8, 545
functions 264, 269, 545

string manipulation functions 269–71
structural programming 278–80

G
gateways 28, 45, 48, 49, 545
general AI 435
general case 490–1, 545
getters 499, 515, 516, 545
graphical user interface (GUI) 137, 138,

139, 545
graphs 451, 487, 545

shortest path algorithms 425–34

gray codes 354, 363, 364, 545
guest operating system (OS) 392,

393, 545
GUI (graphical user interface) 137, 138,

139, 545

H
hacking 160, 164, 179, 545
half adder circuits 354, 356–7, 545
handshake 416, 417, 418, 545
hard disk drives (HDDs) 69, 73–4, 545
hardware 30, 68–106, 346–71

Boolean algebra and logic circuits
354–68

computers and their components
68–89

logic gates and logic circuits 89–104
needed to support the internet 55–7
processors and parallel processing

346–53
requirements of networks 45–50

hardware management 137, 142, 545
hashing algorithms

cryptography 418, 419, 420, 545
file access 308, 309, 310–11, 545

HCI (human-computer interface) 137,
138, 545

headers
data packets 337, 340–1, 342, 545
procedures or functions 275, 280, 545

heuristic checking 137, 144, 545
heuristics 425, 430, 545
hexadecimal number system 2, 7–10, 545
high-bandwidth digital copy protection

(HDCP) 108, 115, 545
high-definition multimedia interface

(HDMI) 108, 115, 116, 545
hop number/hopping 337, 340, 545
host 329, 333, 545
host operating system (OS) 392, 393,

545
host-to-host protocol 329, 333–4, 545
HTTP (hypertext transfer protocol) 329,

330–1, 545
hubs 28, 37, 45–6, 545

repeating 28, 46–7, 550
human-computer interface (HCI) 137,

138, 545
hybrid cloud 40
hybrid networks 28, 39, 545
HyperText Mark-up Language (HTML) 54,

55, 545
scripting in 62–4

hypervisor 392, 545

I
icons 137, 545
identifier 238, 239, 545
identifier tables 221, 227, 230, 233, 244,

246, 265, 290
IEEE 50, 179, 180–1, 546
IF statements 222, 223, 224, 271, 457

457591_Ind_CI_AS & A_Level_CS_553-560.indd 555 4/30/19 8:07 AM

556

In
d

e
x image resolution 15, 16–17, 24, 546

images
general file compression methods 24
run-length encoding with 23–4

IMAP (internet message access protocol)
329, 330, 332–3, 546

immediate access store (IAS) 108,
110, 546

immediate addressing 121, 126, 546
imperative programming 498, 500–1,

546
in demand paging 373, 385–6, 546
index

array 238, 241, 546
database 197, 202, 546

indexed addressing 121, 125, 546
indirect addressing 121, 125, 546
infrared radiation 42–3
inheritance 499, 505–9, 514–15, 546
inkjet printers 78
input data instructions 124
input devices 81, 84–7
input/output (I/O) system 374–5
insertion sort 451, 461–4, 546
instances 498, 502–4, 546
Institute of Electrical and Electronics

Engineers (IEEE) 50, 179, 180–1,
546

instructions 121–2, 546
assembly language instructions 123–5

instruction set 121, 122, 546
integrated development environments

(IDEs) 150, 151, 153–7, 546
integration testing 294, 299, 546
integrity, data 169–76, 411, 543
intellectual property rights 179, 180,

546
copyright issues 186–9

internet 54–65, 187, 546
communication and internet

technologies 328–45
hardware and software needed 55–7
IP addresses 57–61
TCP/IP protocols 57, 329–37

internet message access protocol (IMAP)
329, 330, 332–3, 546

internet/network layer 329, 330, 334–7
internet protocols (IPs) 54, 57–61, 334,

546
internet service providers (ISPs) 54,

55, 546
interpreters 149, 151–2, 155, 394–5, 546
interrupt dispatch table (IDT) 373,

382, 546
interrupt priority 108, 119, 546
interrupt priority levels (IPL) 373,

382, 546
interrupts 108, 118–19, 349–50,

382, 546
interrupt service routine (ISR) (interrupt

handler) 108, 118, 119, 546
IPv4 addressing 54, 57–8, 546
IPv6 addressing 54, 58–9, 546
iterative model 283, 286, 546

