## 欧几里得数学竞赛

## 对数专题



(b) Determine the coordinates of the points of intersection of the graphs of  $y = \log_{10}(x-2)$  and  $y = 1 - \log_{10}(x+1).$ 



(b) If  $\log_{10} x = 3 + \log_{10} y$ , what is the value of  $\frac{x}{y}$ ?

(a) What is the value of x such that  $\log_2(\log_2(2x-2)) = 2$ ?

(a) What are all values of x such that

$$\log_5(x+3) + \log_5(x-1) = 1?$$

(b) Solve the system of equations:

$$\log_{10}(x^3) + \log_{10}(y^2) = 11$$
$$\log_{10}(x^2) - \log_{10}(y^3) = 3$$

(a) If  $\log_2 x - 2\log_2 y = 2$ , determine y as a function of x, and sketch a graph of this function on the axes in the answer booklet.

(a) Determine all values of x for which  $(\sqrt{x})^{\log_{10} x} = 100$ .

(b) Determine all real solutions to the system of equations

and prove that there are no more solutions.

(a) If  $\log_2 x$ ,  $(1 + \log_4 x)$ , and  $\log_8 4x$  are consecutive terms of a geometric sequence, determine the possible values of x.

(A geometric sequence is a sequence in which each term after the first is obtained from the previous term by multiplying it by a constant. For example, 3, 6, 12 is a geometric sequence with three terms.)

(b) Determine all points (x, y) where the two curves  $y = \log_{10}(x^4)$  and  $y = (\log_{10} x)^3$  intersect.

(b) Determine all values of x for which  $2^{\log_{10}(x^2)} = 3(2^{1+\log_{10}x}) + 16$ .

(b) Determine all real values of x such that

$$\log_{5x+9}(x^2 + 6x + 9) + \log_{x+3}(5x^2 + 24x + 27) = 4$$

(b) Determine all real values of x for which  $\log_2(2^{x-1} + 3^{x+1}) = 2x - \log_2(3^x)$ .

(b) Determine all real numbers x for which

$$(\log_{10} x)^{\log_{10}(\log_{10} x)} = 10\,000$$

9. Consider the following system of equations in which all logarithms have base 10:

$$(\log x)(\log y) - 3\log 5y - \log 8x = a$$
  
$$(\log y)(\log z) - 4\log 5y - \log 16z = b$$
  
$$(\log z)(\log x) - 4\log 8x - 3\log 625z = c$$

- (a) If a = -4, b = 4, and c = -18, solve the system of equations.
- (b) Determine all triples (a, b, c) of real numbers for which the system of equations has an infinite number of solutions (x, y, z).



(b) Determine all real numbers x > 0 for which

$$\log_4 x - \log_x 16 = \frac{7}{6} - \log_x 8$$



(b) Determine all pairs (a,b) of real numbers that satisfy the following system of

$$\sqrt{a} + \sqrt{b} = 8$$
$$\log_{10} a + \log_{10} b = 2$$

Give your answer(s) as pairs of simplified exact numbers.

(a) Determine all values of x such that  $\log_{2x}(48\sqrt[3]{3}) = \log_{3x}(162\sqrt[3]{2})$ .

(a) Determine all real numbers x for which  $2\log_2(x-1) = 1 - \log_2(x+2)$ .

. . /

(b) Determine all pairs of angles (x,y) with  $0^{\circ} \le x < 180^{\circ}$  and  $0^{\circ} \le y < 180^{\circ}$  that satisfy the following system of equations:

$$\log_2(\sin x \cos y) = -\frac{3}{2}$$

$$\log_2\left(\frac{\sin x}{\cos y}\right) = \frac{1}{2}$$

(b) Suppose that  $f(a) = 2a^2 - 3a + 1$  for all real numbers a and  $g(b) = \log_{\frac{1}{2}} b$  for all b > 0. Determine all  $\theta$  with  $0 \le \theta \le 2\pi$  for which  $f(g(\sin \theta)) = 0$ .

(b) Determine all real numbers a, b and c for which the graph of the function  $y = \log_a(x+b) + c$  passes through the points P(3,5), Q(5,4) and R(11,3).

(a) A computer is programmed to choose an integer between 1 and 99, inclusive, so that the probability that it selects the integer x is equal to  $\log_{100} \left(1 + \frac{1}{x}\right)$ . Suppose that the probability that  $81 \le x \le 99$  is equal to 2 times the probability that x = n for some integer n. What is the value of n?

 $_{\ \ \ }$  (b) Determine all real values of x for which

$$\sqrt{\log_2 x \cdot \log_2(4x) + 1} + \sqrt{\log_2 x \cdot \log_2(\frac{x}{64}) + 9} = 4$$

(b) Determine all triples (x,y,z) of real numbers that are solutions to the following system of equations:

$$\log_9 x + \log_9 y + \log_3 z = 2$$
$$\log_{16} x + \log_4 y + \log_{16} z = 1$$
$$\log_5 x + \log_{25} y + \log_{25} z = 0$$

(b) Determine the coordinates of the points of intersection of the graphs of  $y = \log_{10}(x-2)$  and  $y = 1 - \log_{10}(x+1)$ .