| | $2\sinh^2 x = \cosh 2x - 1.$ | [3] | |------------|--|-----| b) | Find the solution to the differential equation | | | | | | | | $\frac{\mathrm{d}y}{\mathrm{d}x} + y \coth x = 4 \sinh x$ | | | | $\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$. | [7] | | | | [7] | | | | [7] | | | | [7] | | | | | | | for which $y = 1$ when $x = \ln 3$. | | | | for which $y = 1$ when $x = \ln 3$. | | | | for which $y = 1$ when $x = \ln 3$. | | | | for which $y = 1$ when $x = \ln 3$. | | | | for which $y = 1$ when $x = \ln 3$. | | | | for which $y = 1$ when $x = \ln 3$. | | © UCLES 2021 9231/23/M/J/21 | (a) | Starting from the definitions of cosh and sinn in terms of exponentials, prove that | | |-----|---|-------| | | $\cosh 2x = 2\sinh^2 x + 1.$ | [3] | | | | | | | | | | | | | | | | | | (b) | Find the set of values of k for which $\cosh 2x = k \sinh x$ has two distinct real roots. | [5] | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | ••••• | $2\cosh^2 x = \cosh 2x + 1.$ | [3] | |---|-----| Find the solution of the differential equation $\frac{dy}{dy} = 0$ | | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ | | | Find the solution of the differential equation | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ | [8] | | Find the solution of the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = \mathrm{f}(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | | Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$. | [8] | © UCLES 2023 9231/23/M/J/23 | (a) | Show that $\left(\cosh x + \sinh x\right)^{\frac{1}{2}} = e^{\frac{1}{2}x}$. | [2 | |--------------|--|-----| (b) | Find the particular solution of the differential equation | | | (b) | Find the particular solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ | | | (b) | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ | [10 | | (b) | | | | (b) | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | | (b) | $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = 5\left(\cosh x + \sinh x\right)^{\frac{1}{2}},$ given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{3}$. | | © UCLES 2024 9231/21/M/J/24 | | $2\cosh^2 A = \cosh 2A + 1.$ | [3] | |-------------------|--|-------------------| The curv | we C has parametric equations | | | | $x = 2\cosh 2t + 3t$, $y = \frac{3}{2}\cosh 2t - 4t$, for $-\frac{1}{2} \le t \le \frac{1}{2}$. | | | The area by A . | a of the surface generated when C is rotated through 2π radians about the | y-axis is denoted | | - | Show that $A = 10\pi \int_{-\frac{1}{2}}^{\frac{1}{2}} (2\cosh 2t + 3t) \cosh 2t dt$. | [4] | | (b) (1) | Show that $A = 10\pi \int_{-\frac{1}{2}}^{-\frac{1}{2}} (2\cos i(2t + 5t)) \cos i(2t + 4t)$ | [ד] | | | | | | | | | | | | ••••• | © UCLES 2021 9231/21/O/N/21