J
Java 228, 239, 271

binary search 456, 457
bubble sort 460
case statements 273
constants and variables 266, 267,

268, 269
exception handling 537
file processing 529–31, 533
functions 278, 280
IF statement 224
insertion sort 463
linear search 453–4
linked lists 473, 476, 480
loops 274, 275
OOP 503, 504, 508–9, 512, 514
procedures 275, 276, 277, 278
queues 466, 467, 468
recursion 492
stacks 464, 465, 466
writing programs for binary trees 518,

520, 521
JavaScript 54, 63, 546
JK flip-flops 360–1
JPEG 21, 22, 546

K
Karnaugh maps (K-maps) 354, 363–7, 546
kernel 373, 375–6, 546
key distribution problem 410, 412, 546
keyword table 396

L
LA airport shutdown 184
labelled data 434, 437–8, 440, 441, 546
language translation 149–57, 394–402
LANs (local area networks) 28, 29, 31,

32, 546
laser printers 77
latency 69, 73, 74, 351–2, 546
least recently used (LRU) page

replacement 373, 388, 546
leeches 329, 336, 337, 546
left shift 130, 131, 546
legality 179, 546
lexical analysis 394, 395–7, 546
library programs 138, 147–8, 546
library routines 138, 147–8, 264,

271, 546
linear search 238, 243–4, 451–4, 546
linked lists 238, 250–1, 464, 469–81,

547
deleting items 477–81
finding items in 469–74
inserting items 474–7
linked list operations 255–9

local area networks (LANs) 28, 29, 31,
32, 546

logical memory 373, 383–4, 547
logical schema 208, 210, 547
logical shift 130, 547
logic bombs 165

logic circuits 89, 92–101, 356–68, 547
Boolean algebra and 361–8
flip-flop circuits 358–61
half adder and full adder circuits

356–8
in the real world 99–101
simplification 101

logic errors 150, 155, 295, 547
logic gates 89–92, 547

multi-input 101–4
loops 274–5, 456

writing algorithms 220–9
lossless file compression 21, 547
lossy file compression 21, 547
lower bound 238, 241–2, 547
low-level programming 498, 499–500,

547
low level scheduling 373, 377, 547
lurkers 329, 336, 547

M
machine code 121–2, 547
machine learning 193, 434, 435, 436–9,

443, 547
maintenance 283, 284, 285, 286, 294,

299, 547
malicious hacking 160, 164, 547
malware 160, 162, 164–6, 547
MANs (metropolitan area networks) 28,

30, 32, 547
mantissa 313–24, 547
mask 130, 547
massively parallel computers 347,

352, 547
memory 69–77

measurement of size 6–7
memory cache 68, 69, 71, 108, 113,

542, 547
memory dumps 2, 9–10, 547
memory management 137, 140–1, 373,

382–5, 389, 547
memory optimisation 137, 140, 382,

547, 548
memory organisation 137, 140, 547
memory protection 137, 140–1, 547
memory sticks (flash memories) 69,

74–5, 374, 545
mesh network topology 28, 38, 547
metadata 329, 335, 547
methods 498, 501, 547

object methods 515–17
metropolitan area networks (MANs) 28,

30, 32, 547
microphones 81
microwave radiation 42–3
MIMD (multiple instruction multiple data)

347, 351, 352, 547
MIME (multi-purpose internet mail

extension) protocol 329, 332, 547
MISD (multiple instruction single data)

347, 351, 547
modems 28, 48–9, 547
modulo-11 169, 171, 547

457591_Ind_CI_AS & A_Level_CS_553-560.indd 556 4/30/19 8:07 AM

557

In
d

e
x

monitoring 85–7, 130, 131–2, 547
morality 179, 547
motion JPEG 20
movie files 20–1, 24
MPEG-3 (MP3) files 21–2, 547
MPEG-4 (MP4) files 21, 22, 547
multi-input logic gates 101–4
multimedia 15–21
multitasking 373, 376, 547

