10
6 (a) Starting from the definitions of sinh and cosh in terms of exponentials, prove that
2sinh’x = cosh2x — 1. [3]

(b) Find the solution to the differential equation
dy .
o +ycothx = 4sinhx

for which y = 1 when x = In3. [7]
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2 (a) Starting from the definitions of cosh and sinh in terms of exponentials, prove that

cosh2x = 2sinh? x+ 1. [3]
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5 (a) Starting from the definitions of cosh and sinh in terms of exponentials, prove that

2cosh’x = cosh2x+1. [3]

(b) Find the solution of the differential equation
dy
o +2ytanhx = 1

for which y = 1 when x = 0. Give your answer in the form y = f(x). [8]
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(b) Find the particular solution of the differential equation

2
dy+d_y

1
FERrT +3y = 5<coshx+ sinhx)z,

b_
2=

WA

given that, when x =0, y = 1 and
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8 (a) Starting from the definition of cosh in terms of exponentials, prove that

2cosh’4 = cosh24 +1. [3]

The curve C has parametric equations
x=2cosh2t+3t, y= %cosh2t—4t, for —% <t< %
The area of the surface generated when C is rotated through 27 radians about the y-axis is denoted
by A.
1

(b) (i) Show that 4 = 107!_[51 (2 cosh2¢+3f) cosh 2z dr. [4]
—2
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