N
NAND gates 89, 91, 100
narrow AI 435
negative numbers 3–4

converting binary floating-point
numbers into denary 315–17

converting denary numbers into binary
floating-point numbers 319–20, 323

normalisation 322
network/data-link layer 329, 330, 334–7
networking 28–53

bit streaming 29, 52–3, 542
client/server model 28, 32–4,

35–6, 542
devices 29–32
Ethernet 29, 50–1, 544
hardware requirements 45–50
peer-to-peer model 28, 34–5, 548
public and private cloud computing

39–41
topologies 36–9
wired and wireless 41–5

network interface cards (NICs) 28, 49, 547
wireless 29, 50, 552

nodes
networks 28, 34, 547
vertices (in graphs) 425–34, 547

non-composite data types 305–6, 547
non-preemptive scheduling 373,

376, 547
non-repudiation 411
NOR gates 89, 91
normalisation

databases 197, 203–7, 547
floating-point numbers 313, 322, 547

normal test data 294, 298, 547
NOT gates 89, 90, 100
number systems 2–12

BCD 2, 10–12, 542
binary 2–8, 8–9, 542
hexadecimal 2, 7–10, 545

O
object code 121, 123, 548
object-oriented programming (OOP) 498,

501–21, 548
containment 499, 514–15, 543
inheritance 499, 505–9, 514–15, 546
object methods 515–17
polymorphism and overloading 509–14
writing a program for a binary tree

517–21
objects 307, 498, 502–4, 547

odd parity 169, 173, 548
on demand (bit streaming) 29, 53, 548
one’s complement 2, 3, 548
opcode 121, 122, 548
open (file processing) 525, 533, 548
Open Source Initiative 186, 187–9, 548
operand 121, 122, 548
operating systems (OS) 136–49,

372–92, 548
memory management 137, 140–1, 373,

382–5, 389, 547
need for 138–9
page replacement 373, 388–9, 548
process management 137, 142, 376–7,

389, 549
process states 373, 377–82, 549
program libraries 138, 147–8, 549
resource maximisation 374–6
tasks 140–2
utility software 137, 143–6, 552
virtual memory 373, 385–7, 552

optical storage 69, 75–6, 548
optimal page replacement (OPR) 373,

388, 548
optimisation

compilation 394, 395, 398, 548
memory management 137, 140, 382,

547, 548
organic light emitting diode (OLED) 69,

81–2, 548
OR gates 89, 91, 100

multi-input 102–3
OTHERWISE 271–3
output data instructions 124
output devices 77–84
overclocking 108, 113, 548
overflow errors 313, 325, 548
overloading 499, 509, 513–14, 548

P
packets 28, 37, 329, 330, 548
packet switching 56, 337, 339–43, 548

compared with circuit switching
340–1

page fault 373, 388, 389, 548
page replacement 373, 388–9, 548
pages 373, 383–4, 548
page tables 373, 383–4, 548
paging 373, 383–4, 385, 548

using virtual memory 385–7
PANs (personal area networks) 28,

32, 548
parallel processing 347, 350–3, 548
parameters 275, 276–8, 280, 548

functions with and without 279
parity bit 169, 173, 548
parity blocks 169, 174, 548
parity byte 170, 174–5, 548
parity checks 169, 173–5, 329, 548
partial compiling and interpreting

152–3
passwords 161–2
pattern recognition 217, 219, 548

peers 329, 335, 548
peer-to-peer file sharing 335–7
peer-to-peer network model 28,

34–5, 548
perceptual music shaping 21, 22, 548
perfective maintenance 294, 299, 548
personal area networks (PANs) 28,

32, 548
pharming 160, 166, 548
phishing 160, 165–6, 548
phone calls 55–7
photographic (bit-map) images 22
photographs

enhancing 442
turning monochrome photos into colour

photos 442
PHP 54, 63–4, 548
physical memory 373, 383–4, 548
pieces 329, 335, 548
piezoelectric technology 78
pinching and rotating 137, 139, 548
pipelining 347, 348–50, 548
piracy 186, 548
pixel density 15, 17, 440, 548
pixels 15–16, 82, 548
plagiarism 179, 180, 548
plaintext 410, 411, 548
pointer data types 305, 306, 548
polymorphism 499, 509–13, 549
POP (or POP3/4) (post office protocol)

329, 330, 332–3, 549
ports 108, 114–16, 549
positive feedback 84, 354, 359, 549
positive numbers

converting binary floating-point
numbers into denary 314–15

converting denary numbers into binary
floating-point numbers 317–19,
323, 324

normalisation 322
post-condition loops 274
post office protocol (POP or POP3/4)

329, 330, 332–3, 549
post-WIMP 137, 139, 549
precision 323–4
pre-condition loops 274–5
pre-emptive scheduling 373, 376, 549
prettyprinting 149, 154, 549
primary keys 197, 200–1, 549
primary memory 70–3
printers 77–9
privacy 179, 549

data privacy 159, 160, 543
software copyright and 186–7

private cloud 40
private IP addresses 54, 61, 549
private keys 410, 413–14, 549
private networks 31
procedures 264, 271, 275–8, 280, 549
process control block (PCB) 373,

377, 549
processes 373, 376, 549
process management 137, 142, 376–7,

389, 549

457591_Ind_CI_AS & A_Level_CS_553-560.indd 557 4/30/19 8:07 AM

558

In
d

e
x processors 107–35, 346–53

assembly language 121–9, 541
bit manipulation 130–2
CPU architecture 107–20
parallel processing 350–3
RISC and CISC processors 347–50

process priority 377
process states 373, 377–82, 549
product key 186, 549
professional ethical bodies 180–3
program counter (PC) 108, 116, 117, 549
program design 287–93
program development lifecycle 283–7,

549
different development lifecycles

285–7
purpose 284
stages 284–5

program libraries 138, 147–8, 549
programmable ROM (PROM) 69, 72, 549
program maintenance 283, 284, 285,

286, 294, 299, 547
program testing 283, 284, 285, 286,

293–4, 296–9, 551
programming 264–82, 498–540

basics 264–71
constants and variables 265–71
constructs 271–5
exception handling 525, 535–7,

544
file processing operations 525–35
library routines 264, 271
structured 275–80

programming paradigms 498–525, 549
declarative programming 499, 521–4,

543
imperative programming 498, 500–1,

546
low-level programming 498, 499–500,

547
OOP 498, 501–21, 548

properties 498, 502, 549
protocols 328–37, 549

security and 416–18
prototyping 287
pseudocode 219, 220, 221–33, 549

structure charts 289–91
writing algorithms using 221–9
writing from a flowchart 231–3
writing from a structured English

description 229–31
public cloud 40
public impact of hardware or software

183–5
public IP addresses 54, 61, 549
public key infrastructure (PKI) 416, 418,

549
public keys 410, 413–14, 549
public networks 31
public switched telephone network (PSTN)

54, 55, 549
pull protocols 329, 332–3, 549
push protocols 329, 332, 549
Python 228, 239, 271, 273

binary search 456, 457
bubble sort 459
constants and variables 266, 267, 268
exception handling 536
file processing 527–8, 533
functions 278, 280
IF statement 224
insertion sort 463
linear search 452
linked lists 471, 476, 479
loops 274, 275
OOP 502, 503, 506, 510, 513
procedures 275, 276, 277, 278
queues 466, 467, 468
recursion 491
stacks 464, 465
writing programs for binary trees 518,

519, 520

Q
quad core 108, 113, 549
quantum 373, 376, 379, 381, 549
quantum cryptography 414–15, 549
quantum key distribution (QKD) 414,

549
quarantine 137, 144, 549
qubit 414, 549
query processor 209, 210, 549
queues 238, 250–1, 464, 466–9, 549

queue operations 253–5

R
radio waves 42–3
random access memory (RAM) 68, 70–1,

72, 374, 385, 549
random file organisation 308, 309, 310,

549
adding records to random files 533–5
finding records in random files 535

range 323–4
rapid application development (RAD)

283, 286–7, 549
read file access mode 525, 526–7, 549
read-only memory (ROM) 68, 70, 71–2,

549
ready state 377–8
real-time (bit streaming) 29, 53, 549
record protocol 417
records

database 196, 199–200, 549
data type 238, 240–1, 549

recursion 490–4, 549
referential integrity 197, 201, 549
refreshed 68, 71, 550
registers 109, 110–11, 550
Register Transfer Notation (RTN) 108,

117–18, 550
regression 435, 445, 550
reinforcement learning 434, 439, 550
relational databases 196, 198–207, 550
relationships 197, 201–2, 550
relative addressing 121, 126, 550
removable hard disk drives 69, 74, 550

repeaters 28, 46–7, 550
repeating hubs 28, 46–7, 550
REPEAT ... UNTIL loops 225, 226,

227, 274
report window 150, 155–6, 550
resistive touch screens 69, 83, 550
resolution 15, 17, 550
resource management 374–6
retina scans 164
RETURN 279
Reverse Polish notation (RPN) 394,

400–1, 550
reward and punishment 434, 439, 550
right shift 130, 131, 550
RISC (reduced instruction set computer)

347–8, 550
robotics 190
ROM (read-only memory) 68, 70,

71–2, 549
rounding errors 320–2
round robin scheduling 373, 378–9,

381, 550
routers 28, 47–8, 49, 330, 550
routing 38
routing tables 337, 341–2, 550
rules 499, 521–4, 550
run-length encoding (RLE) 21, 22–4, 550

with images 23–4
with text data 23

running state 377–8
runtime environment with a debugger

155–6
run-time errors 294, 296, 550

S
sampling rate 15, 20, 24, 550
sampling resolution/bit depth 15, 16,

20, 24, 542, 550
satellites 43, 56–7
scalable vector graphics (SVG) 22
scheduling 373, 374, 376–82, 550

routines 379–81
screen resolution 15, 16–17, 69, 82, 550
screens 82–4
secondary keys 197, 200, 550
secondary storage 70, 72–7
second normal form (2NF) 197, 203,

205, 550
Secure Sockets Layer (SSL) 416–17,

417–18, 550
digital certificate 421

security see data security
security management 137, 141, 550
seeds 329, 336, 337, 550
segmentation 384–5
segment map table 373, 384, 550
segment numbers 373, 384, 550
segments

memory 373, 384–5, 550
transport layer 329, 330, 550

semi-supervised (active) learning 434,
439, 550

sensors 69, 84–7, 550

457591_Ind_CI_AS & A_Level_CS_553-560.indd 558 4/30/19 8:07 AM

559

In
d

e
x

sequential access 308, 309–10, 550
sequential circuits 354, 358, 550
sequential file organisation 308,

309–10, 550
adding records to sequential files

531–3
storing records in sequential files

526–31
serial access 550
serial file organisation 308, 309,

531, 550
storing records in serial files 526–31

services 30
session caching 416, 417, 550
sets 305, 307, 550
setters 499, 515, 516, 551
shareware 186, 189, 551
shifts 130–1, 551
shortest job first (SJF) scheduling

379–80, 381
shortest path algorithms 425–34
shortest remaining time first (SRTF)

scheduling 379–80, 381
sign and magnitude 2, 3, 551
SIMD (single instruction multiple data)

347, 350, 352, 551
simple mail transfer protocol (SMTP)

329, 330, 332, 351
simplification

of logic circuits 101
using Boolean algebra 355–6

single (contiguous) memory allocation
383

single pass assemblers 122
single stepping 150, 155, 551
SISD (single instruction single data)

347, 350, 551
SMTP (simple mail transfer protocol)

329, 330, 332, 551
softmodem 28, 49, 551
software 30, 136–58

cloud software 41
copyright and privacy 186–7
language translation 149–57, 394–402
licensing 187–9
needed to support the internet

55–7
operating systems see operating

systems
software development 283–303

program design 287–93
program development lifecycle 283–7
program testing and maintenance

293–300
Software Engineering Code of Ethics

181–3
solid state drives (SSDs) 69, 74–5, 551
sound files 19–20
source code 121, 122, 551
source code editor 154–5
space complexity 490
speakers 80–1
spread spectrum frequency hopping 28,

41–2, 551

spread spectrum technology 28, 31, 551
spyware 165
SQL scripts 211–14, 521, 551
SR flip-flops 358–60
stacks 238, 250–3, 464–6, 551

stack operations 251–3
star network topology 28, 37–8, 39, 551
starving a process 373, 376, 551
state-transition diagrams 287, 292–3,

551
state-transition tables 287, 292, 551
static libraries 148
static RAM (SRAM) 68, 70–1, 551
status register 108, 109, 110, 111, 551
stepwise refinement 219, 233–5, 551
storage devices 69–77
stream cipher 410, 411, 551
strings 269

manipulation functions 269–71
strong AI 435
structure charts 287, 288–92, 551
structured English 219, 220, 551

writing pseudocode from a structured
English description 229–31

structured programming 275–80
structured query language (SQL) 209,

210, 211, 551
SQL scripts 211–14, 521, 551

stub testing 294, 299, 551
sub-netting 54, 59–61, 551
subtraction 5–6
sum of products (SoP) 354, 361, 551
super computers 347, 352, 551
supervised learning 434, 438, 551
swap space 373, 385, 551
swarm 329, 336, 551
switches 28, 37, 46, 551
symbolic addressing 121, 126, 551
symmetric encryption 410, 411–12, 551
syntax analysis 394, 395, 397, 551
syntax diagrams 394, 398–400, 551
syntax errors 150, 155, 295, 551
system buses 109, 112–14
system clock 108, 109, 110, 113, 551
system software 136–58

language translation 149–57, 394–402
operating systems see operating

systems

T
tables 196, 199–200, 551
TCP (transmission control protocol) 329,

333–4, 551
TCP/IP protocols 57, 329–37
terminology databases 441
test data 298
testing 283, 284, 285, 286, 293–4,

296–9, 551
test plans 294, 296, 298, 551
test strategy 294, 296, 551
text data, RLE on 23
text files 249–50
text mining 441

thermal bubble technology 78
thick clients 28, 35–6, 551
thin clients 28, 35–6, 551
third normal form (3NF) 197, 203–4,

206–7, 551
thrash point 373, 386, 551
time complexity 489
timeout 170, 175, 551
tokenisation 396
touch screens 69, 82–3, 552
trace tables 128, 294, 295, 297, 552
tracker 329, 336, 552
translation lookaside buffer (TLB) 373,

383, 552
translation memories 441
translation software 149–57, 394–402
translators 149, 150–1, 552
transmission control protocol (TCP) 329,

333–4, 551
TCP/IP protocols 57, 329–37

transport 192
transport layer 329, 330, 333–4
Transport Layer Security (TLS) 416,

417–18, 552
Trojan horses 165
truth tables 89, 90–8, 552
tuples 197, 200, 552
twisted pair cables 28, 44, 552
two pass assemblers 122–3
two’s complement 2, 3–4, 552

U
unconditional instructions 125
underflow errors 313, 325, 552
Unicode 2, 14–15, 552
unidirectional buses 108, 112, 552
uniform resource locators (URLs) 54, 55,

61, 552
Universal Serial Bus (USB) ports 108,

114–15, 552
unlabelled data 434, 437, 440–1, 552
unsupervised learning 434, 438–9, 552
unwinding 490, 491, 552
upper bound 238, 241–2, 552
USB ports 108, 114–15, 552
use of data 193
user accounts 159, 160–1, 552
user-defined data types 304–7, 552
utility programs 137, 143–6, 552

V
validation 169–70, 552
variables 264, 265–71, 552
VB 228, 239, 271

binary search 456, 457
bubble sort 459–60
case statements 273
constants and variables 266, 267, 268
exception handling 536–7
file processing 528–9, 533
functions 278, 280
IF statement 224
insertion sort 463

457591_Ind_CI_AS & A_Level_CS_553-560.indd 559 4/30/19 8:07 AM

560

In
d

e
x linear search 453

linked lists 472, 476, 479–80
loops 274, 275
OOP 502, 504, 506–7, 510–11, 513–14
procedures 275, 276, 277, 278
queues 466, 467, 468
recursion 492
stacks 464, 465
writing programs for binary trees 518,

519, 520
vector graphics 15, 18–19, 552

file compression 22
verification 169, 170–6, 552

during data entry 170–2
during data transfer 172–5

vertices (nodes) 425–34, 547
video 20–1, 24
Video Graphics Array (VGA) 108,

115–16, 552
virtual machines (VMs) 392–4, 552
virtual memory 373, 385–7, 552
virtual memory systems 137,

140, 552
virtual reality headsets 69, 83–4, 552
virus checkers 144
viruses 164–5

visual check 171
Voice over Internet Protocol (VoIP) 54,

55, 56, 552
Von Neumann architecture 108,

109, 552

W
walkthrough 294, 298, 552
WANs (wide area networks) 28, 29–30,

32, 552
WAPs (wireless access points) 28,

31, 552
waterfall model 283, 285, 552
web browsers 54, 55, 61, 552
web crawler 435, 439, 552
WHILE ... DO ... ENSEMBLE 274–5
white-box testing 294, 299, 552
wide area networks (WANs) 28, 29–30,

32, 552
Wi-Fi 28, 41–2, 552
WiMax (worldwide interoperability for

microwave access) 335
WIMP (windows, icons, menu and pointing

device) 137, 138, 552
winding 490, 491, 552

wired networking 43–5
vs wireless 44–5

wireless access points (WAPs) 28,
31, 552

wireless LANs (WLANs) 28, 31, 552
wireless networking 41–3, 44–5
wireless network interface cards/

controllers (WNICs) 29, 50, 552
wireless personal area networks (WPANs)

28, 42, 552
wireless (Wi-Fi) protocols 335
word 108, 112, 552
World Wide Web (WWW) 54–5, 187, 552
worms 165
WPANs (wireless personal area networks)

28, 42, 552
write file access mode 525, 526–7, 552

X
XOR gates 89, 92

Z
zero compression 54, 58–9, 552
zero value 325

457591_Ind_CI_AS & A_Level_CS_553-560.indd 560 4/30/19 8:07 AM

	Cover
	Book title
	Copyright
	Contents
	Introduction
	AS LEVEL
	1 Information representation and multimedia
	1.1 Data representation
	1.2 Multimedia
	1.3 File compression

	2 Communication
	2.1 Networking
	2.2 The internet

	3 Hardware
	3.1 Computers and their components
	3.2 Logic gates and logic circuits

	4 Processor fundamentals
	4.1 Central processing unit (CPU) architecture
	4.2 Assembly language
	4.3 Bit manipulation

	5 System software
	5.1 Operating systems
	5.2 Language translators

	6 Security, privacy and data integrity
	6.1 Data security
	6.2 Data integrity

	7 Ethics and ownership
	7.1 Legal, moral, ethical and cultural implications
	7.2 Copyright issues
	7.3 Artificial intelligence (AI)

	8 Databases
	8.1 Database concepts
	8.2 Database management systems (DBMSs)
	8.3 Data definition language (DDL) and data manipulation language (DML)

	9 Algorithm design and problem solving
	9.1 Computational thinking skills
	9.2 Algorithms

	10 Data types and structures
	10.1 Data types and records
	10.2 Arrays
	10.3 Files
	10.4 Abstract data types (ADTs)

	11 Programming
	11.1 Programming basics
	11.2 Programming constructs
	11.3 Structured programming

	12 Software development
	12.1 Program development lifecycle
	12.2 Program design
	12.3 Program testing and maintenance

	A LEVEL
	13 Data representation
	13.1 User-defined data types
	13.2 File organisation and access
	13.3 Floating-point numbers, representation and manipulation

	14 Communication and internet technologies
	14.1 Protocols
	14.2 Circuit switching and packet switching

	15 Hardware
	15.1 Processors and parallel processing
	15.2 Boolean algebra and logic circuits

	16 System software and virtual machines
	16.1 Purposes of an operating system (OS)
	16.2 Virtual machines (VMs)
	16.3 Translation software

	17 Security
	17.1 Encryption
	17.2 Quantum cryptography
	17.3 Protocols
	17.4 Digital signatures and digital certificates

	18 Artificial intelligence (AI)
	18.1 Shortest path algorithms
	18.2 Artificial intelligence, machine learning and deep learning

	19 Computational thinking and problem solving
	19.1 Algorithms
	19.2 Recursion

	20 Further programming
	20.1 Programming paradigms
	20.2 File processing and exception handling

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

